Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Architecture for a large-scale ion-trap quantum computer

Abstract

Among the numerous types of architecture being explored for quantum computers are systems utilizing ion traps, in which quantum bits (qubits) are formed from the electronic states of trapped ions and coupled through the Coulomb interaction. Although the elementary requirements for quantum computation have been demonstrated in this system, there exist theoretical and technical obstacles to scaling up the approach to large numbers of qubits. Therefore, recent efforts have been concentrated on using quantum communication to link a number of small ion-trap quantum systems. Developing the array-based approach, we show how to achieve massively parallel gate operation in a large-scale quantum computer, based on techniques already demonstrated for manipulating small quantum registers. The use of decoherence-free subspaces significantly reduces decoherence during ion transport, and removes the requirement of clock synchronization between the interaction regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the quantum charge-coupled device (QCCD).
Figure 2: Configuration of radio-frequency (r.f.) and static (d.c.) electrodes for the QCCD.

References

  1. Shor, P. W. in Proc. 35th Annu. Symp. on the Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society, Los Alamitos, 1994)

    Book  Google Scholar 

  2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  CAS  Google Scholar 

  4. DiVincenzo, D. P. in Scalable Quantum Computers (eds Braunstein, S. L. & Lo, H. K.) 1–14 (Wiley-VCH, Berlin, 2001)

    Google Scholar 

  5. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. King, B. E. et al. Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81, 1525–1528 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Roos, C. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713–4716 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Nägerl, H. C. et al. Laser addressing of individual ions in a linear ion trap. Phys. Rev. A 60, 145–148 (1999)

    Article  ADS  Google Scholar 

  11. Blatt, R. & Zoller, P. Quantum jumps in atomic systems. Eur. J. Phys. 9, 250–256 (1988)

    Article  CAS  Google Scholar 

  12. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. NIST 103, 259–328 (1998)

    Article  CAS  Google Scholar 

  14. Hughes, R. J., James, D. F. V., Knill, E. H., Laflamme, R. & Petschek, A. G. Decoherence bounds on quantum computation with trapped ions. Phys. Rev. Lett. 77, 3240–3243 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Enzer, D. G. et al. in Experimental Implementation of Quantum Computation '01 (ed. Clark, R.) (Rinton, Princeton, 2001)

    Google Scholar 

  16. Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing: A cavity QED model. Phys. Rev. Lett. 75, 3788–3791 (1995)

    Article  ADS  CAS  Google Scholar 

  17. DeVoe, R. G. Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Steane, A. M. & Lucas, D. M. Quantum computing with trapped ions, atoms and light. Fortsch. Phys. 48, 839–858 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Steane, A. et al. Speed of ion-trap quantum-information processors. Phys. Rev. A 62, 042305 (2000)

    Article  ADS  Google Scholar 

  21. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  22. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    Article  ADS  CAS  Google Scholar 

  23. Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  24. Kielpinski, D. . Entanglement and Decoherence in a Trapped-ion Quantum Register. Thesis, Univ. Colorado (2001); available at 〈http://www.boulder.nist.gov/timefreq/ion/qucomp/papers.htm

  25. Rowe, M. A. et al. Transport of quantum states and separation of ions in a dual RF ion trap. Preprint quant-ph/0205094 at 〈http://xxx.lanl.gov〉 (2002).

  26. Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001)

    Article  ADS  Google Scholar 

  27. Kielpinski, D. et al. Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A 61, 032310 (2000)

    Article  ADS  Google Scholar 

  28. Morigi, G. & Walther, H. Two-species Coulomb chains for quantum information. Eur. Phys. J. D 13, 261–269 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Larson, D. J., Bergquist, J. C., Bollinger, J. J., Itano, W. M. & Wineland, D. J. Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70–73 (1986)

    Article  ADS  CAS  Google Scholar 

  30. Rohde, H. et al. Sympathetic ground-state cooling and coherent manipulation with two-ion crystals. J. Opt. B 3, S34–S41 (2001)

    Article  CAS  Google Scholar 

  31. Blinov, B. B. et al. Sympathetic cooling of trapped Cd+ isotopes. Preprint quant-ph/0112084 at 〈http://xxx.lanl.gov〉 (2001).

  32. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  CAS  Google Scholar 

  33. Duan, L. M. & Guo, G. C. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A 57, 737–741 (1998)

    Article  ADS  CAS  Google Scholar 

  34. Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)

    Article  ADS  Google Scholar 

  36. van Enk, S. J. The physical meaning of phase and its importance for quantum teleportation. J. Mod. Opt. 48, 2049–2054 (2001)

    Article  ADS  Google Scholar 

  37. Steane, A. The ion-trap quantum information processor. Appl. Phys. B 64, 623–643 (1997)

    Article  ADS  CAS  Google Scholar 

  38. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999)

    Article  ADS  CAS  Google Scholar 

  39. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 425–493 (Cambridge Univ. Press, Cambridge, 2000)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the experimental contributions of the NIST Ion Storage group, and also J. Beall for assistance with microfabrication. We thank D. Leibfried and M.A. Rowe for comments on the manuscript. D.K. and D.J.W. were supported by the US National Security Agency (NSA), Advanced Research and Development Activity (ARDA) and the Office of Naval Research. C.M. was supported by the US NSA, ARDA and the National Science Foundation ITR programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kielpinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielpinski, D., Monroe, C. & Wineland, D. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002). https://doi.org/10.1038/nature00784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00784

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing