Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of AMPA receptor lateral movements

Abstract

An essential feature in the modulation of the efficacy of synaptic transmission is rapid changes in the number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors at post-synaptic sites on neurons1,2,3,4. Regulation of receptor endo- and exocytosis has been shown to be involved in this process5,6,7,8,9,10,11,12,13,14. Whether regulated lateral diffusion of receptors in the plasma membrane also participates in receptor exchange to and from post-synaptic sites remains unknown. We analysed the lateral mobility of native AMPA receptors containing the glutamate receptor subunit GluR2 in rat cultured hippocampal neurons, using single-particle tracking and video microscopy. Here we show that AMPA receptors alternate within seconds between rapid diffusive and stationary behaviour. During maturation of neurons, stationary periods increase in frequency and length, often in spatial correlation with synaptic sites. Raising intracellular calcium, a central element in synaptic plasticity, triggers rapid receptor immobilization and local accumulation on the neuronal surface. We suggest that calcium influx prevents AMPA receptors from diffusing, and that lateral receptor diffusion to and from synaptic sites acts in the rapid and controlled regulation of receptor numbers at synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lateral mobility of GluR2 decreases during neuronal maturation.
Figure 2: GluR2 stops reversibly at synaptic sites.
Figure 3: Spontaneous neuronal activity modulates GluR2 mobility.
Figure 4: Local rises in intracellular calcium decrease GluR2 mobility and accumulate GluR2.

Similar content being viewed by others

References

  1. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999)

    Article  CAS  Google Scholar 

  3. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci. 2, 454–460 (1999)

    Article  CAS  Google Scholar 

  4. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001)

    Article  CAS  Google Scholar 

  5. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315–324 (2001)

    Article  CAS  Google Scholar 

  6. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24, 389–399 (1999)

    Article  CAS  Google Scholar 

  7. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis by a signalling mechanism shared with LTD. Nature Neurosci. 3, 1291–1300 (2000)

    Article  CAS  Google Scholar 

  8. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neurosci. 3, 1282–1290 (2000)

    Article  CAS  Google Scholar 

  9. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000)

    Article  CAS  Google Scholar 

  10. Man, Y. H. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000)

    Article  CAS  Google Scholar 

  11. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001)

    Article  CAS  Google Scholar 

  12. Sheng, M. & Lee, S. H. AMPA receptor trafficking and the control of synaptic transmission. Cell 105, 825–828 (2001)

    Article  CAS  Google Scholar 

  13. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999)

    Article  CAS  Google Scholar 

  14. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999)

    Article  CAS  Google Scholar 

  15. Simson, R., Sheets, E. D. & Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Meier, J., Vannier, C., Sergé, A., Triller, A. & Choquet, D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nature Neurosci. 4, 253–260 (2001)

    Article  CAS  Google Scholar 

  17. Fletcher, T. L., De Camilli, P. & Banker, G. Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci. 14, 6695–6706 (1994)

    Article  CAS  Google Scholar 

  18. Kiss, J. Z. & Muller, D. Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev. Neurosci. 12, 297–310 (2001)

    Article  CAS  Google Scholar 

  19. Simson, R. et al. Structural mosaicism on the submicron scale in the plasma membrane. Biophys. J. 74, 297–308 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Nusser, Z. AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol. 10, 337–341 (2000)

    Article  CAS  Google Scholar 

  21. Sergé, A., Fourgeaud, L., Hémar, A. & Choquet, D. Receptor activation and homer differentially control the lateral mobility of mGluR5 in the neuronal membrane. J. Neurosci. (in the press)

  22. Pickard, L., Noel, J., Henley, J. M., Collingridge, G. L. & Molnar, E. Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J. Neurosci. 20, 7922–7931 (2000)

    Article  CAS  Google Scholar 

  23. Benmerah, A., Poupon, V., Cerf-Bensussan, N. & Dautry-Varsat, A. Mapping of Eps15 domains involved in its targeting to clathrin-coated pits. J. Biol. Chem. 275, 3288–3295 (2000)

    Article  CAS  Google Scholar 

  24. Ghosh, A. & Greenberg, M. E. Calcium signalling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Yang, S. N., Tang, Y. G. & Zucker, R. S. Selective induction of LTP and LTD by postsynaptic [Ca2 +]i elevation. J. Neurophysiol. 81, 781–787 (1999)

    Article  CAS  Google Scholar 

  26. Liu, S. Q. & Cull-Candy, S. G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Malinow, R., Mainen, Z. F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000)

    Article  CAS  Google Scholar 

  29. Hémar, A., Olivo, J. C., Williamson, E., Saffrich, R. & Dotti, C. G. Dendroaxonal transcytosis of transferrin in cultured hippocampal and sympathetic neurons. J. Neurosci. 17, 9026–9034 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Centre National de la Recherche Scientifique and the Conseil Régional d'Aquitaine. A.J.B. was supported by the Fondation pour la Recherche Médicale and an EC (European Commission) Marie Curie Training fellowship. We thank P. Osten for his gift of GluR2–GFP cDNA, A. Benmerah for the gift of the Esp15–GFP cDNA, and R.-M. Mège for the gift of anti-N-Cam. We thank P. Ascher for his support during early phases of this work; C. Mulle, A. Hémar and L. Cognet for their comments on the manuscript; and F. Rossignol for cultures of hippocampal neurons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Choquet.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgdorff, A., Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002). https://doi.org/10.1038/nature00780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00780

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing