Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the SRP19–RNA complex and implications for signal recognition particle assembly

Abstract

The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein. It associates with ribosomes to mediate co-translational targeting of membrane and secretory proteins to biological membranes. In mammalian cells, the SRP consists of a 7S RNA and six protein components. The S domain of SRP comprises the 7S.S part of RNA bound to SRP19, SRP54 and the SRP68/72 heterodimer; SRP54 has the main role in recognizing signal sequences of nascent polypeptide chains and docking SRP to its receptor1,2,3. During assembly of the SRP, binding of SRP19 precedes and promotes the association of SRP54 (refs 4, 5). Here we report the crystal structure at 2.3 Å resolution of the complex formed between 7S.S RNA and SRP19 in the archaeon Methanococcus jannaschii. SRP19 bridges the tips of helices 6 and 8 of 7S.S RNA by forming an extensive network of direct protein–RNA interactions. Helices 6 and 8 pack side by side; tertiary RNA interactions, which also involve the strictly conserved tetraloop bases, stabilize helix 8 in a conformation competent for SRP54 binding. The structure explains the role of SRP19 and provides a molecular framework for SRP54 binding and SRP assembly in Eukarya and Archaea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the 7S.S RNA in complex with SRP19.
Figure 2: Geometries of RNA–RNA interactions at the tetraloop and the bulge loop regions.
Figure 3: Details of the RNA–SRP19 interactions in M. jannaschii.
Figure 4: Structural differences between helix 6 from human and M. jannaschii SRP RNA.
Figure 5: Model of human SRP19 and SRP54 M-domain proteins bound to M. jannaschii 7S.S RNA.

Similar content being viewed by others

References

  1. Lütcke, H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur. J. Biochem. 228, 531–550 (1995)

    Article  Google Scholar 

  2. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)

    Article  CAS  Google Scholar 

  3. Wild, K., Weichenrieder, O., Strub, K., Sinning, I. & Cusack, S. Towards the structure of the mammalian signal recognition particle. Curr. Opin. Struct. Biol. 12, 72–81 (2002)

    Article  CAS  Google Scholar 

  4. Walter, P. & Blobel, G. Disassembly and reconstitution of signal recognition particle. Cell 34, 525–533 (1983)

    Article  CAS  Google Scholar 

  5. Politz, J. C. et al. Signal recognition particle components in the nucleolus. Proc. Natl Acad. Sci. USA 97, 55–60 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Gorodkin, J., Knudsen, B., Zwieb, C. & Samuelsson, T. SRPDB (Signal Recognition Particle Database). Nucleic Acids Res. 29, 169–170 (2001)

    Article  CAS  Google Scholar 

  7. Bhuiyan, S. H., Gowda, K., Hotokezaka, H. & Zwieb, C. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res. 28, 1365–1373 (2000)

    Article  CAS  Google Scholar 

  8. Zwieb, C. Recognition of a tetranucleotide loop of signal recognition particle RNA by protein SRP19. J. Biol. Chem. 267, 15650–15656 (1992)

    CAS  PubMed  Google Scholar 

  9. Zwieb, C. Site-directed mutagenesis of signal-recognition particle RNA. Identification of the nucleotides in helix 8 required for interaction with protein SRP19. Eur. J. Biochem. 222, 885–890 (1994)

    Article  CAS  Google Scholar 

  10. Diener, J. L. & Wilson, C. Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry 39, 12862–12874 (2000)

    Article  CAS  Google Scholar 

  11. Rose, M. A. & Weeks, K. M. Visualizing induced fit in early assembly of the human signal recognition particle. Nature Struct. Biol. 8, 515–520 (2001)

    Article  CAS  Google Scholar 

  12. Wild, K., Sinning, I. & Cusack, S. Crystal structure of an early protein–RNA assembly complex of the signal recognition particle. Science 294, 598–601 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Batey, R. T., Rambo, R. P., Lucast, L., Rha, B. & Doudna, J. A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Weichenrieder, O., Wild, K., Strub, K. & Cusack, S. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408, 167–173 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Uhlenbeck, O. C. Tetraloops and RNA folding. Nature 346, 613–614 (1990)

    Article  ADS  CAS  Google Scholar 

  16. Jucker, F. M., Heus, H. A., Yip, P. F., Moors, E. H. & Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol Biol. 264, 968–980 (1996)

    Article  CAS  Google Scholar 

  17. Jovine, L. et al. Crystal structure of the ffh and EF-G binding sites in the conserved domain IV of Escherichia coli 4.5S RNA. Struct. Fold. Des. 8, 527–540 (2000)

    Article  CAS  Google Scholar 

  18. Correll, C. C., Freeborn, B., Moore, P. B. & Steitz, T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91, 705–712 (1997)

    Article  CAS  Google Scholar 

  19. Agalarov, S. C., Prasad, G. S., Funke, P. M., Stout, C. D. & Williamson, J. R. Structure of the S15,S6,S18-rRNA complex: Assembly of the 30S ribosome central domain. Science 288, 107–112 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Price, S. R., Ito, N., Oubridge, C., Avis, J. M. & Nagai, K. Crystallization of RNA–protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408 (1995)

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  22. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  23. Wild, K., Weichenrieder, O., Leonard, G. A. & Cusack, S. The 2 Å structure of helix 6 of the human signal recognition particle RNA. Struct. Fold. Des. 7, 1345–1352 (1999)

    Article  CAS  Google Scholar 

  24. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  26. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992)

    Article  ADS  Google Scholar 

  27. Abagyan, R. A., Totrov, M. M. & Kuznetsov, D. N. ICM—a new method for protein modelling and design. Application to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994)

    Article  CAS  Google Scholar 

  28. Harris, M. & Jones, T. A. Molray—a web interface between O and the POV-Ray ray tracer. Acta Crystallogr. D 57, 1201–1203 (2001)

    Article  CAS  Google Scholar 

  29. Clemons, W. M. Jr, Gowda, K., Black, S. D., Zwieb, C. & Ramakrishnan, V. Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 Å resolution: evidence for the mechanism of signal peptide binding. J. Mol Biol. 292, 697–705 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. O. Stetter for providing M. jannaschii cells; C. Oubridge for T7 polymerase; and U. H. Sauer and T. Bergfors for suggestions to the manuscript. This work was supported by the Swedish Research Council and European Union. We thank K. Nagai and the Medical Research Council UK for their support at an early stage of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hainzl.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainzl, T., Huang, S. & Sauer-Eriksson, A. Structure of the SRP19–RNA complex and implications for signal recognition particle assembly. Nature 417, 767–771 (2002). https://doi.org/10.1038/nature00768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00768

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing