Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New particle is both matter and antimatter

Researchers see signature of 'Majorana particles' inside superconducting iron.

An article by Scientific American.

Since the 1930s scientists have been searching for particles that are simultaneously matter and antimatter. Now physicists have found strong evidence for one such entity inside a superconducting material. The discovery could represent the first so-called Majorana particle, and may help researchers encode information for quantum computers.

Promising antibiotic discovered in microbial ‘dark matter’ Biochemist questions peer review at UK funding agency Exoplanet bounty includes most Earth-like worlds yet

Physicists think that every particle of matter has an antimatter counterpart with equal mass but opposite charge. When matter meets its antimatter equivalent, the two annihilate one another. But some particles might be their own antimatter partners, according to a 1937 prediction by Italian physicist Ettore Majorana (see 'A solid case for Majorana fermions'). For the first time researchers say they have imaged one of these Majorana particles, and report their findings in the 3 October Science1.

The new Majorana particle showed up inside a superconductor, a material in which the free movement of electrons allows electricity to flow without resistance. The research team, led by Ali Yazdani of Princeton University in New Jersey, placed a long chain of iron atoms, which are magnetic, on top of a superconductor made of lead. Normally, magnetism disrupts superconductors, which depend on a lack of magnetic fields for their electrons to flow unimpeded. But in this case the magnetic chain turned into a special type of superconductor in which electrons next to one another in the chain coordinated their spins to simultaneously satisfy the requirements of magnetism and superconductivity. Each of these pairs can be thought of as an electron and an antielectron, with a negative and a positive charge, respectively. That arrangement, however, leaves one electron at each end of the chain without a neighbor to pair with, causing them to take on the properties of both electrons and antielectrons — in other words, Majorana particles.

As opposed to particles found in a vacuum, unattached to other matter, these Majoranas are what’s called emergent particles. They emerge from the collective properties of the surrounding matter and could not exist outside the superconductor.

The new study shows a convincing signature of Majorana particles, says Leo Kouwenhoven of the Delft University of Technology in the Netherlands who was not involved in the research but previously found signs of Majorana particles in a different superconductor arrangement. “But to really speak of full proof, unambiguous evidence, I think you have to do a DNA test.” Such a test, he says, must show the particles do not obey the normal laws of the two known classes of particles in nature — fermions (protons, electrons and most other particles we are familiar with) and bosons (photons and other force-carrying particles, including the Higgs boson). “The great thing about Majoranas is that they are potentially a new class of particle,” Kouwenhoven adds. “If you find a new class of particles, that really would add a new chapter to physics.”

More from Scientific American.

Physicist Jason Alicea of the California Institute of Technology in Pasadena, who also did not participate in the research, said the study offers “compelling evidence” for Majorana particles but that “we should keep in mind possible alternative explanations — even if there are no immediately obvious candidates.” He praised the experimental setup for its apparent ability to easily produce the elusive Majoranas. “One of the great virtues of their platform relative to earlier works is that it allowed the researchers to apply a new type of microscope to probe the detailed anatomy of the physics.”

The discovery could have implications for searches for free Majorana particles outside of superconducting materials. Many physicists suspect neutrinos — very lightweight particles with the strange ability to alter their identities, or flavors — are Majorana particles, and experiments are ongoing to investigate whether this is the case. Now that we know Majorana particles can exist inside superconductors, it might not be surprising to find them in nature, Yazdani says. “Once you find the concept to be correct, it’s very likely that it shows up in another layer of physics. That’s what’s exciting.”

Yazdani Lab, Princeton University

The finding could also be useful for constructing quantum computers that harness the laws of quantum mechanics to make calculations many times faster than conventional computers. One of the main issues in building a quantum computer is the susceptibility of quantum properties such as entanglement (a connection between two particles such that an action on one affects the other) to collapse due to outside interference. A particle chain with Majoranas capping each end would be somewhat immune to this danger, because damage would have to be done to both ends simultaneously to destroy any information encoded there. “You could build a quantum bit based on these Majoranas,” Yazdani says. ”The idea is that such a bit would be much more robust to the environment than the types of bits people have tried to make so far.”

name:

Nereid journeys under Arctic ice

description:

The submersible completed four dives in polar waters in July 2014. WOODS HOLE OCEANOGRAPHIC INSTITUTION

References

Authors

Additional information

This article was originally published by Scientific American on 2 October 2014.

Electronic supplementary material

Particles that are their own anti-particles

Related links

Related links

Related links in Nature Research

Long-sought neutrinos answer burning question about the Sun 2014-Aug-27

Radioactive leak shuts down neutrino study 2014-Jun-04

Proton's magnetism measured with greatest precision yet 2014-May-29

Neutrino physics: Beta test 2012-Jul-11

A solid case for Majorana fermions 2012-Mar-06

Topological insulators: Star material 2010-Jul-14

Quest for quirky quantum particles may have struck gold

Related external links

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moskowitz, C. New particle is both matter and antimatter. Nature (2014). https://doi.org/10.1038/nature.2014.16074

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nature.2014.16074

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing