Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Insect wings shred bacteria to pieces

Antibacterial 'nanopillars' on cicada wings pull bacterial membranes apart.

The veined wing of the clanger cicada kills bacteria solely through its physical structure — one of the first natural surfaces found to do so. An international team of biophysicists has now come up with a detailed model of how this defence works on the nanoscale. The results are published in the latest issue of the Biophysical Journal1.

The clanger cicada (Psaltoda claripennis) is a locust-like insect whose wings are covered by a vast hexagonal array of 'nanopillars' — blunted spikes on a similar size scale to bacteria (see video, bottom). When a bacterium settles on the wing surface, its cellular membrane sticks to the surface of the nanopillars and stretches into the crevices between them, where it experiences the most strain. If the membrane is soft enough, it ruptures (see video, top).

Lead study author Elena Ivanova of Australia's Swinburne University of Technology in Hawthorne, Victoria, says that she was surprised that the bacterial cells are not actually punctured by the nanopillars. The rupturing effect is more like “the stretching of an elastic sheet of some kind, such as a latex glove. If you take hold of a piece of latex in both hands and slowly stretch it, it will become thinner at the centre, [and] will begin to tear,” she explains.

To test their model, Ivanova and her team irradiated bacteria with microwaves to generate cells that had different levels of membrane rigidity. Their hypothesis was that the more rigid bacteria would be less likely to rupture between the nanopillars. The results validated the model, but also demonstrated that the cicada’s nanopillar defence is limited to bacteria that have sufficiently soft membranes.

Further study of the cicada’s wing is needed before its physical-defence properties can be mimicked in man-made materials. Anne-Marie Kietzig, a chemical engineer at McGill University in Montreal, Canada, who was not involved in the study, suggests that materials based on this model could one day be applied to public surfaces that commonly harbour disease, such as bus railings. “This would provide a passive bacteria-killing surface,” she says, adding that it “does not require active agents like detergents, which are often environmentally harmful”.

Veselin Boshkovikj

References

  1. Pogodin, S. et al. Biophys. J. 104, 835–840 (2013).

    ADS  Article  CAS  Google Scholar 

Download references

Authors

Related links

Electronic supplementary material

E. coli grater

Cicada wings’ nanorods

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quirk, T. Insect wings shred bacteria to pieces. Nature (2013). https://doi.org/10.1038/nature.2013.12533

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nature.2013.12533

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing