Atomic gas superfluid mimics its superconducting cousins for the first time - it may help scientists model the early cosmos in the lab.
Superfluid gases that defy friction now have another 'superpower' to add to their arsenal. Quantum physicists have shown for the first time that atoms in these ultracold gases can also conduct without experiencing any resistance1. Their experimental set-up could one day help to solve a long-standing mystery about superconductivity and be used to model the early Universe in the lab.
Atoms within superfluids, which were first discovered in the 1930s[2], do not experience resistance as they exploit quantum effects to band together. This means that they can perform bizarre feats, such as flowing up the walls of their containers. In theory, these atoms should also easily be able to conduct through a narrow channel, without feeling any resistance caused by the confined space — just as electrons in a superconductor move unhindered by electrical resistance. But until now, nobody had been able to demonstrate this in the lab.
“It always annoyed me that this defining feature — conductance without resistance — that had been used to discover superconductivity had never been shown in an atomic gas superfluid,” says Tilman Esslinger, a quantum physicist at the Swiss Federal Institute of Technology (ETH) in Zurich.
Chill then squeeze
Esslinger and his colleagues took up that challenge by manipulating a cloud of lithium atoms, chilled to just less than a microkelvin above absolute zero — 10 million times colder than deep space. Using lasers, they squeezed the gas into a dumbbell shape to create two reservoirs of atoms linked by a narrow bridge, with more atoms on the left than on the right. Finally, they blocked the bridge, using another 'gate' laser: when the beam was on, the bridge was closed; when it was off, the bridge was open, allowing atoms to pass from the more populated to the less crowded side.
At this stage, the cloud was not a superfluid, just a normal atomic gas. The team gradually lifted the gate and the atoms began to drift across the bridge at a speed of about 5 millimetres a second. The team then turned the gas into a superfluid by applying a magnetic field that forced it into the exotic quantum state.
When the team repeated the same experiment with this superfluid — opening the laser gate and measuring the speed of the atoms as they did so — they noticed a considerable change.
“There was immediately a striking effect - no resistance at all, as though there was no channel,” says Esslinger. The drop in resistance occurred when the laser was tuned down from 1.2 microKelvin - with the gate fully closed, to 0.7 microKelvin - with the gate just under halfway open. At this point the atoms rapidly sped up to around 30 mm/s.
Jan Zaanen, a condensed matter physicist at the University of Leiden in the Netherlands, says that he is “awestruck” by the team’s prowess at accurately manipulating the superfluid.
Cosmos in a lab
The team’s set-up could eventually be used to investigate the origin of other strange quantum effects. For instance, while most superconductors only work near absolute zero, certain solids are able to superconduct at unexpectedly high temperatures of about 70 kelvin. It is tough to pinpoint why this happens by looking directly at those materials because there are many other complex interactions within solids, such as the vibration of the atomic lattice, confusing matters.
But an atomic gas could be tuned to simulate high-temperature superconductivity in controlled conditions, without such distractions, says Seamus Davis, a solid-state physicist at Cornell University, Ithaca, New York. “The dream is to learn more about superconductivity from these systems so we can work out how to make it survive at room temperature,” he says. “That would revolutionize technology.”
More ambitiously, the superfluid could help reveal our universe’s early history. Its quantum properties are are similar to those of the hot fiery ball of gas - made up of elementary particles called quarks and gluons - that appeared soon after the big bang.
“Cosmologists don’t have exact equations to calculate what happens in such systems,” says Zaanen. “This could offer a way to model the cosmos, in the lab.
References
Stadler, D., Krinner, S., Meineke, J. & Brantut, J.-P. & Esslinger, T. Nature 491, 736–740 (2012).
Kapitza, P. Nature 141 3558, 74 (1938)
Related links
Related links
Related links in Nature Research
Simulation: Quantum leaps 2012-Nov-14
Collaborative physics: String theory finds a bench mate 2011-Oct-19
Experimental cosmology: Cosmos in a bottle 2008-Jan-16
Related external links
Rights and permissions
About this article
Cite this article
Merali, Z. Doubly-super gas meets with no resistance. Nature (2012). https://doi.org/10.1038/nature.2012.11911
Published:
DOI: https://doi.org/10.1038/nature.2012.11911