Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon nanomaterials for non-volatile memories

Abstract

Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Carbon nanotubes as crossbar electrodes.
Figure 2: Carbon nanomaterials as edge electrodes.
Figure 3: Graphene as an interfacial engineering layer.
Figure 4: Carbon nanotube field-effect transistors for high-density non-volatile memory crossbar arrays.
Figure 5: Graphene oxide and other carbon-based composites.
Figure 6: Ashby plot for non-volatile memories.

References

  1. 1

    Momodomi, M. et al. in 1988 IEEE International Electron Devices Meeting (IEDM) 412–415 (San Francisco, CA, USA, 1988).

    Google Scholar 

  2. 2

    Lu, C.-Y., Hsieh, K.-Y. & Liu, R. Future challenges of flash memory technologies. Microelectron. Engineer. 86, 283–286 (2009).

    Article  CAS  Google Scholar 

  3. 3

    Fazio, A. Flash memory scaling. MRS Bull. 29, 814–817 (2004).

    Article  CAS  Google Scholar 

  4. 4

    Hung, C.-H. et al. in 2011 Symposium on VLSI Technology (VLSIT) 68–69 (Kyoto, Japan, 2011).

    Google Scholar 

  5. 5

    Katsumata, R. et al. in 2009 Symposium on VLSI Technology (VLSIT) 136–137 (Kyoto, Japan, 2009).

    Google Scholar 

  6. 6

    Shilov, A. Western Digital announce BiCS4 3D NAND: 96 layers, TLC & QLC, up to 1 Tb per chip. AnandTechhttp://www.anandtech.com/show/11585/western-digital-announce-bics4-96-layer-nand (2017).

  7. 7

    Lapedus, M. How to make 3D NAND. Semiconductor Engineeringhttp://semiengineering.com/how-to-make-3d-nand/ (2016).

  8. 8

    Aly, M. M. S. et al. Energy-efficient abundant-data computing: the N3XT 1,000 x. Computer 48, 24–33 (2015).

    Google Scholar 

  9. 9

    Yu, S. & Chen, P.-Y. Emerging memory technologies: recent trends and prospects. IEEE Solid-State Circuits Magazine 8, 43–56 (2016).

    Article  Google Scholar 

  10. 10

    Meena, J. S., Sze, S. M., Chand, U. & Tseng, T.-Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014).

    Article  Google Scholar 

  11. 11

    Chen, Y., Li, H. H., Bayram, I. & Eken, E. Recent technology advances of emerging memories. IEEE Design Test. 34, 8–22 (2017).

    Article  Google Scholar 

  12. 12

    Ohmori, K. S. et al. in 2017 Symposium on VLSI Technology T90–T91 (Kyoto, Japan, 2017).

    Book  Google Scholar 

  13. 13

    Hsieh, C.-C. et al. Short-term relaxation in HfOx/CeOx resistive random access memory with selector. IEEE Electron. Device Lett. 38, 871–874 (2017).

    Article  CAS  Google Scholar 

  14. 14

    Ducry, F. et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 4.2.1–4.2.4 (San Francisco, CA, USA, 2017).

    Book  Google Scholar 

  15. 15

    Jameson, J. R. et al. Conductive bridging RAM (CBRAM): then, now, and tomorrow. ECS Trans 75, 41–54 (2016).

    Article  CAS  Google Scholar 

  16. 16

    Ielmini, D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semiconductor Sci. Technol. 31, 063002 (2016).

    Article  CAS  Google Scholar 

  17. 17

    Bricalli, A. et al. in 2016 IEEE International Electron Devices Meeting (IEDM) 4.3.1–4.3.4 (San Francisco, CA, USA, 2016).

    Book  Google Scholar 

  18. 18

    Jana, D. et al. Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 10, 188 (2015).

    Article  Google Scholar 

  19. 19

    Wong, H.-S. P. et al. Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    Article  CAS  Google Scholar 

  20. 20

    Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  21. 21

    Navarro, G. et al. in 2017 Symposium on VLSI Technology and Circuits T94–T95 (Kyoto, Japan, 2017).

    Book  Google Scholar 

  22. 22

    Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Selected Top. Circuits Systems 6, 146–162 (2016).

    Article  Google Scholar 

  23. 23

    Ahn, C. et al. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).

    Article  CAS  Google Scholar 

  24. 24

    Choi, Y. et al. in 2012 IEEE International Solid-State Circuits Conference 46–48 (San Francisco, CA, USA, 2012).

    Book  Google Scholar 

  25. 25

    Kang, M. et al. in 2011 IEEE International Electron Devices Meeting (IEDM) 3.1.1–3.1.4 (Washington, DC, USA, 2011).

    Google Scholar 

  26. 26

    Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Article  Google Scholar 

  27. 27

    Shum, D. et al. in 2017 Symposium on VLSI Technology and Circuits T208–T209 (Kyoto, Japan, 2017).

    Book  Google Scholar 

  28. 28

    Fong, X. et al. Spin-transfer torque memories: devices, circuits, and systems. Proc. IEEE 104, 1449–1488 (2016).

    Article  CAS  Google Scholar 

  29. 29

    Jin, Y., Shihab, M. & Jung, M. in 2014 ACM/IEEE 41st International Symposium on Computer Architecture (Minneapolis, MN, USA, 2014).

    Google Scholar 

  30. 30

    Wang, K., Alzate, J. & Amiri, P. K. Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46, 074003 (2013).

    Article  CAS  Google Scholar 

  31. 31

    Chen, E. et al. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magnet. 46, 1873–1878 (2010).

    Article  CAS  Google Scholar 

  32. 32

    Orlov, O. et al. Investigation of the properties and manufacturing features of nonvolatile FRAM memory based on atomic layer deposition. Russian Microelectron. 45, 262–269 (2016).

    Article  CAS  Google Scholar 

  33. 33

    Fujitsu. New 1 Mbit and 2 Mbit FRAM products released by Fujitsu. Phys.orghttps://phys.org/news/2013-03-mbit-fram-products-fujitsu.html#nRlv (2013).

  34. 34

    Shiga, H. et al. A 1.6 GB/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes. IEEE J. Solid-State Circuits 45, 142–152 (2010).

    Article  Google Scholar 

  35. 35

    Lee, S. & Kim, K. Current development status and future challenges of ferroelectric random access memory technologies. Japanese J. Appl. Phys. 45, 3189 (2006).

    Article  CAS  Google Scholar 

  36. 36

    Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

    Article  CAS  Google Scholar 

  37. 37

    Govoreanu, B. et al. in 2011 IEEE International Electron Devices Meeting (IEDM) 31.36.31–31.36.34 (Washington, DC, USA, 2011).

    Google Scholar 

  38. 38

    Clarke, P. Phase-change memory found in handset. EE Timeshttp://www.eetimes.com/document.asp?doc_id=1258042 (2010).

  39. 39

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magnetism Magnet. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  40. 40

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).

    Article  CAS  Google Scholar 

  41. 41

    Noguchi, H. et al. in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) 1–3 (San Francisco, CA, USA, 2015).

    Google Scholar 

  42. 42

    Kan, J. et al. in 2016 IEEE International Electron Devices Meeting (IEDM) 27.24.21–27.24.24 (San Francisco, CA, USA, 2016).

    Google Scholar 

  43. 43

    Mertens, R. Everspin starts to sample 1Gb pMTJ STT-MRAM chips. MRAM-infohttps://www.mram-info.com/everspin-starts-sample-1gb-pmtj-stt-mram-chips (2017).

  44. 44

    Narayanapillai, K. et al. in 2016 IEEE International Nanoelectronics Conference (INEC) 1–2 (Chengdu, China, 2016).

    Book  Google Scholar 

  45. 45

    Van Houdt, J. in 2017 IEEE International Memory Workshop (IMW) 1–3 (Monterey, CA, USA, 2017).

    Google Scholar 

  46. 46

    EE Times. Ramtron: nonvolatile F-RAM offers 10-year data retention. EE Timeshttp://www.eetimes.com/document.asp?doc_id=1270374& (2009).

  47. 47

    Böscke, T. et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).

    Article  CAS  Google Scholar 

  48. 48

    Böscke, T., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  CAS  Google Scholar 

  49. 49

    Böscke, T., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. in 2011 IEEE International Electron Devices Meeting (IEDM) 24.25.21–24.25.24 (Washington, DC, USA, 2011).

    Google Scholar 

  50. 50

    Mueller, S. et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

    Article  CAS  Google Scholar 

  51. 51

    Müller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2 . Nano Lett. 12, 4318–4323 (2012).

    Article  CAS  Google Scholar 

  52. 52

    Müller, J. et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).

    Article  CAS  Google Scholar 

  53. 53

    Dresselhaus, M. S. Fifty years in studying carbon-based materials. Phys. Scripta 2012, 014002 (2012).

    Article  CAS  Google Scholar 

  54. 54

    Schabel, M. C. & Martins, J. L. Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185 (1992).

    Article  CAS  Google Scholar 

  55. 55

    Ryu, S. et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9, 5929–5936 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Vicarelli, L. et al. Graphene field effect transistors as room-temperature Terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    Article  CAS  Google Scholar 

  57. 57

    Yang, X., Vorobiev, A., Generalov, A., Andersson, M. A. & Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 111, 021102 (2017).

    Article  CAS  Google Scholar 

  58. 58

    Wong, H.-S. P. et al. Stanford memory trends. Stanford Nanoelectronics Labhttps://nano.stanford.edu/stanford-memory-trends (2017).

  59. 59

    Xiong, F. et al. Self-aligned nanotube–nanowire phase change memory. Nano Lett. 13, 464–469 (2013).

    Article  CAS  Google Scholar 

  60. 60

    Feng, P. et al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress Natural Sci. Mater. Int. 20, 1–15 (2010).

    Article  Google Scholar 

  61. 61

    Zhang, L. et al. in 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) 1160–1162 (Shanghai, China, 2010).

    Book  Google Scholar 

  62. 62

    Gao, S., Song, C., Chen, C., Zeng, F. & Pan, F. Dynamic processes of resistive switching in metallic filament-based organic memory devices. J. Phys. Chem. C 116, 17955–17959 (2012).

    Article  CAS  Google Scholar 

  63. 63

    Tang, G. et al. Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation. J. Appl. Phys. 113, 244502 (2013).

    Article  CAS  Google Scholar 

  64. 64

    Peng, L.-M., Zhang, Z. & Wang, S. Carbon nanotube electronics: recent advances. Mater. Today 17, 433–442 (2014).

    Article  CAS  Google Scholar 

  65. 65

    Aluguri, R. & Tseng, T.-Y. Overview of selector devices for 3D stackable cross point RRAM arrays. IEEE J. Electron. Devices Soc. 4, 294–306 (2016).

    Article  CAS  Google Scholar 

  66. 66

    Liang, J. & Wong, H.-S. P. Cross-point memory array without cell selectors — device characteristics and data storage pattern dependencies. IEEE Trans. Electron. Devices 57, 2531–2538 (2010).

    Article  Google Scholar 

  67. 67

    Tang, J., Cao, Q., Farmer, D. B., Tulevski, G. & Han, S.-J. in 2016 IEEE International Electron Devices Meeting (IEDM) 5.1.1–5.1.4 (San Francisco, CA, USA, 2016).

    Book  Google Scholar 

  68. 68

    Zeon Corporation. World's first super-growth carbon nanotube mass production plant opens. Zeon Corporationhttp://www.zeon.co.jp/press_e/151104.html (2015).

  69. 69

    Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68–72 (2015).

    Article  CAS  Google Scholar 

  70. 70

    Park, H. et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7, 787–791 (2012).

    Article  CAS  Google Scholar 

  71. 71

    Patil, N. et al. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol. 8, 498–504 (2009).

    Article  Google Scholar 

  72. 72

    Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  73. 73

    Wu, Y., Chai, Y., Chen, H.-Y., Yu, S. & Wong, H.-S. P. in 2011 Symposium on VLSI Technology (VLSIT) 26–27 (Kyoto, Japan, 2011).

    Google Scholar 

  74. 74

    Tsai, C.-L., Xiong, F., Pop, E. & Shim, M. Resistive random access memory enabled by carbon nanotube crossbar electrodes. ACS Nano 7, 5360–5366 (2013).

    Article  CAS  Google Scholar 

  75. 75

    Cheng, W. et al. HfO2-based resistive switching memory with CNTs electrode for high density storage. Solid State Electron. 132, 19–23 (2017).

    Article  CAS  Google Scholar 

  76. 76

    Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012).

    Article  Google Scholar 

  77. 77

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  78. 78

    Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  79. 79

    Zhang, L. et al. in 2013 5th IEEE International Memory Workshop (IMW) 155–158 (Monterey, CA, USA, 2013).

    Book  Google Scholar 

  80. 80

    Yu, S. et al. in 2013 Symposium on VLSI Technology (VLSIT) T158–T159 (Kyoto, Japan, 2013).

    Google Scholar 

  81. 81

    Chen, H.-Y. et al. Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory. Nanotechnology 24, 465201 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Lee, S., Sohn, J., Jiang, Z., Chen, H.-Y. & Wong, H.-S. P. Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407–8413 (2015).

    Article  Google Scholar 

  83. 83

    Bai, Y. et al. Stacked 3D RRAM array with graphene/CNT as edge electrodes. Sci. Rep. 5, 13785 (2015).

    Article  Google Scholar 

  84. 84

    Sohn, J., Lee, S., Jiang, Z., Chen, H.-Y. & Wong, H.-S. P. in 2014 IEEE International Electron Devices Meeting (IEDM) 5.3.1–5.3.4 (San Francisco, CA, USA, 2014).

    Book  Google Scholar 

  85. 85

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    Article  CAS  Google Scholar 

  86. 86

    Xiong, F. et al. in 2016 IEEE International Electron Devices Meeting (IEDM) 4.1.1–4.1.4 (San Francisco, CA, USA, 2016).

    Book  Google Scholar 

  87. 87

    Liang, J., Jeyasingh, R. G. D., Chen, H.-Y. & Wong, H.-S. P. An ultra-low reset current cross-point phase change memory with carbon nanotube electrodes. IEEE Trans. Electron. Devices 59, 1155–1163 (2012).

    Article  CAS  Google Scholar 

  88. 88

    Liang, J., Jeyasingh, R. G. D., Chen, H.-Y. & Wong, H.-S. P. in 2011 Symposium on VLSI Technology (VLSIT) 100–101 (Kyoto, Japan, 2011).

    Google Scholar 

  89. 89

    Han, M. Y., özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  90. 90

    Behnam, A. et al. Nanoscale phase change memory with graphene ribbon electrodes. Appl. Phys. Lett. 107, 123508 (2015).

    Article  CAS  Google Scholar 

  91. 91

    Wang, X.-F., Zhao, H.-M., Yang, Y. & Ren, T.-L. Graphene resistive random memory — the promising memory device in next generation. Chinese Phys. B 26, 038501 (2017).

    Article  CAS  Google Scholar 

  92. 92

    Rani, A. & Kim, D. H. A mechanistic study on graphene-based nonvolatile ReRAM devices. J. Mater. Chem. C 4, 11007–11031 (2016).

    Article  CAS  Google Scholar 

  93. 93

    Tian, H. et al. Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 13, 651–657 (2013).

    Article  CAS  Google Scholar 

  94. 94

    Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  95. 95

    Yang, P.-K. et al. Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects. Proc. IEEE 101, 1732–1739 (2013).

    Article  CAS  Google Scholar 

  96. 96

    Zhao, H., Tu, H., Wei, F. & Du, J. Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application. IEEE Trans. Electron. Devices 61, 1388–1393 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Li, Q., Gao, T., Wang, Y. & Wang, T. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 86, 123117 (2005).

    Article  CAS  Google Scholar 

  98. 98

    Chen, C.-Y., Lin, C., Chen, M., Lin, G. & He, J.-H. ZnO/Al2O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties. Nanotechnology 20, 185605 (2009).

    Article  CAS  Google Scholar 

  99. 99

    Hong, W.-K., Jo, G., Kwon, S.-S., Song, S. & Lee, T. Electrical properties of surface-tailored ZnO nanowire field-effect transistors. IEEE Trans. Electron. Devices 55, 3020–3029 (2008).

    Article  CAS  Google Scholar 

  100. 100

    Alpert, A., Luo, R., Asheghi, M., Pop, E. & Goodson, K. in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 670–674 (Las Vegas, NV, USA, 2016).

    Book  Google Scholar 

  101. 101

    Guzman, P. A. V. et al. in 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 1385–1389 (Orlando, FL, USA, 2014).

    Google Scholar 

  102. 102

    Koh, Y. K., Bae, M.-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).

    Article  CAS  Google Scholar 

  103. 103

    Kim, C. et al. Fullerene thermal insulation for phase change memory. Appl. Phys. Lett. 92, 013109 (2008).

    Article  CAS  Google Scholar 

  104. 104

    Kim, K.-T., Kim, C.-I. & Lee, S.-G. Ferroelectric properties of Pb(Zr,Ti)O3 heterolayered thin films for FRAM applications. Microelectron. Engineer. 66, 662–669 (2003).

    Article  CAS  Google Scholar 

  105. 105

    Goux, L. et al. A highly reliable 3D integrated SBT ferroelectric capacitor enabling FeRAM scaling. IEEE Trans. Electron. Devices 52, 447–453 (2005).

    Article  CAS  Google Scholar 

  106. 106

    Ishiwara, H. Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Curr. Appl. Phys. 9, S2–S6 (2009).

    Article  Google Scholar 

  107. 107

    Ishiwara, H. Current status and prospects of FET-type ferroelectric memories. FED J. 11, 27–40 (2000).

    CAS  Google Scholar 

  108. 108

    SBN news staff. Samsung readies 4-Mbit FRAM. EE Timeshttp://www.eetimes.com/document.asp?doc_id=1188091 (1999).

  109. 109

    Gusev, E. et al. in 2001 IEEE International Electron Devices Meeting (IEDM) 20.21.21–20.21.24 (Washington, DC, USA, 2001).

    Google Scholar 

  110. 110

    Lee, B. H. et al. in 1999 IEEE International Electron Devices Meeting (IEDM) 133–136 (Washington, DC, USA, 1999).

    Google Scholar 

  111. 111

    Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).

    Article  CAS  Google Scholar 

  112. 112

    Chambers, S., Liang, Y., Yu, Z., Droopad, R. & Ramdani, J. Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vacuum Sci. Technol. A Vacuum Surfaces Films 19, 934–939 (2001).

    Article  CAS  Google Scholar 

  113. 113

    Robertson, J. & Chen, C. Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate. Appl. Phys. Lett. 74, 1168–1170 (1999).

    Article  CAS  Google Scholar 

  114. 114

    Schroeder, H. & Schmitz, S. Thickness dependence of leakage currents in high-permittivity thin films. Appl. Phys. Lett. 83, 4381–4383 (2003).

    Article  CAS  Google Scholar 

  115. 115

    Yoo, H. K. et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 19.16.11–19.16.14 (San Francisco, CA, USA, 2017).

    Google Scholar 

  116. 116

    Fujii, S. et al. in 2016 IEEE Symposium on VLSI Technology 1–2 (Honolulu, HI, USA, 2016).

    Book  Google Scholar 

  117. 117

    Dünkel, S. et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 19.17.11–19.17.14 (San Francisco, CA, USA, 2017).

    Google Scholar 

  118. 118

    Florent, K. et al. in 2017 Symposium on VLSI Technology T158–T159 (Kyoto, Japan, 2017).

    Book  Google Scholar 

  119. 119

    Mulaosmanovic, H. et al. in 2017 Symposium on VLSI Technology T176–T177 (Kyoto, Japan, 2017).

    Book  Google Scholar 

  120. 120

    Ma, T. & Han, J.-P. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron. Device Lett. 23, 386–388 (2002).

    Article  CAS  Google Scholar 

  121. 121

    Fu, W., Xu, Z., Bai, X., Gu, C. & Wang, E. Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9, 921–925 (2009).

    Article  CAS  Google Scholar 

  122. 122

    Fu, W., Xu, Z., Liu, L., Bai, X. & Wang, E. Two-bit ferroelectric field-effect transistor memories assembled on individual nanotubes. Nanotechnology 20, 475305 (2009).

    Article  CAS  Google Scholar 

  123. 123

    Sun, Y.-L. et al. Controllable hysteresis and threshold voltage of single-walled carbon nano-tube transistors with ferroelectric polymer top-gate insulators. Sci. Rep. 6, 23090 (2016).

    Article  CAS  Google Scholar 

  124. 124

    Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).

    Article  CAS  Google Scholar 

  125. 125

    Wang, F. et al. in 2016 IEEE International Nanoelectronics Conference (INEC) 1–2 (Chengdu, China, 2016).

    Google Scholar 

  126. 126

    Park, N. et al. Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field-effect transistor. ACS Nano 9, 10729–10736 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Wang, X. et al. Flexible graphene field effect transistor with ferroelectric polymer gate. Opt. Quantum Electron. 48, 1–7 (2016).

    Article  CAS  Google Scholar 

  128. 128

    Linn, E., Rosezin, R., Kügeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403 (2010).

    Article  CAS  Google Scholar 

  129. 129

    Ahn, C. et al. in 2014 Symposium on VLSI Technology (VLSIT) 1–2 (Montgomery Village, MD, USA, 2014).

    Google Scholar 

  130. 130

    Ahn, C. et al. 1D selection device using carbon nanotube FETs for high-density cross-point memory arrays. IEEE Trans. Electron. Devices 62, 2197–2204 (2015).

    Article  CAS  Google Scholar 

  131. 131

    Conley, N. Crossbar unveils major technical innovation behind terabyte storage-on-a-chip. Artiman Managementhttp://www.artiman.com/news/crossbar-unveils-major-technical-innovation-behind-terabyte-storage-chip (2014).

  132. 132

    Jo, S. H., Kumar, T., Narayanan, S. & Nazarian, H. Cross-point resistive RAM based on field-assisted superlinear threshold selector. IEEE Trans. Electron. Devices 62, 3477–3481 (2015).

    Article  Google Scholar 

  133. 133

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    Article  CAS  Google Scholar 

  134. 134

    Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  135. 135

    Tian, H. et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015).

    Article  CAS  Google Scholar 

  136. 136

    Tian, H. et al. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2, 523 (2012).

    Article  CAS  Google Scholar 

  137. 137

    Wang, X. et al. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun. 6, 7767 (2015).

    Article  CAS  Google Scholar 

  138. 138

    He, C. et al. Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009).

    Article  CAS  Google Scholar 

  139. 139

    Jeong, H. Y. et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010).

    Article  CAS  Google Scholar 

  140. 140

    Pradhan, S. K., Xiao, B., Mishra, S., Killam, A. & Pradhan, A. K. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Sci. Rep. 6, 26763 (2016).

    Article  CAS  Google Scholar 

  141. 141

    Zhuge, F. et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49, 3796–3802 (2011).

    Article  CAS  Google Scholar 

  142. 142

    Ling, Q.-D. et al. Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly (n-vinylcarbazole) with covalently bonded C60. Langmuir 23, 312–319 (2007).

    Article  CAS  Google Scholar 

  143. 143

    Ávila-Niño, J. A. et al. Organic low voltage rewritable memory device based on PEDOT: PSS/f-MWCNTs thin film. Org. Electron. 13, 2582–2588 (2012).

    Article  CAS  Google Scholar 

  144. 144

    Hwang, S. K. et al. High-temperature operating non-volatile memory of printable single-wall carbon nanotubes self-assembled with a conjugate block copolymer. Small 9, 831–837 (2013).

    Article  CAS  Google Scholar 

  145. 145

    Son, D. I. et al. Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett. 10, 2441–2447 (2010).

    Article  CAS  Google Scholar 

  146. 146

    Zhang, B. et al. Nonvolatile rewritable memory effects in graphene oxide functionalized by conjugated polymer containing fluorene and carbazole units. Chemistry 17, 10304–10311 (2011).

    Article  CAS  Google Scholar 

  147. 147

    Romano, T. Wearable tech. Gear up with smart watches, moisturizing jeans and intimacy dresses. RetailMeNothttps://www.retailmenot.com/blog/wearable-technology.html (2013).

  148. 148

    Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  149. 149

    Gibney, E. The body electric. Nature 528, 26 (2015).

    Article  CAS  Google Scholar 

  150. 150

    Yao, J., Jin, Z., Zhong, L., Natelson, D. & Tour, J. M. Two-terminal nonvolatile memories based on single-walled carbon nanotubes. ACS Nano 3, 4122–4126 (2009).

    Article  CAS  Google Scholar 

  151. 151

    Yu, W. J., Chae, S. H., Lee, S. Y., Duong, D. L. & Lee, Y. H. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 23, 1889–1893 (2011).

    Article  CAS  Google Scholar 

  152. 152

    Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  153. 153

    Mearian, L. NRAM set to spark a ‘holy war’ among memory technologies. ComputerWorldhttp://www.computerworld.com/article/3156944/data-storage/nram-set-to-spark-a-holy-war-among-memory-technologies.html (2017).

  154. 154

    Intel Newsroom. Intel Optane memory now available — boosts speed for gaming, web browsing and more. Intel Newsroomhttps://newsroom.intel.com/news/intel-optane-memory-now-available-boosts-speed-gaming-web-browsing-more/ (2017).

  155. 155

    Acorn, P. 3D XPoint debuts, Intel announces Optane SSD DC P4800X and pricing. Tom's Hardware http://www.tomshardware.com/news/intel-3d-xpoint-optane-dc-p4800x,33938.html (2017).

  156. 156

    Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  157. 157

    Van Bommel, A., Crombeen, J. & Van Tooren, A. LEED and Auger electron observations of the SiC (0001) surface. Surface Sci. 48, 463–472 (1975).

    Article  Google Scholar 

  158. 158

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  159. 159

    Addou, R., Dahal, A., Sutter, P. & Batzill, M. Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 100, 021601 (2012).

    Article  CAS  Google Scholar 

  160. 160

    Sun, J., Zhang, Y. & Liu, Z. Direct chemical vapor deposition growth of graphene on insulating substrates. ChemNanoMat 2, 9–18 (2016).

    Article  CAS  Google Scholar 

  161. 161

    Li, X. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010).

    Article  CAS  Google Scholar 

  162. 162

    Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012).

    Article  CAS  Google Scholar 

  163. 163

    Yu, Q. et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

    Article  CAS  Google Scholar 

  164. 164

    Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011).

    Article  CAS  Google Scholar 

  165. 165

    Lee, S., Lee, K., Liu, C.-H. & Zhong, Z. Homogeneous bilayer graphene film based flexible transparent conductor. Nanoscale 4, 639–644 (2012).

    Article  CAS  Google Scholar 

  166. 166

    Goossens, A. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Article  CAS  Google Scholar 

  167. 167

    Cheng, Z. et al. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 11, 767–771 (2011).

    Article  CAS  Google Scholar 

  168. 168

    Lim, Y.-D. et al. Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 6, 4410–4417 (2012).

    Article  CAS  Google Scholar 

  169. 169

    Son, J. Y., Shin, Y.-H., Kim, H. & Jang, H. M. NiO resistive random access memory nanocapacitor array on graphene. ACS Nano 4, 2655–2658 (2010).

    Article  CAS  Google Scholar 

  170. 170

    Huang, J., Chen, S., Ren, Z., Chen, G. & Dresselhaus, M. Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating. Nano Lett. 6, 1699–1705 (2006).

    Article  CAS  Google Scholar 

  171. 171

    Sorkin, A. & Su, H. Phase diagram of solid-phase transformation in amorphous carbon nanorods. J. Phys. Chem. A 118, 9163–9172 (2014).

    Article  CAS  Google Scholar 

  172. 172

    Nair, R. et al. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013).

    Article  CAS  Google Scholar 

  173. 173

    Santos, E. J., Sánchez-Portal, D. & Ayuela, A. Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys. Rev. B 81, 125433 (2010).

    Article  CAS  Google Scholar 

  174. 174

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  CAS  Google Scholar 

  175. 175

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  176. 176

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  177. 177

    Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  CAS  Google Scholar 

  178. 178

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  179. 179

    Bai, Y. et al. Low power W: AlOx/WOx bilayer resistive switching structure based on conductive filament formation and rupture mechanism. Appl. Phys. Lett. 102, 173503 (2013).

    Article  CAS  Google Scholar 

  180. 180

    Kim, W. et al. in 2011 Symposium on VLSI Technology (VLSIT) 22–23 (Honolulu, HI, USA, 2011).

    Google Scholar 

  181. 181

    Wu, Y., Lee, B. & Wong, H.-S. P. in 2010 International Symposium on VLSI Technology Systems and Applications (VLSI-TSA) 136–137 (Hsin Chu, Taiwan, 2010).

    Book  Google Scholar 

  182. 182

    Pirovano, A. et al. in 2003 IEEE International Electron Devices Meeting (IEDM) 29.26.21–29.26.24 (Washington, DC, USA, 2003).

    Google Scholar 

  183. 183

    Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16, 3533–3539 (2006).

    Article  CAS  Google Scholar 

  184. 184

    Yu, M.-F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  185. 185

    Yu, M.-F., Files, B. S., Arepalli, S. & Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).

    Article  CAS  Google Scholar 

  186. 186

    Demczyk, B. et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Engineer. A 334, 173–178 (2002).

    Article  Google Scholar 

  187. 187

    Chen, Y. F. & Fuhrer, M. S. Current-carrying capacity of semiconducting carbon nanotubes. Phys. Status Solidi (b) 243, 3403–3407 (2006).

    Article  CAS  Google Scholar 

  188. 188

    Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synthet. Metals 103, 2555–2558 (1999).

    Article  CAS  Google Scholar 

  189. 189

    Estrada, D., Dutta, S., Liao, A. & Pop, E. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 21, 085702 (2010).

    Article  CAS  Google Scholar 

  190. 190

    Martel, R., Schmidt, T., Shea, H., Hertel, T. & Avouris, P. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

    Article  CAS  Google Scholar 

  191. 191

    Dürkop, T., Getty, S., Cobas, E. & Fuhrer, M. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Article  CAS  Google Scholar 

  192. 192

    Zhou, X., Park, J.-Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  CAS  Google Scholar 

  193. 193

    Che, J., Cagin, T. & Goddard III, W. A. Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65 (2000).

    Article  CAS  Google Scholar 

  194. 194

    Krishnan, A., Dujardin, E., Ebbesen, T., Yianilos, P. & Treacy, M. Young's modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998).

    Article  CAS  Google Scholar 

  195. 195

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  196. 196

    Dorgan, V. E., Bae, M.-H. & Pop, E. Mobility and saturation velocity in graphene on SiO2 . Appl. Phys. Lett. 97, 082112 (2010).

    Article  CAS  Google Scholar 

  197. 197

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  198. 198

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

    Article  CAS  Google Scholar 

  199. 199

    Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article  CAS  Google Scholar 

  200. 200

    Chen, S. et al. Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012).

    Article  CAS  Google Scholar 

  201. 201

    Liao, A. D. et al. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106, 256801 (2011).

    Article  CAS  Google Scholar 

  202. 202

    Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).

    Article  CAS  Google Scholar 

  203. 203

    Wang, J., Zhao, R., Yang, M., Liu, Z. & Liu, Z. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 138, 084701 (2013).

    Article  CAS  Google Scholar 

  204. 204

    Poljak, M., Wang, K. L. & Suligoj, T. Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons. Solid State Electron. 108, 67–74 (2015).

    CAS  Google Scholar 

  205. 205

    Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  CAS  Google Scholar 

  206. 206

    Raji, A.-R. O. et al. Functionalized graphene nanoribbon films as a radiofrequency and optically transparent material. ACS Appl. Mater. Interfaces 6, 16661–16668 (2014).

    Article  CAS  Google Scholar 

  207. 207

    Han, M. Y. & Kim, P. Graphene nanoribbon devices at high bias. Nano Convergence 1, 1 (2014).

    Article  CAS  Google Scholar 

  208. 208

    Faccio, R., Denis, P. A., Pardo, H., Goyenola, C. & Mombrú, A. W. Mechanical properties of graphene nanoribbons. J. Phys. Condensed Matter 21, 285304 (2009).

    Article  CAS  Google Scholar 

  209. 209

    Sun, L. et al. Strain effect on electronic structures of graphene nanoribbons: a first-principles study. J. Chem. Phys. 129, 074704 (2008).

    Article  CAS  Google Scholar 

  210. 210

    Li, H. et al. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 134, 2760–2765 (2012).

    Article  CAS  Google Scholar 

  211. 211

    Wöbkenberg, P. H. et al. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synthet. Metals 158, 468–472 (2008).

    Article  CAS  Google Scholar 

  212. 212

    Nawaz, A., de Col, C. & Hümmelgen, I. A. Poly (vinyl alcohol) gate dielectric treated with anionic surfactant in C60 fullerene-based n-channel organic field effect transistors. Mater. Res. 19, 1201–1206 (2016).

    Article  CAS  Google Scholar 

  213. 213

    Chen, L., Wang, X. & Kumar, S. Thermal transport in fullerene derivatives using molecular dynamics simulations. Sci. Rep. 5, 12763 (2015).

    Article  CAS  Google Scholar 

  214. 214

    Rabenau, T., Simon, A., Kremer, R. & Sohmen, E. The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Zeitschrift Physik B Condensed Matter 90, 69–72 (1993).

    Article  CAS  Google Scholar 

  215. 215

    Miyano, R., Ikeda, M., Takikawa, H. & Sakakibara, T. Preparation of fullerene thin films by ion plating and transmittance analysis. IEEJ Trans. Fundamentals Mater. 120, 851–852 (2000).

    Article  Google Scholar 

  216. 216

    Saito, K., Miyazawa, K. i. & Kizuka, T. Bending process and Young's modulus of fullerene C60 nanowhiskers. Japanese J. Appl. Phys. 48, 010217 (2009).

    Article  CAS  Google Scholar 

  217. 217

    Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  CAS  Google Scholar 

  218. 218

    Mathkar, A. et al. Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 3, 986–991 (2012).

    Article  CAS  Google Scholar 

  219. 219

    Soler-Crespo, R. A. et al. Engineering the mechanical properties of monolayer graphene oxide at the atomic level. J. Phys. Chem. Lett. 7, 2702–2707 (2016).

    Article  CAS  Google Scholar 

  220. 220

    Feng, H., Cheng, R., Zhao, X., Duan, X. & Li, J. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 4, 1539 (2013).

    Article  CAS  Google Scholar 

  221. 221

    Gómez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  CAS  Google Scholar 

  222. 222

    Mu, X., Wu, X., Zhang, T., Go, D. B. & Luo, T. Thermal transport in graphene oxide — from ballistic extreme to amorphous limit. Sci. Rep. 4, 3909 (2014).

    Article  CAS  Google Scholar 

  223. 223

    Gómez-Navarro, C., Burghard, M. & Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

    Article  CAS  Google Scholar 

  224. 224

    Bae, M.-H. et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat Commun. 4, 1734 (2013).

    Article  Google Scholar 

  225. 225

    Yamoah, M. A., Yang, W. & Goldhaber-Gordon, D. High-velocity saturation in graphene encapsulated by hexagonal boron nitride. ACS Nano. 11, 9914–9919 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The University of Texas System Faculty Science and Technology Acquisition and Retention (STARs), Defense Advanced Research Projects Agency (DARPA) (MTO, ‘Revolutionizing Data-Intensive Computing’), the National Science Foundation (NSF) CAREER grant 1430530, the member companies of the Stanford Non-volatile Memory Technology Research Initiative (NMTRI) and the Stanford SystemX Alliance. The authors thank C. M. Neumann for his contribution to collecting the data in Table 1.

Author information

Affiliations

Authors

Contributions

E.C.A. conceived the idea for the review article. E.C.A., H.-S.P.W., and E.P. wrote and commented on the manuscript.

Corresponding author

Correspondence to Ethan C. Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, E., Wong, HS. & Pop, E. Carbon nanomaterials for non-volatile memories. Nat Rev Mater 3, 18009 (2018). https://doi.org/10.1038/natrevmats.2018.9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing