Review Article | Published:

Carbon nanomaterials for non-volatile memories

Nature Reviews Materials volume 3, Article number: 18009 (2018) | Download Citation

Abstract

Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. in 1988 IEEE International Electron Devices Meeting (IEDM) 412–415 (San Francisco, CA, USA, 1988).

  2. 2.

    , & Future challenges of flash memory technologies. Microelectron. Engineer. 86, 283–286 (2009).

  3. 3.

    Flash memory scaling. MRS Bull. 29, 814–817 (2004).

  4. 4.

    et al. in 2011 Symposium on VLSI Technology (VLSIT) 68–69 (Kyoto, Japan, 2011).

  5. 5.

    et al. in 2009 Symposium on VLSI Technology (VLSIT) 136–137 (Kyoto, Japan, 2009).

  6. 6.

    Western Digital announce BiCS4 3D NAND: 96 layers, TLC & QLC, up to 1 Tb per chip. AnandTech (2017).

  7. 7.

    How to make 3D NAND. Semiconductor Engineering (2016).

  8. 8.

    et al. Energy-efficient abundant-data computing: the N3XT 1,000 x. Computer 48, 24–33 (2015).

  9. 9.

    & Emerging memory technologies: recent trends and prospects. IEEE Solid-State Circuits Magazine 8, 43–56 (2016).

  10. 10.

    , , & Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014).

  11. 11.

    , , & Recent technology advances of emerging memories. IEEE Design Test. 34, 8–22 (2017).

  12. 12.

    et al. in 2017 Symposium on VLSI Technology T90–T91 (Kyoto, Japan, 2017).

  13. 13.

    et al. Short-term relaxation in HfOx/CeOx resistive random access memory with selector. IEEE Electron. Device Lett. 38, 871–874 (2017).

  14. 14.

    et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 4.2.1–4.2.4 (San Francisco, CA, USA, 2017).

  15. 15.

    et al. Conductive bridging RAM (CBRAM): then, now, and tomorrow. ECS Trans 75, 41–54 (2016).

  16. 16.

    Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semiconductor Sci. Technol. 31, 063002 (2016).

  17. 17.

    et al. in 2016 IEEE International Electron Devices Meeting (IEDM) 4.3.1–4.3.4 (San Francisco, CA, USA, 2016).

  18. 18.

    et al. Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 10, 188 (2015).

  19. 19.

    et al. Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

  20. 20.

    , , & Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

  21. 21.

    et al. in 2017 Symposium on VLSI Technology and Circuits T94–T95 (Kyoto, Japan, 2017).

  22. 22.

    et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Selected Top. Circuits Systems 6, 146–162 (2016).

  23. 23.

    et al. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).

  24. 24.

    et al. in 2012 IEEE International Solid-State Circuits Conference 46–48 (San Francisco, CA, USA, 2012).

  25. 25.

    et al. in 2011 IEEE International Electron Devices Meeting (IEDM) 3.1.1–3.1.4 (Washington, DC, USA, 2011).

  26. 26.

    et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

  27. 27.

    et al. in 2017 Symposium on VLSI Technology and Circuits T208–T209 (Kyoto, Japan, 2017).

  28. 28.

    et al. Spin-transfer torque memories: devices, circuits, and systems. Proc. IEEE 104, 1449–1488 (2016).

  29. 29.

    , & in 2014 ACM/IEEE 41st International Symposium on Computer Architecture (Minneapolis, MN, USA, 2014).

  30. 30.

    , & Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46, 074003 (2013).

  31. 31.

    et al. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magnet. 46, 1873–1878 (2010).

  32. 32.

    et al. Investigation of the properties and manufacturing features of nonvolatile FRAM memory based on atomic layer deposition. Russian Microelectron. 45, 262–269 (2016).

  33. 33.

    Fujitsu. New 1 Mbit and 2 Mbit FRAM products released by Fujitsu. Phys.org (2013).

  34. 34.

    et al. A 1.6 GB/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes. IEEE J. Solid-State Circuits 45, 142–152 (2010).

  35. 35.

    & Current development status and future challenges of ferroelectric random access memory technologies. Japanese J. Appl. Phys. 45, 3189 (2006).

  36. 36.

    , & The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

  37. 37.

    et al. in 2011 IEEE International Electron Devices Meeting (IEDM) 31.36.31–31.36.34 (Washington, DC, USA, 2011).

  38. 38.

    Phase-change memory found in handset. EE Times (2010).

  39. 39.

    Current-driven excitation of magnetic multilayers. J. Magnetism Magnet. Mater. 159, L1–L7 (1996).

  40. 40.

    Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).

  41. 41.

    et al. in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) 1–3 (San Francisco, CA, USA, 2015).

  42. 42.

    et al. in 2016 IEEE International Electron Devices Meeting (IEDM) 27.24.21–27.24.24 (San Francisco, CA, USA, 2016).

  43. 43.

    Everspin starts to sample 1Gb pMTJ STT-MRAM chips. MRAM-info (2017).

  44. 44.

    et al. in 2016 IEEE International Nanoelectronics Conference (INEC) 1–2 (Chengdu, China, 2016).

  45. 45.

    in 2017 IEEE International Memory Workshop (IMW) 1–3 (Monterey, CA, USA, 2017).

  46. 46.

    EE Times. Ramtron: nonvolatile F-RAM offers 10-year data retention. EE Times (2009).

  47. 47.

    et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).

  48. 48.

    , , , & Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

  49. 49.

    , , , & in 2011 IEEE International Electron Devices Meeting (IEDM) 24.25.21–24.25.24 (Washington, DC, USA, 2011).

  50. 50.

    et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

  51. 51.

    et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

  52. 52.

    et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).

  53. 53.

    Fifty years in studying carbon-based materials. Phys. Scripta 2012, 014002 (2012).

  54. 54.

    & Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185 (1992).

  55. 55.

    et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9, 5929–5936 (2015).

  56. 56.

    et al. Graphene field effect transistors as room-temperature Terahertz detectors. Nat. Mater. 11, 865–871 (2012).

  57. 57.

    , , , & A flexible graphene terahertz detector. Appl. Phys. Lett. 111, 021102 (2017).

  58. 58.

    et al. Stanford memory trends. Stanford Nanoelectronics Lab (2017).

  59. 59.

    et al. Self-aligned nanotube–nanowire phase change memory. Nano Lett. 13, 464–469 (2013).

  60. 60.

    et al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress Natural Sci. Mater. Int. 20, 1–15 (2010).

  61. 61.

    et al. in 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) 1160–1162 (Shanghai, China, 2010).

  62. 62.

    , , , & Dynamic processes of resistive switching in metallic filament-based organic memory devices. J. Phys. Chem. C 116, 17955–17959 (2012).

  63. 63.

    et al. Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation. J. Appl. Phys. 113, 244502 (2013).

  64. 64.

    , & Carbon nanotube electronics: recent advances. Mater. Today 17, 433–442 (2014).

  65. 65.

    & Overview of selector devices for 3D stackable cross point RRAM arrays. IEEE J. Electron. Devices Soc. 4, 294–306 (2016).

  66. 66.

    & Cross-point memory array without cell selectors — device characteristics and data storage pattern dependencies. IEEE Trans. Electron. Devices 57, 2531–2538 (2010).

  67. 67.

    , , , & in 2016 IEEE International Electron Devices Meeting (IEDM) 5.1.1–5.1.4 (San Francisco, CA, USA, 2016).

  68. 68.

    Zeon Corporation. World's first super-growth carbon nanotube mass production plant opens. Zeon Corporation (2015).

  69. 69.

    et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68–72 (2015).

  70. 70.

    et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7, 787–791 (2012).

  71. 71.

    et al. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol. 8, 498–504 (2009).

  72. 72.

    et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2, 230–236 (2007).

  73. 73.

    , , , & in 2011 Symposium on VLSI Technology (VLSIT) 26–27 (Kyoto, Japan, 2011).

  74. 74.

    , , & Resistive random access memory enabled by carbon nanotube crossbar electrodes. ACS Nano 7, 5360–5366 (2013).

  75. 75.

    et al. HfO2-based resistive switching memory with CNTs electrode for high density storage. Solid State Electron. 132, 19–23 (2017).

  76. 76.

    , & Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012).

  77. 77.

    et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

  78. 78.

    et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

  79. 79.

    et al. in 2013 5th IEEE International Memory Workshop (IMW) 155–158 (Monterey, CA, USA, 2013).

  80. 80.

    et al. in 2013 Symposium on VLSI Technology (VLSIT) T158–T159 (Kyoto, Japan, 2013).

  81. 81.

    et al. Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory. Nanotechnology 24, 465201 (2013).

  82. 82.

    , , , & Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407–8413 (2015).

  83. 83.

    et al. Stacked 3D RRAM array with graphene/CNT as edge electrodes. Sci. Rep. 5, 13785 (2015).

  84. 84.

    , , , & in 2014 IEEE International Electron Devices Meeting (IEDM) 5.3.1–5.3.4 (San Francisco, CA, USA, 2014).

  85. 85.

    , , & Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

  86. 86.

    et al. in 2016 IEEE International Electron Devices Meeting (IEDM) 4.1.1–4.1.4 (San Francisco, CA, USA, 2016).

  87. 87.

    , , & An ultra-low reset current cross-point phase change memory with carbon nanotube electrodes. IEEE Trans. Electron. Devices 59, 1155–1163 (2012).

  88. 88.

    , , & in 2011 Symposium on VLSI Technology (VLSIT) 100–101 (Kyoto, Japan, 2011).

  89. 89.

    , , & Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

  90. 90.

    et al. Nanoscale phase change memory with graphene ribbon electrodes. Appl. Phys. Lett. 107, 123508 (2015).

  91. 91.

    , , & Graphene resistive random memory — the promising memory device in next generation. Chinese Phys. B 26, 038501 (2017).

  92. 92.

    & A mechanistic study on graphene-based nonvolatile ReRAM devices. J. Mater. Chem. C 4, 11007–11031 (2016).

  93. 93.

    et al. Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 13, 651–657 (2013).

  94. 94.

    Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

  95. 95.

    et al. Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects. Proc. IEEE 101, 1732–1739 (2013).

  96. 96.

    , , & Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application. IEEE Trans. Electron. Devices 61, 1388–1393 (2014).

  97. 97.

    , , & Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 86, 123117 (2005).

  98. 98.

    , , , & ZnO/Al2O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties. Nanotechnology 20, 185605 (2009).

  99. 99.

    , , , & Electrical properties of surface-tailored ZnO nanowire field-effect transistors. IEEE Trans. Electron. Devices 55, 3020–3029 (2008).

  100. 100.

    , , , & in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 670–674 (Las Vegas, NV, USA, 2016).

  101. 101.

    et al. in 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 1385–1389 (Orlando, FL, USA, 2014).

  102. 102.

    , , & Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).

  103. 103.

    et al. Fullerene thermal insulation for phase change memory. Appl. Phys. Lett. 92, 013109 (2008).

  104. 104.

    , & Ferroelectric properties of Pb(Zr,Ti)O3 heterolayered thin films for FRAM applications. Microelectron. Engineer. 66, 662–669 (2003).

  105. 105.

    et al. A highly reliable 3D integrated SBT ferroelectric capacitor enabling FeRAM scaling. IEEE Trans. Electron. Devices 52, 447–453 (2005).

  106. 106.

    Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Curr. Appl. Phys. 9, S2–S6 (2009).

  107. 107.

    Current status and prospects of FET-type ferroelectric memories. FED J. 11, 27–40 (2000).

  108. 108.

    SBN news staff. Samsung readies 4-Mbit FRAM. EE Times (1999).

  109. 109.

    et al. in 2001 IEEE International Electron Devices Meeting (IEDM) 20.21.21–20.21.24 (Washington, DC, USA, 2001).

  110. 110.

    et al. in 1999 IEEE International Electron Devices Meeting (IEDM) 133–136 (Washington, DC, USA, 1999).

  111. 111.

    et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).

  112. 112.

    , , , & Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vacuum Sci. Technol. A Vacuum Surfaces Films 19, 934–939 (2001).

  113. 113.

    & Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate. Appl. Phys. Lett. 74, 1168–1170 (1999).

  114. 114.

    & Thickness dependence of leakage currents in high-permittivity thin films. Appl. Phys. Lett. 83, 4381–4383 (2003).

  115. 115.

    et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 19.16.11–19.16.14 (San Francisco, CA, USA, 2017).

  116. 116.

    et al. in 2016 IEEE Symposium on VLSI Technology 1–2 (Honolulu, HI, USA, 2016).

  117. 117.

    et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 19.17.11–19.17.14 (San Francisco, CA, USA, 2017).

  118. 118.

    et al. in 2017 Symposium on VLSI Technology T158–T159 (Kyoto, Japan, 2017).

  119. 119.

    et al. in 2017 Symposium on VLSI Technology T176–T177 (Kyoto, Japan, 2017).

  120. 120.

    & Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron. Device Lett. 23, 386–388 (2002).

  121. 121.

    , , , & Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9, 921–925 (2009).

  122. 122.

    , , , & Two-bit ferroelectric field-effect transistor memories assembled on individual nanotubes. Nanotechnology 20, 475305 (2009).

  123. 123.

    et al. Controllable hysteresis and threshold voltage of single-walled carbon nano-tube transistors with ferroelectric polymer top-gate insulators. Sci. Rep. 6, 23090 (2016).

  124. 124.

    et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).

  125. 125.

    et al. in 2016 IEEE International Nanoelectronics Conference (INEC) 1–2 (Chengdu, China, 2016).

  126. 126.

    et al. Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field-effect transistor. ACS Nano 9, 10729–10736 (2015).

  127. 127.

    et al. Flexible graphene field effect transistor with ferroelectric polymer gate. Opt. Quantum Electron. 48, 1–7 (2016).

  128. 128.

    , , & Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403 (2010).

  129. 129.

    et al. in 2014 Symposium on VLSI Technology (VLSIT) 1–2 (Montgomery Village, MD, USA, 2014).

  130. 130.

    et al. 1D selection device using carbon nanotube FETs for high-density cross-point memory arrays. IEEE Trans. Electron. Devices 62, 2197–2204 (2015).

  131. 131.

    Crossbar unveils major technical innovation behind terabyte storage-on-a-chip. Artiman Management (2014).

  132. 132.

    , , & Cross-point resistive RAM based on field-assisted superlinear threshold selector. IEEE Trans. Electron. Devices 62, 3477–3481 (2015).

  133. 133.

    , , & The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

  134. 134.

    et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

  135. 135.

    et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015).

  136. 136.

    et al. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2, 523 (2012).

  137. 137.

    et al. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun. 6, 7767 (2015).

  138. 138.

    et al. Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009).

  139. 139.

    et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010).

  140. 140.

    , , , & Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Sci. Rep. 6, 26763 (2016).

  141. 141.

    et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49, 3796–3802 (2011).

  142. 142.

    et al. Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly (n-vinylcarbazole) with covalently bonded C60. Langmuir 23, 312–319 (2007).

  143. 143.

    et al. Organic low voltage rewritable memory device based on PEDOT: PSS/f-MWCNTs thin film. Org. Electron. 13, 2582–2588 (2012).

  144. 144.

    et al. High-temperature operating non-volatile memory of printable single-wall carbon nanotubes self-assembled with a conjugate block copolymer. Small 9, 831–837 (2013).

  145. 145.

    et al. Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett. 10, 2441–2447 (2010).

  146. 146.

    et al. Nonvolatile rewritable memory effects in graphene oxide functionalized by conjugated polymer containing fluorene and carbazole units. Chemistry 17, 10304–10311 (2011).

  147. 147.

    Wearable tech. Gear up with smart watches, moisturizing jeans and intimacy dresses. RetailMeNot (2013).

  148. 148.

    et al. Epidermal electronics. Science 333, 838–843 (2011).

  149. 149.

    The body electric. Nature 528, 26 (2015).

  150. 150.

    , , , & Two-terminal nonvolatile memories based on single-walled carbon nanotubes. ACS Nano 3, 4122–4126 (2009).

  151. 151.

    , , , & Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 23, 1889–1893 (2011).

  152. 152.

    et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

  153. 153.

    NRAM set to spark a ‘holy war’ among memory technologies. ComputerWorld (2017).

  154. 154.

    Intel Newsroom. Intel Optane memory now available — boosts speed for gaming, web browsing and more. Intel Newsroom (2017).

  155. 155.

    3D XPoint debuts, Intel announces Optane SSD DC P4800X and pricing. Tom's Hardware (2017).

  156. 156.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  157. 157.

    , & LEED and Auger electron observations of the SiC (0001) surface. Surface Sci. 48, 463–472 (1975).

  158. 158.

    et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

  159. 159.

    , , & Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 100, 021601 (2012).

  160. 160.

    , & Direct chemical vapor deposition growth of graphene on insulating substrates. ChemNanoMat 2, 9–18 (2016).

  161. 161.

    et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010).

  162. 162.

    et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012).

  163. 163.

    et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

  164. 164.

    et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011).

  165. 165.

    , , & Homogeneous bilayer graphene film based flexible transparent conductor. Nanoscale 4, 639–644 (2012).

  166. 166.

    et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

  167. 167.

    et al. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 11, 767–771 (2011).

  168. 168.

    et al. Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 6, 4410–4417 (2012).

  169. 169.

    , , & NiO resistive random access memory nanocapacitor array on graphene. ACS Nano 4, 2655–2658 (2010).

  170. 170.

    , , , & Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating. Nano Lett. 6, 1699–1705 (2006).

  171. 171.

    & Phase diagram of solid-phase transformation in amorphous carbon nanorods. J. Phys. Chem. A 118, 9163–9172 (2014).

  172. 172.

    et al. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013).

  173. 173.

    , & Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys. Rev. B 81, 125433 (2010).

  174. 174.

    et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

  175. 175.

    , , , & 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

  176. 176.

    , & Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

  177. 177.

    et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

  178. 178.

    et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

  179. 179.

    et al. Low power W: AlOx/WOx bilayer resistive switching structure based on conductive filament formation and rupture mechanism. Appl. Phys. Lett. 102, 173503 (2013).

  180. 180.

    et al. in 2011 Symposium on VLSI Technology (VLSIT) 22–23 (Honolulu, HI, USA, 2011).

  181. 181.

    , & in 2010 International Symposium on VLSI Technology Systems and Applications (VLSI-TSA) 136–137 (Hsin Chu, Taiwan, 2010).

  182. 182.

    et al. in 2003 IEEE International Electron Devices Meeting (IEDM) 29.26.21–29.26.24 (Washington, DC, USA, 2003).

  183. 183.

    Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16, 3533–3539 (2006).

  184. 184.

    et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

  185. 185.

    , , & Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).

  186. 186.

    et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Engineer. A 334, 173–178 (2002).

  187. 187.

    & Current-carrying capacity of semiconducting carbon nanotubes. Phys. Status Solidi (b) 243, 3403–3407 (2006).

  188. 188.

    et al. Optical properties of single-wall carbon nanotubes. Synthet. Metals 103, 2555–2558 (1999).

  189. 189.

    , , & Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 21, 085702 (2010).

  190. 190.

    , , , & Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

  191. 191.

    , , & Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

  192. 192.

    , , , & Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

  193. 193.

    , & Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65 (2000).

  194. 194.

    , , , & Young's modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998).

  195. 195.

    , , & Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

  196. 196.

    , & Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97, 082112 (2010).

  197. 197.

    et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  198. 198.

    et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

  199. 199.

    et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

  200. 200.

    et al. Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012).

  201. 201.

    et al. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106, 256801 (2011).

  202. 202.

    et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).

  203. 203.

    , , , & Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 138, 084701 (2013).

  204. 204.

    , & Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons. Solid State Electron. 108, 67–74 (2015).

  205. 205.

    et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

  206. 206.

    et al. Functionalized graphene nanoribbon films as a radiofrequency and optically transparent material. ACS Appl. Mater. Interfaces 6, 16661–16668 (2014).

  207. 207.

    & Graphene nanoribbon devices at high bias. Nano Convergence 1, 1 (2014).

  208. 208.

    , , , & Mechanical properties of graphene nanoribbons. J. Phys. Condensed Matter 21, 285304 (2009).

  209. 209.

    et al. Strain effect on electronic structures of graphene nanoribbons: a first-principles study. J. Chem. Phys. 129, 074704 (2008).

  210. 210.

    et al. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 134, 2760–2765 (2012).

  211. 211.

    et al. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synthet. Metals 158, 468–472 (2008).

  212. 212.

    , & Poly (vinyl alcohol) gate dielectric treated with anionic surfactant in C60 fullerene-based n-channel organic field effect transistors. Mater. Res. 19, 1201–1206 (2016).

  213. 213.

    , & Thermal transport in fullerene derivatives using molecular dynamics simulations. Sci. Rep. 5, 12763 (2015).

  214. 214.

    , , & The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Zeitschrift Physik B Condensed Matter 90, 69–72 (1993).

  215. 215.

    , , & Preparation of fullerene thin films by ion plating and transmittance analysis. IEEJ Trans. Fundamentals Mater. 120, 851–852 (2000).

  216. 216.

    , & Bending process and Young's modulus of fullerene C60 nanowhiskers. Japanese J. Appl. Phys. 48, 010217 (2009).

  217. 217.

    et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

  218. 218.

    et al. Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 3, 986–991 (2012).

  219. 219.

    et al. Engineering the mechanical properties of monolayer graphene oxide at the atomic level. J. Phys. Chem. Lett. 7, 2702–2707 (2016).

  220. 220.

    , , , & A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 4, 1539 (2013).

  221. 221.

    et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

  222. 222.

    , , , & Thermal transport in graphene oxide — from ballistic extreme to amorphous limit. Sci. Rep. 4, 3909 (2014).

  223. 223.

    , & Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

  224. 224.

    et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat Commun. 4, 1734 (2013).

  225. 225.

    , & High-velocity saturation in graphene encapsulated by hexagonal boron nitride. ACS Nano. 11, 9914–9919 (2017).

Download references

Acknowledgements

This work was supported by The University of Texas System Faculty Science and Technology Acquisition and Retention (STARs), Defense Advanced Research Projects Agency (DARPA) (MTO, ‘Revolutionizing Data-Intensive Computing’), the National Science Foundation (NSF) CAREER grant 1430530, the member companies of the Stanford Non-volatile Memory Technology Research Initiative (NMTRI) and the Stanford SystemX Alliance. The authors thank C. M. Neumann for his contribution to collecting the data in Table 1.

Author information

Affiliations

  1. Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, USA.

    • Ethan C. Ahn
  2. Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

    • H.-S. Philip Wong
    •  & Eric Pop

Authors

  1. Search for Ethan C. Ahn in:

  2. Search for H.-S. Philip Wong in:

  3. Search for Eric Pop in:

Contributions

E.C.A. conceived the idea for the review article. E.C.A., H.-S.P.W., and E.P. wrote and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ethan C. Ahn.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2018.9