Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Uncovering the structure–function relationship in spider silk

Abstract

All spiders produce protein-based biopolymer fibres that we call silk. The most studied of these silks is spider dragline silk, which is very tough and relatively abundant compared with other types of spider silks. Considerable research has been devoted to understanding the relationship between the molecular structure and mechanical properties of spider dragline silks. In this Review, we overview experimental and computational studies that have provided a wealth of detail at the molecular level on the highly conserved repetitive core and terminal regions of spider dragline silk. We also discuss the role of the nanocrystalline β-sheets and amorphous regions in determining the properties of spider silk fibres, endowing them with strength and elasticity. Additionally, we outline imaging techniques and modelling studies that elucidate the importance of the hierarchical structure of silk fibres at the molecular level. These insights into structure–function relationships can guide the reverse engineering of spider silk to enable the production of superior synthetic fibres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spider dragline silk.
Figure 2: Stress–strain curves for different materials.
Figure 3: Computational modelling of spider silk.
Figure 4: The molecular structure of spider silk.
Figure 5: The major ampullate glands.

References

  1. 1

    Wolfe, A. J. Nylon: a revolution in textiles. Distillationshttps://www.sciencehistory.org/distillations/magazine/nylon-a-revolution-in-textiles (2008).

  2. 2

    Vollrath, F., Porter, D. & Holland, C. The science of silks. MRS Bull. 38, 73–80 (2013).

    Article  CAS  Google Scholar 

  3. 3

    Vollrath, F. & Porter, D. Silks as ancient models for modern polymers. Polymer 50, 5623–5632 (2009).

    Article  CAS  Google Scholar 

  4. 4

    Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–242 (2010).

    Article  CAS  Google Scholar 

  5. 5

    Vepari, C. & Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007).

    Article  CAS  Google Scholar 

  6. 6

    Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Philos. Trans. Royal Soc. B Biol Sci. 357, 121–132 (2002).

    Article  CAS  Google Scholar 

  7. 7

    Sutherland, T. D., Young, J. H., Weisman, S., Hayashi, C. Y. & Merritt, D. J. Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171–188 (2010).

    Article  CAS  Google Scholar 

  8. 8

    Blackledge, T. A. Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. J. Arachnol. 40, 1–12 (2012).

    Article  Google Scholar 

  9. 9

    Eisoldt, L., Smith, A. & Scheibel, T. Decoding the secrets of spider silk. Mater. Today 14, 80–86 (2011).

    Article  CAS  Google Scholar 

  10. 10

    Lewis, R. V. Spider silk: ancient ideas for new biomaterials. Chem. Rev. 106, 3762–3774 (2006).

    Article  CAS  Google Scholar 

  11. 11

    Cranford, S. W. Increasing silk fibre strength through heterogeneity of bundled fibrils. J. R. Soc. Interface 10, 20130148 (2013).

    Article  Google Scholar 

  12. 12

    Gould, S. A. C., Tran, K. T., Spagna, J. C., Moore, A. M. F. & Shulman, J. B. Short and long range order of the morphology of silk from Latrodectus hesperus (Black Widow) as characterized by atomic force microscopy. Int. J. Biol. Macromol. 24, 151–157 (1999).

    Article  CAS  Google Scholar 

  13. 13

    Plaza, G. R. et al. Old silks endowed with new properties. Macromolecules 42, 8977–8982 (2009).

    Article  CAS  Google Scholar 

  14. 14

    Willcox, P., Gido, S. P., Muller, W. & Kaplan, D. Evidence of a cholesteric liquid crystalline phase in natural silk spinning processes. Macromolecules 29, 5106–5110 (1996).

    Article  CAS  Google Scholar 

  15. 15

    Greving, I., Cai, M., Vollrath, F. & Schniepp, H. C. Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules 13, 676–682 (2012).

    Article  CAS  Google Scholar 

  16. 16

    Du, N. et al. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 91, 4528–4535 (2006).

    Article  CAS  Google Scholar 

  17. 17

    Mahoney, D. V., Vezie, D. L., Eby, R. K., Adams, W. W. & Kaplan, D. in Silk Polymers: Materials Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C. ) 196–210 (American Chemical Society, Washington, 1994).

    Google Scholar 

  18. 18

    Knight, D. & Vollrath, F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88, 179–182 (2001).

    Article  CAS  Google Scholar 

  19. 19

    Riekel, C., Craig, C. L., Burghammer, M. & Müller, M. Microstructural homogeneity of support silk spun by Eriophora fuliginea (C. L. Koch) determined by scanning X-ray microdiffraction. Naturwissenschaften 88, 67–72 (2001).

    Article  CAS  Google Scholar 

  20. 20

    Scheibel, T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact. 3, 14 (2004).

    Article  CAS  Google Scholar 

  21. 21

    Perez-Rigueiro, J., Elices, M., Plaza, G. R., Real, J. I. & Guinea, G. V. The influence of anaesthesia on the tensile properties of spider silk. J. Exp. Biol. 209, 320–326 (2006).

    Article  CAS  Google Scholar 

  22. 22

    Trancik, J. E., Czernuszka, J. T., Bell, F. I. & Viney, C. Nanostructural features of a spider dragline silk as revealed by electron and X-ray diffraction studies. Polymer 47, 5633–5642 (2006).

    Article  CAS  Google Scholar 

  23. 23

    Knight, D. P. & Vollrath, F. Biological liquid crystal elastomers. Phil. Trans. R. Soc. B Biol Sci. 357, 155–163 (2002).

    Article  CAS  Google Scholar 

  24. 24

    Rousseau, M.-E., Cruz, D. H., West, M. M., Hitchcock, A. P. & Pezolet, M. Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J. Am. Chem. Soc. 129, 3897–3905 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Glisovic, A., Thieme, J., Guttmann, P. & Salditt, T. Transmission X-ray microscopy of spider dragline silk. Int. J. Biol. Macromol. 40, 87–95 (2007).

    Article  CAS  Google Scholar 

  26. 26

    Knight, D. P. & Vollrath, F. Liquid crystals and flow elongation in a spider's silk production line. Proc. R. Soc. B-Biol. Sci. 266, 519–523 (1999).

    Article  Google Scholar 

  27. 27

    Carmichael, S. & Viney, C. Molecular order in spider major ampullate silk (dragline): effects of spinning rate and post-spin drawing. J. Appl. Polym. Sci. 72, 895–903 (1999).

    Article  CAS  Google Scholar 

  28. 28

    Viney, C., Huber, A. E., Dunaway, D. L., Kerkam, K. & Case, S. T. in Silk Polymers: Materials Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C. ) 120–136 (1994).

    Google Scholar 

  29. 29

    Little, D. J. & Kane, D. M. Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy. Opt. Lett. 39, 5196–5199 (2014).

    Article  Google Scholar 

  30. 30

    Holland, G. P., Lewis, R. V. & Yarger, J. L. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk. J. Am. Chem. Soc. 126, 5867–5872 (2004).

    Article  CAS  Google Scholar 

  31. 31

    Thamm, C. & Scheibel, T. Recombinant production, characterization, and fiber spinning of an engineered short major ampullate spidroin (MaSp1s). Biomacromolecules 18, 1365–1372 (2017).

    Article  CAS  Google Scholar 

  32. 32

    Xu, M. & Lewis, R. V. Structure of a protein superfiber: spider dragline silk. Proc. Natl Acad. Sci. USA 87, 7120–7124 (1990).

    Article  CAS  Google Scholar 

  33. 33

    Lewis, R. V. Spider silk: the unraveling of a mystery. Acc. Chem. Res. 25, 392–398 (1992).

    Article  CAS  Google Scholar 

  34. 34

    Hayashi, C., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).

    Article  CAS  Google Scholar 

  35. 35

    Vendrely, C. & Scheibel, T. Biotechnological production of spider-silk proteins enables new applications. Macromol. Biosci. 7, 401–409 (2007).

    Article  CAS  Google Scholar 

  36. 36

    Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012).

    Article  CAS  Google Scholar 

  37. 37

    Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    Article  CAS  Google Scholar 

  38. 38

    Vollrath, F. Silk evolution untangled. Nature 466, 319 (2010).

    Article  CAS  Google Scholar 

  39. 39

    Heidebrecht, A. et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv. Mater. 27, 2189–2194 (2015).

    Article  CAS  Google Scholar 

  40. 40

    Elices, M., Plaza, G., Perez-Rigueiro, J. & Guinea, G. V. The hidden link between supercontraction and mechanical behavior of spider silks. J. Mech. Behav. Biomed. Mat. 4, 658–669 (2011).

    Article  Google Scholar 

  41. 41

    Vollrath, F. & Knight, D. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  42. 42

    Gosline, J., Demont, M. E. & Denny, M. W. The structure and properties of spider silk. Endeavour 10, 37–43 (1986).

    Article  Google Scholar 

  43. 43

    Swanson, B. O., Blackledge, T. A., Beltrán, J. & Hayashi, C. Y. Variation in the material properties of spider dragline silk across species. Appl. Phys. A 82, 213–218 (2006).

    Article  CAS  Google Scholar 

  44. 44

    Brooks, A., Steinkraus, H. B., Nelson, S. R. & Lewis, R. V. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia. Biomacromolecules 6, 3095–3099 (2005).

    Article  CAS  Google Scholar 

  45. 45

    Agnarsson, I., Kuntner, M. & Blackledge, T. A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLOS ONE 5, e11234 (2010).

    Article  CAS  Google Scholar 

  46. 46

    Blackledge, T. A. et al. Sequential origin in the high performance properties of orb spider dragline silk. Sci. Rep. 2, 782 (2012).

    Article  CAS  Google Scholar 

  47. 47

    Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  48. 48

    Mussig, J. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications (John Wiley & Sons, West Sussex, United Kingdom, 2010).

    Book  Google Scholar 

  49. 49

    Vollrath, F. & Porter, D. Spider silk as archetypal protein elastomer. Soft Matter 2, 377–385 (2006).

    Article  CAS  Google Scholar 

  50. 50

    Holland, C., Terry, A. E., Porter, D. & Vollrath, F. Natural and unnatural silks. Polymer 48, 3388–3392 (2007).

    Article  CAS  Google Scholar 

  51. 51

    Vollrath, F., Porter, D. & Holland, C. There are many more lessons still to be learned from spider silks. Soft Matter 7, 9595–9600 (2011).

    Article  CAS  Google Scholar 

  52. 52

    Cunniff, P. M. et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymer. Adv. Tech. 5, 401–410 (1994).

    Article  CAS  Google Scholar 

  53. 53

    Liu, Y., Shao, Z. & Vollrath, F. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901–905 (2005).

    Article  CAS  Google Scholar 

  54. 54

    Vollrath, F., Madsen, B. & Shao, Z. The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. Biol. Sci. 268, 2339–2346 (2001).

    Article  CAS  Google Scholar 

  55. 55

    Koski, K. J., Akhenblit, P., McKiernan, K. & Yarger, J. L. Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262–267 (2013).

    Article  CAS  Google Scholar 

  56. 56

    Schneider, D. et al. Nonlinear control of high-frequency phonons in spider silk. Nat. Mater. 15, 1079–1083 (2016).

    Article  CAS  Google Scholar 

  57. 57

    Porter, D., Guan, J. & Vollrath, F. Spider silk: super material or thin fibre? Adv. Mater. 25, 1275–1279 (2013).

    Article  CAS  Google Scholar 

  58. 58

    Krasnov, I. et al. Strain-dependent fractional molecular diffusion in humid spider silk fibres. J. R. Soc. Interface 13, 20160506 (2016).

    Article  CAS  Google Scholar 

  59. 59

    Blackledge, T. A. et al. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk. J. Exp. Biol. 212, 1981–1989 (2009).

    Article  Google Scholar 

  60. 60

    Work, R. W. Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae ). J. Exp. Biol. 118, 379–404 (1985).

    Google Scholar 

  61. 61

    Shao, Z., Vollrath, F., Sirichaisit, J. & Young, R. J. Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer 40, 2493–2500 (1999).

    Article  CAS  Google Scholar 

  62. 62

    Yang, Z. et al. Supercontraction and backbone dynamics in spider silk: 13C and 2H NMR studies. J. Am. Chem. Soc. 122, 9019–9025 (2000).

    Article  CAS  Google Scholar 

  63. 63

    Lang, G., Neugirg, B. R., Kluge, D., Fery, A. & Scheibel, T. Mechanical testing of engineered spider silk filaments provides insights into molecular features on a mesoscale. ACS Appl. Mater. Interfaces 9, 892–900 (2017).

    Article  CAS  Google Scholar 

  64. 64

    Elices, M., Perez-Rigueiro, J., Plaza, G. & Guinea, G. V. Recovery in spider silk fibers. J. Appl. Polym. Sci. 92, 3537–3541 (2004).

    Article  CAS  Google Scholar 

  65. 65

    Guinea, G. V., Elices, M., Perez-Rigueiro, J. & Plaza, G. Self-tightening of spider silk fibers induced by moisture. Polymer 44, 5785–5788 (2003).

    Article  CAS  Google Scholar 

  66. 66

    Perez-Rigueiro, J., Elices, M. & Guinea, G. V. Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44, 3733–3736 (2003).

    Article  CAS  Google Scholar 

  67. 67

    Liu, Y., Sponner, A., Porter, D. & Vollrath, F. Proline and processing of spider silks. Biomacromolecules 9, 116–121 (2008).

    Article  CAS  Google Scholar 

  68. 68

    Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994).

    Article  CAS  Google Scholar 

  69. 69

    De Tommasi, D., Puglisi, G. & Saccomandi, G. Damage, self-healing, and hysteresis in spider silks. Biophys. J. 98, 1941–1948 (2010).

    Article  CAS  Google Scholar 

  70. 70

    Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278–283 (2003).

    Article  CAS  Google Scholar 

  71. 71

    Zhou, H. & Zhang, Y. Hierarchical chain model of spider capture silk elasticity. Phys. Rev. Lett. 94, 028104 (2005).

    Article  CAS  Google Scholar 

  72. 72

    Van Nimmen, E., Gellynck, K., Gheysens, T., Van Langenhove, L. & Mertens, J. Modeling of the stress-strain behavior of egg sac silk of the spider Araneus diadematus. J. Arachnol. 33, 629–639 (2005).

    Article  Google Scholar 

  73. 73

    Porter, D., Vollrath, F. & Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E. Soft Matter 16, 199–206 (2005).

    Article  CAS  Google Scholar 

  74. 74

    Vollrath, F. & Porter, D. Spider silk as a model biomaterial. Appl. Phys. A 82, 205–212 (2005).

    Article  CAS  Google Scholar 

  75. 75

    Xiao, S., Stacklies, W., Debes, C. & Gräter, F. Force distribution determines optimal length of β-sheet crystals for mechanical robustness. Soft Matter 7, 1308–1311 (2011).

    Article  CAS  Google Scholar 

  76. 76

    Alam, P. Protein unfolding versus β-sheet separation in spider silk nanocrystals. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015015 (2014).

    Article  CAS  Google Scholar 

  77. 77

    Keten, S. & Buehler, M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743–748 (2008).

    Article  CAS  Google Scholar 

  78. 78

    Xiao, S., Stacklies, W., Cetinkaya, M., Markert, B. & Gräter, F. Mechanical response of silk crystalline units from force-distribution analysis. Biophys. J. 96, 3997–4005 (2009).

    Article  CAS  Google Scholar 

  79. 79

    Bratzel, G. & Buehler, M. J. Sequence-structure correlations in silk: poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale. J. Mech. Behav. Biomed. Mater. 7, 30–40 (2012).

    Article  CAS  Google Scholar 

  80. 80

    Spiriti, J., Kamberaj, H. & Van Der Vaart, A. Development and application of enhanced sampling techniques to simulate the long-time scale dynamics of biomolecular systems. Int. J. Quantum Chem. 112, 33–43 (2012).

    Article  CAS  Google Scholar 

  81. 81

    Keten, S. & Buehler, M. J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7, 1709–1721 (2010).

    Article  CAS  Google Scholar 

  82. 82

    Bratzel, G. & Buehler, M. J. Molecular mechanics of silk nanostructures under varied mechanical loading. Biopolymers 97, 408–417 (2012).

    Article  CAS  Google Scholar 

  83. 83

    Xiao, S., Xiao, S. & Grater, F. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks. Phys. Chem. Chem. Phys. 15, 8765–8771 (2013).

    Article  CAS  Google Scholar 

  84. 84

    Cetinkaya, M., Xiao, S. & Gräter, F. Bottom-up computational modeling of semi-crystalline fibers: from atomistic to continuum scale. Phys. Chem. Chem. Phys. 13, 10426–10429 (2011).

    Article  CAS  Google Scholar 

  85. 85

    Cetinkaya, M., Xiao, S., Markert, B., Stacklies, W. & Gräter, F. Silk fiber mechanics from multiscale force distribution analysis. Biophys. J. 100, 1298–1305 (2011).

    Article  CAS  Google Scholar 

  86. 86

    Cetinkaya, M., Xiao, S. & Gräter, F. Effects of crystalline subunit size on silk fiber mechanics. Soft Matter 7, 8142 (2011).

    Article  CAS  Google Scholar 

  87. 87

    Patil, S. P., Markert, B. & Gräter, F. Rate-dependent behavior of the amorphous phase of spider dragline silk. Biophys. J. 106, 2511–2518 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Nova, A., Keten, S., Pugno, N. M., Redaelli, A. & Buehler, M. J. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10, 2626–2634 (2010).

    Article  CAS  Google Scholar 

  89. 89

    Keten, S. & Buehler, M. J. Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96, 153701 (2010).

    Article  CAS  Google Scholar 

  90. 90

    Giesa, T., Arslan, M., Pugno, N. M. & Buehler, M. J. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 11, 5038–5046 (2011).

    Article  CAS  Google Scholar 

  91. 91

    Giesa, T., Pugno, N. M., Wong, J. Y., Kaplan, D. L. & Buehler, M. J. What's inside the box? — Length-scales that govern fracture processes of polymer fibers. Adv. Mater. 26, 412–417 (2014).

    Article  CAS  Google Scholar 

  92. 92

    Asakura, T., Yang, M. Y. & Kawase, T. Structure of characteristic sequences in Nephila clavipes dragline silk (MaSp1) studied with 13C solid state NMR. Polym. J. 36, 999–1003 (2004).

    Article  CAS  Google Scholar 

  93. 93

    Asakura, T., Yang, M., Kawase, T. & Nakazawa, Y. 13C Solid-state NMR study of structural heterogeneity in peptides containing both polyalanine and repeated GGA sequences as a local structural model of Nephila clavipes dragline silk (Spidroin 1). Macromolecules 38, 3356–3363 (2005).

    Article  CAS  Google Scholar 

  94. 94

    Ashida, J., Ohgo, K., Komatsu, K., Kubota, A. & Asakura, T. Determination of the torsion angles of alanine and glycine residues of model compounds of spider silk (AGG)(10) using solid-state NMR methods. J. Biomol. NMR 25, 91–103 (2003).

    Article  CAS  Google Scholar 

  95. 95

    Jenkins, J. E. et al. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. Biomacromolecules 14, 3472–3483 (2013).

    Article  CAS  Google Scholar 

  96. 96

    Kummerlen, J., van Beek, J. D., Vollrath, F. & Meier, B. H. Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29, 2920–2928 (1996).

    Article  Google Scholar 

  97. 97

    Marcotte, I., van Beek, J. D. & Meier, B. H. Molecular disorder and structure of spider dragline silk investigated by two-dimensional solid-state NMR spectroscopy. Macromolecules 40, 1995–2001 (2007).

    Article  CAS  Google Scholar 

  98. 98

    Yang, M. Y., Nakazawa, Y., Yamauchi, K., Knight, D. & Asakura, T. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by C-13 cross polarization/magic angle spinning NMR. Biomacromolecules 6, 3220–3226 (2005).

    Article  CAS  Google Scholar 

  99. 99

    Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Determining secondary structure in spider dragline silk by carbon–carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).

    Article  CAS  Google Scholar 

  100. 100

    van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002).

    Article  CAS  Google Scholar 

  101. 101

    Crick, F. H. C. & Rich, A. Structure of polyglycine-II. Nature 176, 780–781 (1955).

    Article  CAS  Google Scholar 

  102. 102

    Barlow, D. J. & Thornton, J. M. Helix geometry in proteins. J. Mol. Biol. 201, 601–619 (1988).

    Article  CAS  Google Scholar 

  103. 103

    Gray, G. M. et al. Secondary structure adopted by the Gly-Gly-X repetitive regions of dragline spider silk. Int. J. Mol. Sci. 17, 2023 (2016).

    Article  CAS  Google Scholar 

  104. 104

    Giesa, T., Perry, C. C. & Buehler, M. J. Secondary structure transition and critical stress for a model of spider silk assembly. Biomacromolecules 17, 427–436 (2016).

    Article  CAS  Google Scholar 

  105. 105

    Lin, S. C. et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat. Commun. 6, 6892 (2015).

    Article  Google Scholar 

  106. 106

    Ayoub, N. A., Garb, J. E., Tinghitella, R. M., Collin, M. A. & Hayashi, C. Y. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLOS ONE 2, e514 (2007).

    Article  CAS  Google Scholar 

  107. 107

    Ittah, S., Barak, N. & Gat, U. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties. Biopolymers 93, 458–468 (2010).

    Article  CAS  Google Scholar 

  108. 108

    Hinman, M. B. & Lewis, R. V. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 267, 19320–19324 (1992).

    CAS  Google Scholar 

  109. 109

    Guerette, P. A., Ginzinger, D. G., Weber, B. H. F. & Gosline, J. M. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272, 112–115 (1996).

    Article  CAS  Google Scholar 

  110. 110

    Grubb, D. T. & Jelinski, L. W. Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30, 2860–2867 (1997).

    Article  CAS  Google Scholar 

  111. 111

    Riekel, C. et al. Aspects of X-ray diffraction on single spider fibers. Int. J. Biol. Macromol. 24, 179–186 (1999).

    Article  CAS  Google Scholar 

  112. 112

    Jenkins, J. E. et al. Solid-state NMR evidence for elastin-like b-turn structure in spider dragline silk. Chem. Commun. 46, 6714–6716 (2010).

    Article  CAS  Google Scholar 

  113. 113

    Ulrich, S., Glisovic, A., Salditt, T. & Zippelius, A. Diffraction from the beta-sheet crystallites in spider silk. Eur. Phys. J. E. Soft Matter 27, 229–242 (2008).

    Article  CAS  Google Scholar 

  114. 114

    Asakura, T., Suzuki, Y., Nakazawa, Y., Holland, G. P. & Yarger, J. L. Elucidating silk structure using solid-state NMR. Soft Matter 9, 11440–11450 (2013).

    Article  CAS  Google Scholar 

  115. 115

    Asakura, T. et al. Silk structure studied with nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 69, 23–68 (2013).

    Article  CAS  Google Scholar 

  116. 116

    Holland, G. P., Mou, Q. & Yarger, J. L. Determining hydrogen-bond interactions in spider silk with 1H−13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations. Chem. Commun. 49, 6680–6682 (2013).

    Article  CAS  Google Scholar 

  117. 117

    Izdebski, T., Akhenblit, P., Jenkins, J. E., Yarger, J. L. & Holland, G. P. Structure and dynamics of aromatic residues in spider silk: 2D carbon correlation NMR of dragline fibers. Biomacromolecules 11, 168–174 (2010).

    Article  CAS  Google Scholar 

  118. 118

    Jenkins, J. E., Creager, M. S., Lewis, R. V., Holland, G. P. & Yarger, J. L. Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11, 192–200 (2010).

    Article  CAS  Google Scholar 

  119. 119

    Shi, X., Holland, G. P. & Yarger, J. L. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR. Biomacromolecules 16, 852–859 (2015).

    Article  CAS  Google Scholar 

  120. 120

    Shi, X., Yarger, J. L. & Holland, G. P. Elucidating proline dynamics in spider dragline silk fibre using 2H−13C HETCOR MAS NMR. Chem. Commun. 50, 4856–4859 (2014).

    Article  CAS  Google Scholar 

  121. 121

    Lefevre, T., Rousseau, M. E. & Pezolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92, 2885–2895 (2007).

    Article  CAS  Google Scholar 

  122. 122

    Rousseau, M. E., Lefevre, T. & Pezolet, M. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Biomacromolecules 10, 2945–2953 (2009).

    Article  CAS  Google Scholar 

  123. 123

    Sintya, E. & Alam, P. Self-assembled semi-crystallinity at parallel beta-sheet nanocrystal interfaces in clustered MaSp1 (spider silk) proteins. Mater. Sci. Eng. C Mater. Biol. Appl. 58, 366–371 (2016).

    Article  CAS  Google Scholar 

  124. 124

    Motriuk-Smith, D., Smith, A., Hayashi, C. & Lewis, R. V. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6, 3152–3159 (2005).

    Article  CAS  Google Scholar 

  125. 125

    Rising, A., Hjalm, G., Engstrom, W. & Johansson, J. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7, 3120–3124 (2006).

    Article  CAS  Google Scholar 

  126. 126

    Garb, J. E., Ayoub, N. A. & Hayashi, C. Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol. 10, 243 (2010).

    Article  CAS  Google Scholar 

  127. 127

    Lin, Z., Huang, W., Zhang, J., Fan, J. S. & Yang, D. Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc. Natl Acad. Sci. USA 106, 8907–8911 (2009).

    Google Scholar 

  128. 128

    Askarieh, G. et al. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236–239 (2010).

    Article  CAS  Google Scholar 

  129. 129

    Gauthier, M., Leclerc, J., Lefevre, T., Gagne, S. M. & Auger, M. Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein. Biomacromolecules 15, 4447–4454 (2014).

    Article  CAS  Google Scholar 

  130. 130

    Hagn, F. A structural view on spider silk proteins and their role in fiber assembly. J. Pept. Sci. 18, 357–365 (2012).

    Article  CAS  Google Scholar 

  131. 131

    Gaines, W. A., Sehorn, M. G. & Marcotte, W. R. Jr. Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J. Biol. Chem. 285, 40745–40753 (2010).

    Article  CAS  Google Scholar 

  132. 132

    Eisoldt, L., Thamm, C. & Scheibel, T. Review the role of terminal domains during storage and assembly of spider silk proteins. Biopolymers 97, 355–361 (2012).

    Article  CAS  Google Scholar 

  133. 133

    Bauer, J. et al. Acidic residues control the dimerization of the N-terminal domain of black widow spiders’ major ampullate spidroin 1. Sci. Rep. 6, 34442 (2016).

    Article  CAS  Google Scholar 

  134. 134

    Bauer, J. & Scheibel, T. Conformational stability and interplay of helical N- and C-terminal domains with implications on major ampullate spidroin assembly. Biomacromolecules 18, 835–845 (2017).

    Article  CAS  Google Scholar 

  135. 135

    Hagn, F., Thamm, C., Scheibel, T. & Kessler, H. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk — implications for fiber formation. Angew. Chem. Int. Ed. 50, 310–313 (2011).

    Article  CAS  Google Scholar 

  136. 136

    Kronqvist, N. et al. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat. Commun. 5, 3254 (2014).

    Article  CAS  Google Scholar 

  137. 137

    Wallace, J. A. & Shen, J. K. Unraveling a trap-and-trigger mechanism in the pH-sensitive self-assembly of spider silk proteins. J. Phys. Chem. Lett. 3, 658–662 (2012).

    Article  CAS  Google Scholar 

  138. 138

    Kurut, A., Dicko, C. & Lund, M. Dimerization of terminal domains in spiders silk proteins is controlled by electrostatic anisotropy and modulated by hydrophobic patches. ACS Biomater. Sci. Eng. 1, 363–371 (2015).

    Article  CAS  Google Scholar 

  139. 139

    Gronau, G., Qin, Z. & Buehler, M. J. Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain. Biomater. Sci. 1, 276–284 (2013).

    Article  CAS  Google Scholar 

  140. 140

    da Silva, F. L. B., Pasquali, S., Derreumaux, P. & Dias, L. G. Electrostatics analysis of the mutational and pH effects of the N-terminal domain self-association of the major ampullate spidroin. Soft Matter 12, 5600–5612 (2016).

    Article  CAS  Google Scholar 

  141. 141

    Stark, M. et al. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8, 1695–1701 (2007).

    Article  CAS  Google Scholar 

  142. 142

    Hedhammar, M. et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis : implications for fiber formation. Biochemistry 47, 3407–3417 (2008).

    Article  CAS  Google Scholar 

  143. 143

    Humenik, M., Magdeburg, M. & Scheibel, T. Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J. Struct. Biol. 186, 431–437 (2014).

    Article  CAS  Google Scholar 

  144. 144

    Bauer, J. & Scheibel, T. Dimerization of conserved N-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain. Biomacromolecules 18, 2521–2528 (2017).

    Article  CAS  Google Scholar 

  145. 145

    Yang, Y. X., Qian, Z. G., Zhong, J. J. & Xia, X. X. Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach. Process Biochem. 51, 484–490 (2016).

    Article  CAS  Google Scholar 

  146. 146

    Weichert, N., Hauptmann, V., Helmold, C. & Conrad, U. Seed-specific expression of spider silk protein multimers causes long-term stability. Front. Plant Sci. 7, 6 (2016).

    Article  Google Scholar 

  147. 147

    Tschofen, M., Knopp, D., Hood, E. & Stoger, E. Plant molecular farming: much more than medicines. Annu. Rev. Anal. Chem. 9, 271–294 (2016).

    Article  Google Scholar 

  148. 148

    Scheller, J., Guhrs, K. H., Grosse, F. & Conrad, U. Production of spider silk proteins in tobacco and potato. Nat. Biotechnol. 19, 573–577 (2001).

    Article  CAS  Google Scholar 

  149. 149

    dos Santos-Pinto, J. R. A. et al. Silkomics: insight into the silk spinning process of spiders. J. Proteome Res. 15, 1179–1193 (2016).

    Article  CAS  Google Scholar 

  150. 150

    Andersson, M., Johansson, J. & Rising, A. Silk spinning in silkworms and spiders. Int. J. Mol. Sci. 17, 1290 (2016).

    Article  CAS  Google Scholar 

  151. 151

    Fang, G. Q. et al. Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater. Sci. Eng. 2, 1992–2000 (2016).

    Article  CAS  Google Scholar 

  152. 152

    Rim, N.-G. et al. Predicting silk fiber mechanical properties through multiscale simulation and protein design. ACS Biomater. Sci. Eng. 3, 1542–1556 (2017).

    Article  CAS  Google Scholar 

  153. 153

    Huang, W. W. et al. Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials. Acc. Chem. Res. 50, 866–876 (2017).

    Article  CAS  Google Scholar 

  154. 154

    Ebrahimi, D. et al. Silk–its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 1, 864–876 (2015).

    Article  CAS  Google Scholar 

  155. 155

    Krishnaji, S. T. et al. Sequence-structure-property relationships of recombinant spider silk proteins: integration of biopolymer design, processing, and modeling. Adv. Funct. Mater. 23, 241–253 (2013).

    Article  CAS  Google Scholar 

  156. 156

    Tokareva, O., Jacobsen, M., Buehler, M., Wong, J. & Kaplan, D. L. Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater. 10, 1612–1626 (2014).

    Article  CAS  Google Scholar 

  157. 157

    Meyers, M. A., McKittrick, J. & Chen, P. Y. Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013).

    Article  CAS  Google Scholar 

  158. 158

    Gatsey, J., Hayashi, C., Motriuk, D., Woods, J. & Lewis, R. V. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291, 2603–2605 (2001).

    Article  Google Scholar 

  159. 159

    Jaudzems, K. et al. pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged Tryptophan side chain. J. Mol. Biol. 422, 477–487 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.L.Y. acknowledges support from the US National Science Foundation (NSF DMR 1264801) and US Department of Defence Air Force Office of Scientific Research (FA9550-17-1-0282). A.v.d.V. acknowledges support from the US National Science Foundation (NSF CHE-1531590).

Author information

Affiliations

Authors

Contributions

The manuscript was researched and written with contributions from all three authors. J.L.Y. wrote the introduction and is responsible for much of the experimental sections of the review. A.v.d.V. researched and wrote the computational section of the review. B.R.C. researched and wrote the section on mechanical testing and several parts of the experimental sections.

Corresponding author

Correspondence to Jeffery L. Yarger.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yarger, J., Cherry, B. & van der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat Rev Mater 3, 18008 (2018). https://doi.org/10.1038/natrevmats.2018.8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing