Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-fullerene acceptors for organic solar cells

Abstract

Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure and working mechanism of a bulk-heterojunction organic solar cell.
Figure 2: Representative polymeric electron donors (d1–d11, d21).
Figure 3: Representative polymeric electron donors (d12–d20, d22–d28).
Figure 4: Rylene diimide-based small-molecule electron acceptors.
Figure 5: Rylene diimide-based polymeric electron acceptors.
Figure 6: Fused-ring electron acceptors (a42–a63).
Figure 7: Fused-ring electron acceptors (a64–a76).

Similar content being viewed by others

References

  1. Cheng, Y., Yang, S. & Hsu, C. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  CAS  Google Scholar 

  2. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

    Article  CAS  Google Scholar 

  3. Krebs, F. C., Espinosa, N., Hosel, M., Sondergaard, R. R. & Jorgensen, M. 25th anniversary article: rise to power — OPV-based solar parks. Adv. Mater. 26, 29–38 (2014).

    Article  CAS  Google Scholar 

  4. Darling, S. B. & You, F. The case for organic photovoltaics. RSC Adv. 3, 17633–17648 (2013).

    Article  CAS  Google Scholar 

  5. Deibel, C. et al. Energetics of excited states in the conjugated polymer poly(3-hexylthiophene). Phys. Rev. B 81, 085202 (2010).

    Article  CAS  Google Scholar 

  6. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  7. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganas, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater. 8, 904–909 (2009).

    Article  CAS  Google Scholar 

  8. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  9. Sworakowski, J., Lipinski, J. & Janus, K. On the reliability of determination of energies of HOMO and LUMO levels in organic semiconductors from electrochemical measurements. A simple picture based on the electrostatic model. Org. Electron. 33, 300–310 (2016).

    Article  CAS  Google Scholar 

  10. Chen, H. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009).

    Article  CAS  Google Scholar 

  11. Liang, Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009).

    Article  CAS  Google Scholar 

  12. Liang, Y. & Yu, L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43, 1227–1236 (2010).

    Article  CAS  Google Scholar 

  13. Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45, 723–733 (2012).

    Article  CAS  Google Scholar 

  14. Chen, Y., Wan, X. & Long, G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46, 2645–2655 (2013).

    Article  CAS  Google Scholar 

  15. Liao, S., Jhuo, H., Cheng, Y. & Chen, S. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 25, 4766–4771 (2013).

    Article  CAS  Google Scholar 

  16. Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    Article  CAS  Google Scholar 

  17. Li, M. et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11, 85–90 (2017).

    Article  CAS  Google Scholar 

  18. Distler, A. et al. The effect of PCBM dimerization on the performance of bulk heterojunction solar cells. Adv. Energy Mater. 4, 1300693 (2014).

    Article  CAS  Google Scholar 

  19. Bloking, J. T. et al. Comparing the device physics and morphology of polymer solar cells employing fullerenes and non-fullerene acceptors. Adv. Energy Mater. 4, 1301426 (2013).

    Article  CAS  Google Scholar 

  20. Jinnai, S. et al. Electron-accepting π-conjugated systems for organic photovoltaics: influence of structural modification on molecular orientation at donor–acceptor interfaces. Chem. Mater. 28, 1705–1713 (2016).

    Article  CAS  Google Scholar 

  21. Su, G. et al. Linking morphology and performance of organic solar cells based on decacyclene triimide acceptors. J. Mater. Chem. A 2, 1781–1789 (2014).

    Article  CAS  Google Scholar 

  22. Savoie, B. M. et al. Mesoscale molecular network formation in amorphous organic materials. Proc. Natl Acad. Sci. USA 111, 10055–10060 (2014).

    Article  CAS  Google Scholar 

  23. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  CAS  Google Scholar 

  24. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  25. Yu, G. & Heeger, A. J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995).

    Article  CAS  Google Scholar 

  26. Anthony, J. E. Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 23, 583–590 (2011).

    Article  CAS  Google Scholar 

  27. Sonar, P., Lim, J. P. F. & Chan, K. L. Organic non-fullerene acceptors for organic photovoltaics. Energy Environ. Sci. 4, 1558–1574 (2011).

    Article  CAS  Google Scholar 

  28. Li, C. & Wonneberger, H. Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv. Mater. 24, 613–636 (2012).

    Article  CAS  Google Scholar 

  29. Guo, X., Facchetti, A. & Marks, T. J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943–9021 (2014).

    Article  CAS  Google Scholar 

  30. Lin, Y. & Zhan, X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 1, 470–488 (2014).

    Article  CAS  Google Scholar 

  31. Lin, Y. & Zhan, X. Designing efficient non-fullerene acceptors by tailoring extended fused-rings with electron-deficient groups. Adv. Energy Mater. 5, 1501063 (2015).

    Article  CAS  Google Scholar 

  32. Nielsen, C. B., Holliday, S., Chen, H., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

    Article  CAS  Google Scholar 

  33. Kang, H. et al. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 49, 2424–2434 (2016).

    Article  CAS  Google Scholar 

  34. Lin, Y. & Zhan, X. Oligomer molecules for efficient organic photovoltaics. Acc. Chem. Res. 49, 175–183 (2016).

    Article  CAS  Google Scholar 

  35. Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    Article  CAS  Google Scholar 

  36. Cui, Y. et al. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017).

    Article  CAS  Google Scholar 

  37. Kumari, T., Lee, S. M., Kang, S. H., Chen, S. & Yang, C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ. Sci. 10, 258–265 (2017).

    Article  CAS  Google Scholar 

  38. Kwon, O. K., Park, J.-H., Kim, D. W., Park, S. K. & Park, S. Y. An all-small-molecule organic solar cell with high efficiency nonfullerene acceptor. Adv. Mater. 27, 1951–1956 (2015).

    Article  CAS  Google Scholar 

  39. Patil, Y., Misra, R., Keshtov, M. L. & Sharma, G. D. Small molecule carbazole-based diketopyrrolopyrroles with tetracyanobutadiene acceptor unit as a non-fullerene acceptor for bulk heterojunction organic solar cells. J. Mater. Chem. A 5, 3311–3319 (2017).

    Article  CAS  Google Scholar 

  40. Shu, Y. et al. A survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells. Chem. Sci. 2, 363–368 (2011).

    Article  CAS  Google Scholar 

  41. Li, H. et al. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics. J. Am. Chem. Soc. 136, 14589–14597 (2014).

    Article  CAS  Google Scholar 

  42. Dang, M. et al. Bis(tri-n-alkylsilyl oxide) silicon phthalocyanines: a start to establishing a structure property relationship as both ternary additives and non-fullerene electron acceptors in bulk heterojunction organic photovoltaic devices. J. Mater. Chem. A 5, 12168–12182 (2017).

    Article  CAS  Google Scholar 

  43. Long, X. et al. Polymer acceptor based on double B←N bridged bipyridine (BNBP) unit for high-efficiency all-polymer solar cells. Adv. Mater. 28, 6504–6508 (2016).

    Article  CAS  Google Scholar 

  44. Cnops, K. et al. 8.4% Efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).

    Article  CAS  Google Scholar 

  45. Zhan, X. et al. Rylene and related diimides for organic electronics. Adv. Mater. 23, 268–284 (2011).

    Article  CAS  Google Scholar 

  46. Suraru, S. L. & Wurthner, F. Strategies for the synthesis of functional naphthalene diimides. Angew. Chem. Int. Ed. 53, 7428–7448 (2014).

    Article  CAS  Google Scholar 

  47. Pho, T. V., Toma, F. M., Chabinyc, M. L. & Wudl, F. Self-assembling decacyclene triimides prepared through a regioselective hextuple Friedel–Crafts carbamylation. Angew. Chem. Int. Ed. 52, 1446–1451 (2013).

    Article  CAS  Google Scholar 

  48. Li, H. et al. Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors. Angew. Chem. Int. Ed. 52, 5513–5517 (2013).

    Article  CAS  Google Scholar 

  49. Li, H. et al. Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells. Adv. Mater. 27, 3266–3272 (2015).

    Article  CAS  Google Scholar 

  50. Shoaee, S. et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J. Am. Chem. Soc. 132, 12919–12926 (2010).

    Article  CAS  Google Scholar 

  51. Shoaee, S. et al. Charge photogeneration in polythiophene–perylene diimide blend films. Chem. Commun. 5445–5447 (2009).

  52. Shin, W. S. et al. Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application. J. Mater. Chem. 16, 384–390 (2006).

    Article  CAS  Google Scholar 

  53. Schubert, A. et al. Ultrafast exciton self-trapping upon geometry deformation in perylene-based molecular aggregates. J. Phys. Chem. Lett. 4, 792–796 (2013).

    Article  CAS  Google Scholar 

  54. Sharenko, A. et al. A high-performing solution-processed small molecule:perylene diimide bulk heterojunction solar cell. Adv. Mater. 25, 4403–4406 (2013).

    Article  CAS  Google Scholar 

  55. Hartnett, P. E. et al. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. J. Am. Chem. Soc. 136, 16345–16356 (2014).

    Article  CAS  Google Scholar 

  56. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    Article  CAS  Google Scholar 

  57. Langhals, H. & Jona, W. Intense dyes through chromophore–chromophore interactions: bi- and trichromophoric perylene-3,4:9,10-bis(dicarboximide)s. Angew. Chem. Int. Ed. 37, 952–955 (1998).

    Article  CAS  Google Scholar 

  58. Langhals, H. & Saulich, S. Bichromophoric perylene derivatives: energy transfer from non-fluorescent chromophores. Chem. Eur. J. 8, 5630–5643 (2002).

    Article  CAS  Google Scholar 

  59. Holman, M. W., Yan, P., Adams, D. M., Westenhoff, S. & Silva, C. Ultrafast spectroscopy of the solvent dependence of electron transfer in a perylenebisimide dimer. J. Phys. Chem. A 109, 8548–8552 (2005).

    Article  CAS  Google Scholar 

  60. Wilson, T. M., Tauber, M. J. & Wasielewski, M. R. Toward an n-type molecular wire: electron hopping within linearly linked perylenediimide oligomers. J. Am. Chem. Soc. 131, 8952–8957 (2009).

    Article  CAS  Google Scholar 

  61. Rajaram, S., Shivanna, R., Kandappa, S. K. & Narayan, K. S. Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells. J. Phys. Chem. Lett. 3, 2405–2408 (2012).

    Article  CAS  Google Scholar 

  62. Shivanna, R. et al. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy Environ. Sci. 7, 435–441 (2014).

    Article  CAS  Google Scholar 

  63. Ye, L. et al. Enhanced efficiency in fullerene-free polymer solar cell by incorporating fine-designed donor and acceptor materials. ACS Appl. Mater. Interfaces 7, 9274–9280 (2015).

    Article  CAS  Google Scholar 

  64. Liang, N. et al. Perylene diimide trimers based bulk heterojunction organic solar cells with efficiency over 7%. Adv. Energy Mater. 6, 1600060 (2016).

    Article  CAS  Google Scholar 

  65. Jiang, W. et al. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chem. Commun. 50, 1024–1026 (2014).

    Article  CAS  Google Scholar 

  66. Zang, Y. et al. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Adv. Mater. 26, 5708–5714 (2014).

    Article  CAS  Google Scholar 

  67. Ye, L. et al. Toward efficient non-fullerene polymer solar cells: selection of donor polymers. Org. Electron. 17, 295–303 (2015).

    Article  CAS  Google Scholar 

  68. Wu, C. et al. Influence of molecular geometry of perylene diimide dimers and polymers on bulk heterojunction morphology toward high-performance nonfullerene polymer solar cells. Adv. Funct. Mater. 25, 5326–5332 (2015).

    Article  CAS  Google Scholar 

  69. Sun, D. et al. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J. Am. Chem. Soc. 137, 11156–11162 (2015).

    Article  CAS  Google Scholar 

  70. Meng, D. et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 138, 375–380 (2016).

    Article  CAS  Google Scholar 

  71. Fan, Y. et al. Comparison of the optical and electrochemical properties of bi(perylene diimide)s linked through ortho and bay positions. ACS Omega 2, 377–385 (2017).

    Article  CAS  Google Scholar 

  72. Yan, Q., Zhou, Y., Zheng, Y., Pei, J. & Zhao, D. Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives. Chem. Sci. 4, 4389–4394 (2013).

    Article  CAS  Google Scholar 

  73. Zhang, X. et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 25, 5791–5797 (2013).

    Article  CAS  Google Scholar 

  74. Lin, Y. et al. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv. Mater. 26, 5137–5142 (2014).

    Article  CAS  Google Scholar 

  75. Duan, Y. et al. Pronounced effects of a triazine core on photovoltaic performance-efficient organic solar cells enabled by a PDI trimer-based small molecular acceptor. Adv. Mater. 29, 1605115 (2017).

    Article  CAS  Google Scholar 

  76. Lin, H. et al. Reduced intramolecular twisting improves the performance of 3D molecular acceptors in non-fullerene organic solar cells. Adv. Mater. 28, 8546–8551 (2016).

    Article  CAS  Google Scholar 

  77. Wu, Q., Zhao, D., Schneider, A. M., Chen, W. & Yu, L. Covalently bound clusters of alpha-substituted PDI–rival electron acceptors to fullerene for organic solar cells. J. Am. Chem. Soc. 138, 7248–7251 (2016).

    Article  CAS  Google Scholar 

  78. Chen, W. et al. A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. J. Mater. Chem. C 3, 4698–4705 (2015).

    Article  CAS  Google Scholar 

  79. Zhong, Y. et al. Efficient organic solar cells with helical perylene diimide electron acceptors. J. Am. Chem. Soc. 136, 15215–15221 (2014).

    Article  CAS  Google Scholar 

  80. Zhong, Y. et al. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat. Commun. 6, 8242 (2015).

    Article  CAS  Google Scholar 

  81. Zhong, H. et al. Rigidifying nonplanar perylene diimides by ring fusion toward geometry-tunable acceptors for high-performance fullerene-free solar cells. Adv. Mater. 28, 951–958 (2016).

    Article  CAS  Google Scholar 

  82. Meng, D. et al. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J. Am. Chem. Soc. 138, 10184–10190 (2016).

    Article  CAS  Google Scholar 

  83. Facchetti, A. Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 16, 123–132 (2013).

    Article  CAS  Google Scholar 

  84. Deshmukh, K. D. et al. Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells. Energy Environ. Sci. 8, 332–342 (2015).

    Article  CAS  Google Scholar 

  85. Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    Article  CAS  Google Scholar 

  86. Moore, J. R. et al. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: device physics, photophysics and morphology. Adv. Energy Mater. 1, 230–240 (2011).

    Article  CAS  Google Scholar 

  87. Guo, Y. et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 29, 1700309 (2017).

    Article  CAS  Google Scholar 

  88. Gao, L. et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016).

    Article  CAS  Google Scholar 

  89. Fan, B. et al. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy Environ. Sci. 10, 1243–1251 (2017).

    Article  CAS  Google Scholar 

  90. Zhan, X. et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007).

    Article  CAS  Google Scholar 

  91. Tan, Z. et al. Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis(dithienothiophene)]. Appl. Phys. Lett. 93, 073309 (2008).

    Article  CAS  Google Scholar 

  92. Zhan, X. et al. Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J. Mater. Chem. 19, 5794–5803 (2009).

    Article  CAS  Google Scholar 

  93. Huang, J. et al. Photoinduced intramolecular electron transfer in conjugated perylene bisimide-dithienothiophene systems: a comparative study of a small molecule and a polymer. J. Phys. Chem. A 113, 5039–5046 (2009).

    Article  CAS  Google Scholar 

  94. Cheng, P. et al. Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy Environ. Sci. 7, 1351–1356 (2014).

    Article  CAS  Google Scholar 

  95. Cheng, P., Yan, C., Li, Y., Ma, W. & Zhan, X. Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy Environ. Sci. 8, 2357–2364 (2015).

    Article  CAS  Google Scholar 

  96. Hou, J., Zhang, S., Chen, T. & Yang, Y. A new n-type low bandgap conjugated polymer P-co-CDT: synthesis and excellent reversible electrochemical and electrochromic properties. Chem. Commun. 6034–6036 (2008).

  97. Zhou, E., Tajima, K., Yang, C. & Hashimoto, K. Band gap and molecular energy level control of perylene diimide-based donor–acceptor copolymers for all-polymer solar cells. J. Mater. Chem. 20, 2362–2368 (2010).

    Article  CAS  Google Scholar 

  98. Zhou, E. et al. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew. Chem. Int. Ed. 50, 2799–2803 (2011).

    Article  CAS  Google Scholar 

  99. Hu, X. et al. Synthesis and photovoltaic properties of n-type conjugated polymers alternating 2,7-carbazole and arylene diimides. Sol. Energy Mater. Sol. Cells 103, 157–163 (2012).

    Article  CAS  Google Scholar 

  100. Zhou, Y. et al. New polymer acceptors for organic solar cells: the effect of regio-regularity and device configuration. J. Mater. Chem. A 1, 6609–6613 (2013).

    Article  CAS  Google Scholar 

  101. Zhou, Y. et al. High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater. 26, 3767–3772 (2014).

    Article  CAS  Google Scholar 

  102. Diao, Y. et al. Flow-enhanced solution printing of all-polymer solar cells. Nat. Commun. 6, 7955 (2015).

    Article  CAS  Google Scholar 

  103. Guo, Y. et al. A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions. Adv. Mater. 28, 8483–8489 (2016).

    Article  CAS  Google Scholar 

  104. Wurthner, F. et al. Preparation and characterization of regioisomerically pure 1,7-disubstituted perylene bisimide dyes. J. Org. Chem. 69, 7933–7939 (2004).

    Article  CAS  Google Scholar 

  105. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  CAS  Google Scholar 

  106. Li, Z. et al. High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing. J. Am. Chem. Soc. 138, 10935–10944 (2016).

    Article  CAS  Google Scholar 

  107. Jung, J. et al. Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv. Mater. 27, 3310–3317 (2015).

    Article  CAS  Google Scholar 

  108. Earmme, T., Hwang, Y., Murari, N. M., Subramaniyan, S. & Jenekhe, S. A. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J. Am. Chem. Soc. 135, 14960–14963 (2013).

    Article  CAS  Google Scholar 

  109. Earmme, T., Hwang, Y., Subramaniyan, S. & Jenekhe, S. A. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Adv. Mater. 26, 6080–6085 (2014).

    Article  CAS  Google Scholar 

  110. Hwang, Y., Courtright, B. A., Ferreira, A. S., Tolbert, S. H. & Jenekhe, S. A. 7.7% Efficient all-polymer solar cells. Adv. Mater. 27, 4578–4584 (2015).

    Article  CAS  Google Scholar 

  111. Hwang, Y., Ren, G., Murari, N. M. & Jenekhe, S. A. n-Type naphthalene diimide–biselenophene copolymer for all-polymer bulk heterojunction solar cells. Macromolecules 45, 9056–9062 (2012).

    Article  CAS  Google Scholar 

  112. Lee, C. et al. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv. Mater. 27, 2466–2471 (2015).

    Article  CAS  Google Scholar 

  113. Lee, W. et al. Side chain optimization of naphthalenediimide–bithiophene-based polymers to enhance the electron mobility and the performance in all-polymer solar cells. Adv. Funct. Mater. 26, 1543–1553 (2016).

    Article  CAS  Google Scholar 

  114. Choi, J. et al. Importance of electron transport ability in naphthalene diimide-based polymer acceptors for high-performance, additive-free, all-polymer solar cells. Chem. Mater. 27, 5230–5237 (2015).

    Article  CAS  Google Scholar 

  115. Hwang, Y., Earmme, T., Courtright, B. A., Eberle, F. N. & Jenekhe, S. A. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J. Am. Chem. Soc. 137, 4424–4434 (2015).

    Article  CAS  Google Scholar 

  116. Wu, J., Cheng, S., Cheng, Y. & Hsu, C. Donor–acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem. Soc. Rev. 44, 1113–1154 (2015).

    Article  CAS  Google Scholar 

  117. Han, G., Guo, Y., Song, X., Wang, Y. & Yi, Y. Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A–π–A electron acceptor for non-fullerene organic solar cells. J. Mater. Chem. C 5, 4852–4857 (2017).

    Article  CAS  Google Scholar 

  118. Kim, Y., Song, C. E., Moon, S.-J. & Lim, E. Effect of dye end groups in non-fullerene fluorene- and carbazole-based small molecule acceptors on photovoltaic performance. RSC Adv. 5, 62739–62746 (2015).

    Article  CAS  Google Scholar 

  119. Wang, K. et al. π-Bridge-independent 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-substituted nonfullerene acceptors for efficient bulk heterojunction solar cells. Chem. Mater. 28, 2200–2208 (2016).

    Article  CAS  Google Scholar 

  120. Zhang, G. et al. Efficient nonfullerene polymer solar cells enabled by a novel wide bandgap small molecular acceptor. Adv. Mater. 29, 1606054 (2017).

    Article  CAS  Google Scholar 

  121. Stoltzfus, D. M., Clulow, A. J., Jin, H., Burn, P. L. & Gentle, I. R. Impact of dimerization on phase separation and crystallinity in bulk heterojunction films containing non-fullerene acceptors. Macromolecules 49, 4404–4415 (2016).

    Article  CAS  Google Scholar 

  122. Lin, Y. et al. Structure evolution of oligomer fused-ring electron acceptors toward high efficiency of as-cast polymer solar cells. Adv. Energy Mater. 6, 1600854 (2016).

    Article  CAS  Google Scholar 

  123. Kan, B. et al. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 139, 4929–4934 (2017).

    Article  CAS  Google Scholar 

  124. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  Google Scholar 

  125. Dai, S. et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 139, 1336–1343 (2017).

    Article  CAS  Google Scholar 

  126. Li, Y. et al. Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J. Mater. Chem. A 4, 5890–5897 (2016).

    Article  CAS  Google Scholar 

  127. Wang, W. et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv. Mater. 29, 1701308 (2017).

    Article  CAS  Google Scholar 

  128. Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    Article  CAS  Google Scholar 

  129. Bin, H. et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    Article  CAS  Google Scholar 

  130. Yang, Y. et al. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 138, 15011–15018 (2016).

    Article  CAS  Google Scholar 

  131. Zuo, L. et al. High-efficiency nonfullerene organic solar cells with a parallel tandem configuration. Adv. Mater. 29, 1702547 (2017).

    Article  CAS  Google Scholar 

  132. Zhu, J. et al. Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: effect of extended conjugation. Adv. Mater. 30, 1704713 (2017).

    Article  CAS  Google Scholar 

  133. Li, Y. et al. A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy 27, 430–438 (2016).

    Article  CAS  Google Scholar 

  134. Kronenberg, N. M. et al. Bulk heterojunction organic solar cells based on merocyanine colorants. Chem. Commun. 6489–6491 (2008).

  135. Wu, Y. et al. A planar electron acceptor for efficient polymer solar cells. Energy Environ. Sci. 8, 3215–3221 (2015).

    Article  CAS  Google Scholar 

  136. Cheng, P. et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 29, 1605216 (2017).

    Article  CAS  Google Scholar 

  137. Xiao, B. et al. Achievement of high VOC of 1.02 V for P3HT-based organic solar cell using a benzotriazole-containing non-fullerene acceptor. Adv. Energy Mater. 7, 1602269 (2017).

    Article  CAS  Google Scholar 

  138. Liu, F. et al. A thieno[3,4-b]thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J. Am. Chem. Soc. 138, 15523–15526 (2016).

    Article  CAS  Google Scholar 

  139. Jia, B. et al. Rhodanine flanked indacenodithiophene as non-fullerene acceptor for efficient polymer solar cells. Sci. China Chem. 60, 257–263 (2017).

    Article  CAS  Google Scholar 

  140. Lin, Y. et al. A twisted dimeric perylene diimide electron acceptor for efficient organic solar cells. Adv. Energy Mater. 4, 1400420 (2014).

    Article  CAS  Google Scholar 

  141. Li, S. et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28, 9423–9429 (2016).

    Article  CAS  Google Scholar 

  142. Yao, H. et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv. Mater. 29, 1700254 (2017).

    Article  CAS  Google Scholar 

  143. Xie, D. et al. A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency. Sol. RRL 1, 1700044 (2017).

    Article  CAS  Google Scholar 

  144. Feng, H. et al. An A-D-A type small-molecule electron acceptor with end-extended conjugation for high performance organic solar cells. Chem. Mater. 29, 7908–7917 (2017).

    Article  CAS  Google Scholar 

  145. Lin, Y. et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 138, 4955–4961 (2016).

    Article  CAS  Google Scholar 

  146. Zhao, F. et al. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 29, 1700144 (2017).

    Article  CAS  Google Scholar 

  147. Wang, J. et al. Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy. Adv. Mater. 29, 1702125 (2017).

    Article  CAS  Google Scholar 

  148. Lin, Y. et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 138, 2973–2976 (2016).

    Article  CAS  Google Scholar 

  149. Lin, Y. et al. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv. Mater. 29, 1604155 (2017).

    Article  CAS  Google Scholar 

  150. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  CAS  Google Scholar 

  151. Baran, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    Article  CAS  Google Scholar 

  152. Lin, Y. et al. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ. Sci. 8, 610–616 (2015).

    Article  CAS  Google Scholar 

  153. Bai, H. et al. An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. J. Mater. Chem. A 3, 1910–1914 (2015).

    Article  CAS  Google Scholar 

  154. Yan, C. et al. Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes Pigm. 139, 627–634 (2017).

    Article  CAS  Google Scholar 

  155. Yao, H. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283–8287 (2016).

    Article  CAS  Google Scholar 

  156. Yao, H. et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56, 3045–3049 (2017).

    Article  CAS  Google Scholar 

  157. Gao, L. et al. High-efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organic semiconductor acceptor. Adv. Mater. 28, 8288–8295 (2016).

    Article  CAS  Google Scholar 

  158. Bin, H. et al. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 138, 4657–4664 (2016).

    Article  CAS  Google Scholar 

  159. Ye, L. et al. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 27, 6046–6054 (2015).

    Article  CAS  Google Scholar 

  160. Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    Article  CAS  Google Scholar 

  161. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells — towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  162. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  CAS  Google Scholar 

  163. Veldman, D., Meskers, S. C. J. & Janssen, R. A. J. The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009).

    Article  CAS  Google Scholar 

  164. Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M. & Janssen, R. A. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015).

    Article  CAS  Google Scholar 

  165. Kawashima, K., Tamai, Y., Ohkita, H., Osaka, I. & Takimiya, K. High-efficiency polymer solar cells with small photon energy loss. Nat. Commun. 6, 10085 (2015).

    Article  CAS  Google Scholar 

  166. Ran, N. et al. Harvesting the full potential of photons with organic solar cells. Adv. Mater. 28, 1482–1488 (2016).

    Article  CAS  Google Scholar 

  167. Wang, C. et al. Low band gap polymer solar cells with minimal voltage losses. Adv. Energy Mater. 6, 1600148 (2016).

    Article  CAS  Google Scholar 

  168. Baran, D. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Environ. Sci. 9, 3783–3793 (2016).

    Article  CAS  Google Scholar 

  169. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    Article  CAS  Google Scholar 

  170. Bartesaghi, D. et al. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6, 7083 (2015).

    Article  CAS  Google Scholar 

  171. Collins, B. A. et al. Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71 BM solar cells. Adv. Energy Mater. 3, 65–74 (2013).

    Article  CAS  Google Scholar 

  172. Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  173. Mukherjee, S., Proctor, C. M., Bazan, G. C., Nguyen, T. Q. & Ade, H. Significance of average domain purity and mixed domains on the photovoltaic performance of high-efficiency solution-processed small-molecule BHJ solar cells. Adv. Energy Mater. 5, 1500877 (2015).

    Article  CAS  Google Scholar 

  174. Jao, M., Liao, H. & Su, W. Achieving a high fill factor for organic solar cells. J. Mater. Chem. A 4, 5784–5801 (2016).

    Article  CAS  Google Scholar 

  175. Xie, Z. & Wurthner, F. Hybrid photoconductive cathode interlayer materials composed of perylene bisimide photosensitizers and zinc oxide for high performance polymer solar cells. Adv. Energy Mater. 7, 1602573 (2017).

    Article  CAS  Google Scholar 

  176. Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  CAS  Google Scholar 

  177. Bai, H. et al. Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells. J. Mater. Chem. A 3, 20758–20766 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.Z. acknowledges support from the National Natural Science Foundation of China (Grant Nos 21734001 and 51761165023). S.B. and S.R.M. acknowledge support from the US Department of the Navy, Office of Naval Research (Grant No. N00014-14-1-0580 (CAOP MURI)). Z.W. acknowledges support from the National Natural Science Foundation of China (Grant No. 21734009). H.Y. acknowledges support from the National Basic Research Program of China (Grant Nos 2013CB834701 and 2014CB643501) and the Hong Kong Innovation and Technology Commission (Grant Nos ITC-CNERC14SC01 and ITS/083/15). A.K.-Y.J. acknowledges support from the US Office of Naval Research (Grant No. N00014-17-1-2201) and the Asian Office of Aerospace R&D (Grant No. FA2386-15-1-4106).

Author information

Authors and Affiliations

Authors

Contributions

C.Y., S.B., Z.W., H.Y. and X.Z. researched data for the article. All authors contributed to the writing and editing of the article before submission.

Corresponding author

Correspondence to Xiaowei Zhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Barlow, S., Wang, Z. et al. Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3, 18003 (2018). https://doi.org/10.1038/natrevmats.2018.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2018.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing