Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes

Abstract

Thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both singlet and triplet excitons without noble metals, are emerging as next-generation organic electroluminescent materials. In the past few years, there have been rapid advances in molecular design criteria, our understanding of the photophysics underlying TADF and the applications of TADF materials as emitters in organic light-emitting diodes (OLEDs). This topic is set to remain at the forefront of research in optoelectronic organic materials for the foreseeable future. In this Review, we focus on state-of-the-art materials design and understanding of the photophysical processes, which are being leveraged to optimize the performance of OLED devices. Notably, we also appraise dendritic and polymeric TADF emitters — macromolecular materials that offer the potential advantages of low cost, solution processable and large-area OLED fabrication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of TADF OLEDs.
Figure 2: External quantum efficiencies of TADF emitters.
Figure 3: Chemical structures of representative acceptors, donors and TADF small molecules.
Figure 4: The performance of small-molecule TADF OLEDs.
Figure 5: Molecular structures of TADF dendrimers.
Figure 6: Molecular structures of TADF polymers.
Figure 7: Device structure of TADF polymer OLEDs.

Similar content being viewed by others

References

  1. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).This is a seminal paper describing the first OLEDs with a double-layer thin-film structure operating at a voltage below 10 V.

    Article  CAS  Google Scholar 

  2. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  3. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  CAS  Google Scholar 

  4. Lee, C. W. & Lee, J. Y. Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Adv. Mater. 25, 5450–5454 (2013).

    Article  CAS  Google Scholar 

  5. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  6. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).This is a representative paper on TADF small molecules achieving nearly 100% IQE and nearly 20% electroluminescence efficiency.

    Article  CAS  Google Scholar 

  7. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    Article  CAS  Google Scholar 

  8. Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).

    Article  CAS  Google Scholar 

  9. Hedley, G. J., Ruseckas, A. & Samuel, I. D. W. Ultrafast luminescence in Ir(ppy)3 . Chem. Phys. Lett. 450, 292–296 (2008).

    Article  CAS  Google Scholar 

  10. Lawetz, V., Siebrand, W. & Orlandi, G. J. Theory of intersystem crossing in aromatic hydrocarbons. Chem. Phys. 56, 4058–4072 (1972).

    CAS  Google Scholar 

  11. Robinson, G. W. & Frosch, R. P. Electronic excitation transfer and relaxation. J. Chem. Phys. 38, 1187–1203 (1963).

    Article  CAS  Google Scholar 

  12. Kono, H., Lin, S. H. & Schlag, E. W. On the role of low-frequency modes in the energy or temperature dependence of intersystem crossing. Chem. Phys. Lett. 145, 280–285 (1988).

    Article  CAS  Google Scholar 

  13. Fukumura, H., Kikuchi, K., Koike, K. & Kokubun, H. Temperature effect on inverse intersystem crossing of anthracenes. J. Photochem. Photobiol. A Chem. 42, 283–291 (1988).

    Article  CAS  Google Scholar 

  14. Tanaka, F., Okamoto, M. & Hirayama, S. Pressure and temperature dependences of the rate constant for S1-T2 intersystem crossing of anthracene compounds in solution. J. Phys. Chem. 99, 525–530 (1995).

    Article  CAS  Google Scholar 

  15. Ziegler, T., Rauk, A. & Baerends, E. J. On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor. Chim. Acta 43, 261–271 (1977).

    Article  CAS  Google Scholar 

  16. El-Sayed, M. A. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 38, 2834–2838 (1963).

    Article  CAS  Google Scholar 

  17. Czerwieniec, R., Leitl, M. J., Homeier, H. H. H. & Yersin, H. Cu(I) complexes — thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev. 325, 2–28 (2016).

    Article  CAS  Google Scholar 

  18. Pan, Y. et al. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons. Adv. Opt. Mater. 2, 510–515 (2014).

    Article  CAS  Google Scholar 

  19. Wang, S. et al. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound. Angew. Chem. Int. Ed. 54, 13068–13072 (2015).

    Article  CAS  Google Scholar 

  20. Samanta, P. K., Kim, D., Coropceanu, V. & Brédas, J.-L. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet versus triplet excited states. J. Am. Chem. Soc. 139, 4042–4051 (2017).

    Article  CAS  Google Scholar 

  21. Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013).This study provides a systematic discussion of the factors affecting the efficiency of TADF small-molecule OLEDs, in which detailed molecular structure–photophysics relationships are revealed.

    Article  CAS  Google Scholar 

  22. Malrieu, J.-P. & Pullman, B. Configuration spatiale et propriétés électroniques du noyau d’isoalloxazine. Theor. Chim. Acta 2, 302–314 (1964).

    Article  CAS  Google Scholar 

  23. Aizenshtat, Z., Klein, E., Weiler-Feilchenfeld, H. & Bergmann, E. D. Conformational studies on xanthene, thioxanthene and acridan. Isr. J. Chem. 10, 753–763 (1972).

    Article  CAS  Google Scholar 

  24. Zhang, Q. et al. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. J. Am. Chem. Soc. 136, 18070–18081 (2014).

    Article  CAS  Google Scholar 

  25. Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).This study was the starting point for purely organic TADF emitters with a very small singlet–triplet gap.

    Article  CAS  Google Scholar 

  26. Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photon. 8, 326–332 (2014).

    Article  CAS  Google Scholar 

  27. Lee, D. R. et al. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices. Adv. Mater. 27, 5861–5867 (2015).

    Article  CAS  Google Scholar 

  28. Li, J. et al. Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative. Adv. Mater. 25, 3319–3323 (2013).

    Article  CAS  Google Scholar 

  29. Lin, T. A. et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Adv. Mater. 28, 6976–6983 (2016).This study demonstrates that the maximum EQE of TADF small-molecule OLEDs fabricated by vacuum deposition reaches 36.7%.

    Article  CAS  Google Scholar 

  30. Tsai, W. L. et al. A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chem. Commun. 51, 13662–13665 (2015).

    Article  CAS  Google Scholar 

  31. Im, Y. et al. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem. Mater. 29, 1946–1963 (2017).

    Article  CAS  Google Scholar 

  32. Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    Article  CAS  Google Scholar 

  33. Cho, Y. J., Jeon, S. K., Lee, S.-S., Yu, E. & Lee, J. Y. Donor interlocked molecular design for fluorescence-like narrow emission in deep blue thermally activated delayed fluorescent emitters. Chem. Mater. 28, 5400–5405 (2016).

    Article  CAS  Google Scholar 

  34. Lee, I. & Lee, J. Y. Molecular design of deep blue fluorescent emitters with 20% external quantum efficiency and narrow emission spectrum. Org. Electron. 29, 160–164 (2016).In this study, deep-blue TADF OLEDs are reported based on the rational design of the emitter molecule and host material.

    Article  CAS  Google Scholar 

  35. Cui, L.-S. et al. Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nat. Commun. 8, 2250 (2017).

    Article  CAS  Google Scholar 

  36. Kim, H. M., Choi, J. M. & Lee, J. Y. Blue thermally activated delayed fluorescent emitters having a bicarbazole donor moiety. RSC Adv. 6, 64133–64139 (2016).

    Article  CAS  Google Scholar 

  37. Lee, D. R., Choi, J. M., Lee, C. W. & Lee, J. Y. Ideal molecular design of blue thermally activated delayed fluorescent emitter for high efficiency, small singlet-triplet energy splitting, low efficiency roll-off, and long lifetime. ACS Appl. Mater. Interfaces 8, 23190–23196 (2016).

    Article  CAS  Google Scholar 

  38. Parker, C. A. & Hatchard, C. G. Triplet-singlet emission in fluid solutions: phosphorescence of eosin. Trans. Faraday Soc. 57, 1894–1904 (1961).

    Article  Google Scholar 

  39. Endo, A. et al. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes — a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).

    Article  CAS  Google Scholar 

  40. Chen, X.-L. et al. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed OLEDs. Chem. Mater. 25, 3910–3920 (2013).

    Article  CAS  Google Scholar 

  41. Liang, D. et al. Highly efficient cuprous complexes with thermally activated delayed fluorescence for solution-processed organic light-emitting devices. Inorg. Chem. 55, 7467–7475 (2016).

    Article  CAS  Google Scholar 

  42. Hofbeck, T. Monkowius, U. & Yersin, H. Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 137, 399–404 (2015).

    Article  CAS  Google Scholar 

  43. Volz, D. et al. Bridging the efficiency gap: fully bridged dinuclear Cu(I)-complexes for singlet harvesting in high-efficiency OLEDs. Adv. Mater. 27, 2538–2543 (2015).

    Article  CAS  Google Scholar 

  44. Mehes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 51, 11311–11315 (2012).

    Article  CAS  Google Scholar 

  45. Kim, B. S. & Lee, J. Y. Engineering of mixed host for high external quantum efficiency above 25% in green thermally activated delayed fluorescence device. Adv. Funct. Mater. 24, 3970–3977 (2014).

    Article  CAS  Google Scholar 

  46. Lee, D. R. et al. Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 7, 9625–9629 (2015).

    Article  CAS  Google Scholar 

  47. Sun, J. W. et al. A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv. Mater. 26, 5684–5688 (2014).

    Article  CAS  Google Scholar 

  48. Zeng, W. et al. Achieving nearly 30% external quantum efficiency for orange-red organic light emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1, 8-naphthalimide-acridine hybrids. Adv. Mater. 30, 1704961 (2017).

    Article  CAS  Google Scholar 

  49. Li, Y., Xie, G., Gong, S., Wu, K. & Yang, C. Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: two parallel emissive channels. Chem. Sci. 7, 5441–5447 (2016).

    Article  CAS  Google Scholar 

  50. Ren, Z. et al. Pendant homopolymer and copolymers as solution-processable thermally activated delayed fluorescence materials for organic light-emitting diodes. Macromolecules 49, 5452–5460 (2016).In this study, the maximum EQE of a polymer OLED reaches 20% using the strategy of pendant TADF moieties in the side chain of a polymer.

    Article  CAS  Google Scholar 

  51. Lee, S. Y., Yasuda, T., Yang, Y. S., Zhang, Q. & Adachi, C. Luminous butterflies: efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs. Angew. Chem. Inter. Ed. 53, 6402–6406 (2014).

    Article  CAS  Google Scholar 

  52. Ban, X. et al. Design of encapsulated hosts and guests for highly efficient blue and green thermally activated delayed fluorescence OLEDs based on a solution-process. Chem. Commun. 53, 11834–11837 (2017).

    Article  CAS  Google Scholar 

  53. Tsang, D. P. K., Matsushima, T. & Adachi, C. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Sci. Rep. 6, 22463 (2016).

    Article  CAS  Google Scholar 

  54. Cho, Y. J., Yook, K. S. & Lee, J. Y. A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs. Adv. Mater. 26, 4050–4055 (2014).

    Article  CAS  Google Scholar 

  55. Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).

    Article  CAS  Google Scholar 

  56. Ritchie, J., Crayston, J. A., Markham, J. P. & Samuel, I. D. Effect of meta-linkages on the photoluminescence and electroluminescence properties of light-emitting polyfluorene alternating copolymers. J. Mater. Chem. 16, 1651–1656 (2006).

    Article  CAS  Google Scholar 

  57. Ahn, T., Jang, M. S., Shim, H. K., Hwang, D. H. & Zyung, T. Blue electroluminescent polymers: control of conjugation length by kink linkages and substituents in the poly (p-phenylenevinylene)-related copolymers. Macromolecules 32, 3279–3285 (1999).

    Article  CAS  Google Scholar 

  58. Tanaka, H., Shizu, K., Miyazaki, H. & Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative. Chem. Commun. 48, 11392–11394 (2012).

    Article  CAS  Google Scholar 

  59. Kaji, H. et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 6, 8476 (2015).

    Article  CAS  Google Scholar 

  60. Shizu, K. et al. Highly efficient blue electroluminescence using delayed-fluorescence emitters with large overlap density between luminescent and ground states. J. Phys. Chem. C 119, 26283–26289 (2015).

    Article  CAS  Google Scholar 

  61. Serevicius, T. et al. Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Phys. Chem. Chem. Phys. 15, 15850–15855 (2013).

    Article  CAS  Google Scholar 

  62. Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2015).This report reveals the compatibility between low ΔEst and high PLQY and produces a blue emitter with near 100% internal electroluminescence quantum yield.

    Article  CAS  Google Scholar 

  63. Park, I. S., Lee, S. Y., Adachi, C. & Yasuda, T. Full-color delayed fluorescence materials based on wedge-shaped phthalonitriles and dicyanopyrazines: systematic design, tunable photophysical properties, and OLED performance. Adv. Funct. Mater. 26, 1813–1821 (2016).

    Article  CAS  Google Scholar 

  64. Liu, M. et al. Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chem. Commun. 51, 16353–16356 (2015).

    Article  CAS  Google Scholar 

  65. Wang, Z. et al. Structure-performance investigation of thioxanthone derivatives for developing color tunable highly efficient thermally activated delayed fluorescence emitters. ACS Appl. Mater. Interfaces 8, 8627–8636 (2016).

    Article  CAS  Google Scholar 

  66. Kawasumi, K. et al. Thermally activated delayed fluorescence materials based on homoconjugation effect of donor-acceptor triptycenes. J. Am. Chem. Soc. 137, 11908–11911 (2015).

    Article  CAS  Google Scholar 

  67. Nakagawa, T., Ku, S. Y., Wong, K. T. & Adachi, C. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem. Commun. 48, 9580–9582 (2012).

    Article  CAS  Google Scholar 

  68. Chen, X.-K. et al. A new design strategy for efficient thermally activated delayed fluorescence organic emitters: from twisted to planar structures. Adv. Mater. 29, 1702767 (2017).

    Article  CAS  Google Scholar 

  69. Nishimoto, T., Yasuda, T., Lee, S. Y., Kondo, R. & Adachi, C. A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Mater. Horiz. 1, 264–269 (2014).

    Article  CAS  Google Scholar 

  70. Lin, M.-S. et al. Incorporation of a CN group into mCP: a new bipolar host material for highly efficient blue and white electrophosphorescent devices. J. Mater. Chem. 22, 16114–16120 (2012).

    Article  CAS  Google Scholar 

  71. Cho, Y. J., Yook, K. S. & Lee, J. Y. High efficiency in a solution-processed thermally activated delayed-fluorescence device using a delayed-fluorescence emitting material with improved solubility. Adv. Mater. 26, 6642–6646 (2014).This paper pioneers solution-processed TADF small-molecule emitting materials: the corresponding OLED device exhibits a high electroluminescence efficiency of 18.3%.

    Article  CAS  Google Scholar 

  72. Tsai, Y. S., Hong, L. A., Juang, F. S. & Chen, C. Y. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers. J. Lumin. 153, 312–316 (2014).

    Article  CAS  Google Scholar 

  73. Senes, A. et al. Increasing the horizontal orientation of transition dipole moments in solution processed small molecular emitters. J. Mater. Chem. C 5, 6555–6562 (2017).

    Article  CAS  Google Scholar 

  74. Kim, B. S. & Lee, J. Y. Phosphine oxide type bipolar host material for high quantum efficiency in thermally activated delayed fluorescent device. ACS Appl. Mater. Interfaces 6, 8396–8400 (2014).

    Article  CAS  Google Scholar 

  75. Seino, Y., Inomata, S., Sasabe, H., Pu, Y. J. & Kido, J. High-performance green OLEDs using thermally activated delayed fluorescence with a power efficiency of over 100 lm W. Adv. Mater. 28, 2638–2643 (2016).

    Article  CAS  Google Scholar 

  76. Gaj, M. P., Fuentes-Hernandez, C., Zhang, Y., Marder, S. R. & Kippelen, B. Highly efficient organic light-emitting diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material. Org. Electron. 16, 109–112 (2015).

    Article  CAS  Google Scholar 

  77. Fan, C. et al. Dibenzothiophene-based phosphine oxide host and electron-transporting materials for efficient blue thermally activated delayed fluorescence diodes through compatibility optimization. Chem. Mater. 27, 5131–5140 (2015).

    Article  CAS  Google Scholar 

  78. Ding, D., Zhang, Z., Wei, Y., Yan, P. & Xu, H. Spatially optimized quaternary phosphine oxide host materials for high-efficiency blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes. J. Mater. Chem. C 3, 11385–11396 (2015).

    Article  CAS  Google Scholar 

  79. Zhang, J. et al. Multiphosphine-oxide hosts for ultralow-voltage-driven true-blue thermally activated delayed fluorescence diodes with external quantum efficiency beyond 20%. Adv. Mater. 28, 479–485 (2016).

    Article  CAS  Google Scholar 

  80. Dos Santos, P. et al. Using guest-host interactions to optimize the efficiency of TADF OLEDs. J. Phys. Chem. Lett. 7, 3341–3346 (2016).

    Article  CAS  Google Scholar 

  81. Nishide, J., Nakanotani, H., Hiraga, Y. & Adachi, C. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence. Appl. Phys. Lett. 104, 233304 (2014).

    Article  CAS  Google Scholar 

  82. Zhang, D., Duan, L., Li, Y., Zhang, D. & Qiu, Y. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence. J. Mater. Chem. C 2, 8191–8197 (2014).

    Article  CAS  Google Scholar 

  83. Li, X. L. et al. High-efficiency WOLEDs with high color-rendering index based on a chromaticity-adjustable yellow thermally activated delayed fluorescence emitter. Adv. Mater. 28, 4614–4619 (2016).

    Article  CAS  Google Scholar 

  84. Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).

    Article  CAS  Google Scholar 

  85. Nowy, S., Krummacher, B. C., Frischeisen, J., Reinke, N. A. & Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. J. Appl. Phys. 104, 123109 (2008).

    Article  CAS  Google Scholar 

  86. Mayr, C. et al. Efficiency enhancement of organic light-emitting diodes incorporating a highly oriented thermally activated delayed fluorescence emitter. Adv. Funct. Mater. 24, 5232–5239 (2014).

    Article  CAS  Google Scholar 

  87. Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096–2100 (2015).

    Article  CAS  Google Scholar 

  88. Guo, J. et al. Achieving high-performance nondoped OLEDs with extremely small efficiency roll-off by combining aggregation-induced emission and thermally activated delayed fluorescence. Adv. Funct. Mater. 27, 1606458 (2017).

    Article  CAS  Google Scholar 

  89. Huang, J. et al. Highly efficient nondoped OLEDs with negligible efficiency roll-off fabricated from aggregation-induced delayed fluorescence luminogens. Angew. Chem. Int. Ed. 129, 13151–13156 (2017).

    Article  Google Scholar 

  90. Goushi, K. & Adachi, C. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Appl. Phys. Lett. 101, 023306 (2012).

    Article  CAS  Google Scholar 

  91. Liu, X. K. et al. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes. Adv. Mater. 27, 2378–2383 (2015).

    Article  CAS  Google Scholar 

  92. Liu, W. et al. Novel strategy to develop exciplex emitters for high-performance OLEDs by employing thermally activated delayed fluorescence materials. Adv. Funct. Mater. 26, 2002–2008 (2016).

    Article  CAS  Google Scholar 

  93. Duan, L. et al. Solution processable small molecules for organic light-emitting diodes. J. Mater. Chem. 20, 6392–6407 (2010).

    Article  CAS  Google Scholar 

  94. Cho, Y. J., Chin, B. D., Jeon, S. K. & Lee, J. Y. 20% external quantum efficiency in solution-processed blue thermally activated delayed fluorescent devices. Adv. Funct. Mater. 25, 6786–6792 (2015).

    Article  CAS  Google Scholar 

  95. Mei, L. et al. The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs. Chem. Commun. 51, 13024–13027 (2015).

    Article  CAS  Google Scholar 

  96. Chen, P. et al. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: a joint optical, electroluminescence, and magneto electroluminescence study. ACS Appl. Mater. Interfaces 7, 2972–2978 (2015).

    Article  CAS  Google Scholar 

  97. Wada, Y. et al. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter. Appl. Phys. Lett. 107, 183303 (2015).

    Article  CAS  Google Scholar 

  98. Xie, G. et al. Evaporation- and solution-process-feasible highly efficient thianthrene-9,9′,10,10′-tetraoxide-based thermally activated delayed fluorescence emitters with reduced efficiency roll-off. Adv. Mater. 28, 181–187 (2016).

    Article  CAS  Google Scholar 

  99. Schmidbauer, S., Hohenleutner, A. & König, B. Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials. Adv. Mater. 25, 2114–2129 (2013).

    Article  CAS  Google Scholar 

  100. Cui, L. S. et al. Pure hydrocarbon hosts for ≈ 100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices. Adv. Mater. 27, 4213–4217 (2015).

    Article  CAS  Google Scholar 

  101. Cui, L. S. et al. Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices. Adv. Mater. 28, 7620–7625 (2016).

    Article  CAS  Google Scholar 

  102. Kanibolotsky, A. L., Perepichka, I. F. & Skabara, P. J. Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chem. Soc. Rev. 39, 2695–2728 (2010).

    Article  CAS  Google Scholar 

  103. Burn, P. L., Lo, S. C. & Samuel, D. W. The development of light-emitting dendrimers for displays. Adv. Mater. 19, 1675–1688 (2007).

    Article  CAS  Google Scholar 

  104. Albrecht, K., Matsuoka, K., Fujita, K. & Yamamoto, K. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials. Angew. Chem. Int. Ed. 54, 5677–5682 (2015).In this study, a solution-processed dendrimer TADF emitter is reported with a maximum EQE of 3.4%.

    Article  CAS  Google Scholar 

  105. Luo, J. et al. Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters. J. Mater. Chem. C 4, 2442–2446 (2016).

    Article  CAS  Google Scholar 

  106. Albrecht, K. et al. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency. Chem. Commun. 53, 2439–2442 (2017).

    Article  CAS  Google Scholar 

  107. Li, J. et al. Deep-blue thermally activated delayed fluorescence dendrimers with reduced singlet-trip let energy gap for low roll-off non-doped solution-processed organic light-emitting diodes. Dyes Pigments 140, 79–86 (2017).

    Article  CAS  Google Scholar 

  108. Matsuoka, K., Albrecht, K., Yamamoto, K. & Fujita, K. Mulifunctional dendritic emitter: aggregation-induced emission enhanced, thermally activated delayed fluorescent material for solution-processed multilayered organic light-emitting diodes. Sci. Rep. 7, 41780 (2017).

    Article  CAS  Google Scholar 

  109. Ban, X. et al. Self-host thermally activated delayed fluorescent dendrimers with flexible chains: an effective strategy for non-doped electroluminescent devices based on solution processing. J. Mater. Chem. C 4, 8810–8816 (2016).

    Article  CAS  Google Scholar 

  110. Ban, X., Jiang, W., Sun, K., Lin, B. & Sun, Y. Self-host blue dendrimer comprised of thermally activated delayed fluorescence core and bipolar dendrons for efficient solution-processable nondoped electroluminescence. ACS Appl. Mater. Interfaces 9, 7339–7346 (2017).

    Article  CAS  Google Scholar 

  111. Sun, K. et al. Design strategy of yellow thermally activated delayed fluorescent dendrimers and their highly efficient non-doped solution-processed OLEDs with low driving voltage. Org. Electron. 42, 123–130 (2017).

    Article  CAS  Google Scholar 

  112. Godumala, M. et al. Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes. J. Mater. Chem. C 6, 1160–1170 (2018).

    Article  CAS  Google Scholar 

  113. Sun, K. et al. Thermally activated delayed fluorescence dendrimers with exciplex-forming dendrons for low-voltage-driving and power-efficient solution-processed OLEDs. J. Mater. Chem. C 6, 43–49 (2018).

    Article  CAS  Google Scholar 

  114. Wang, Y. et al. Engineering the interconnecting position of star-shaped donor-pi-acceptor molecules based on triazine, spirofluorene, and triphenylamine moieties for color tuning from deep blue to green. Chem. Asian J. 11, 2555–2563 (2016).

    Article  CAS  Google Scholar 

  115. Xia, D. et al. Self-host blue-emitting Iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes. Angew. Chem. Int. Ed. 53, 1048–1052 (2014).

    Article  CAS  Google Scholar 

  116. Chen, L. et al. Self-host heteroleptic green iridium dendrimers: achieving efficient non-doped device performance based on a simple molecular structure. Chem. Commun. 47, 9519–9521 (2011).

    Article  CAS  Google Scholar 

  117. Albrecht, K., Kasai, Y., Kimoto, A. & Yamamoto, K. The synthesis and properties of carbazole-phenylazomethine double layer-type dendrimers. Macromolecules 41, 3793–3800 (2008).

    Article  CAS  Google Scholar 

  118. Zhao, Z. H. et al. Synthesis and properties of dendritic emitters with a fluorinated starburst oxadiazole core and twisted carbazole dendrons. Macromolecules 44, 1405–1413 (2011).

    Article  CAS  Google Scholar 

  119. Ding, J. et al. Bifunctional green Iridium dendrimers with a “self-host” feature for highly efficient nondoped electrophosphorescent devices. Angew. Chem. Int. Ed. 48, 6664–6666 (2009).

    Article  CAS  Google Scholar 

  120. Albrecht, K., Pernites, R., Felipe, M. J., Advincula, R. C. & Yamamoto, K. Patterning carbazole-phenylazomethine dendrimer films. Macromolecules 45, 1288–1295 (2012).

    Article  CAS  Google Scholar 

  121. Kimoto, A. et al. Novel hole-transport material for efficient polymer light-emitting diodes by photoreaction. Macromol. Rapid Commun. 26, 597–601 (2005).

    Article  CAS  Google Scholar 

  122. Yook, K. S. & Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 26, 4218–4233 (2014).

    Article  CAS  Google Scholar 

  123. Chen, D. et al. Fluorescent organic planar p-n heterojunction light-emitting diodes with simplified structure, extremely low driving voltage, and high efficiency. Adv. Mater. 28, 239–244 (2016).

    Article  CAS  Google Scholar 

  124. Sekine, C., Tsubata, Y., Yamada, T., Kitano, M. & Doi, S. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci. Technol. Adv. Mater. 15, 34203 (2014).

    Article  Google Scholar 

  125. Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G. & Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 109, 897–1091 (2009).

    Article  CAS  Google Scholar 

  126. Rothe, C. & Monkman, A. Regarding the origin of the delayed fluorescence of conjugated polymers. J. Chem. Phys. 123, 244904 (2005).

    Article  CAS  Google Scholar 

  127. Lee, S. Y., Yasuda, T., Komiyama, H., Lee, J. & Adachi, C. Thermally activated delayed fluorescence polymers for efficient solution-processed organic light-emitting diodes. Adv. Mater. 28, 4019–4024 (2016).

    Article  CAS  Google Scholar 

  128. Zhu, Y. et al. Synthesis and electroluminescence of a conjugated polymer with thermally activated delayed fluorescence. Macromolecules 49, 4373–4377 (2016).

    Article  CAS  Google Scholar 

  129. Nikolaenko, A. E., Cass, M., Bourcet, F., Mohamad, D. & Roberts, M. Thermally activated delayed fluorescence in polymers: a new route toward highly efficient solution processable OLEDs. Adv. Mater. 27, 7236–7240 (2015).

    Article  CAS  Google Scholar 

  130. Nobuyasu, R. S. et al. Rational design of TADF polymers using a donor-acceptor monomer with enhanced TADF efficiency induced by the energy alignment of charge transfer and local triplet excited states. Adv. Opt. Mater. 4, 597–607 (2016).

    Article  CAS  Google Scholar 

  131. Wang, Y. et al. Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. J. Mater. Chem. C 5, 10715–10720 (2017).

    Article  CAS  Google Scholar 

  132. Wang, Y. et al. Efficient non-doped yellow OLEDs based on thermally activated delayed fluorescence conjugated polymers with an acridine/carbazole donor backbone and triphenyltriazine acceptor pendant. J. Mater. Chem. C 6, 568–574 (2018).

    Article  CAS  Google Scholar 

  133. Luo, J., Xie, G., Gong, S., Chen, T. & Yang, C. Creating a thermally activated delayed fluorescence channel in a single polymer system to enhance exciton utilization efficiency for bluish-green electroluminescence. Chem. Commun. 52, 2292–2295 (2016).

    Article  CAS  Google Scholar 

  134. Xie, G. et al. Inheriting the characteristics of TADF small molecule by side-chain engineering strategy to enable bluish-green polymers with high PLQYs up to 74% and external quantum efficiency over 16% in light-emitting diodes. Adv. Mater. 29, 1604223 (2017).

    Article  CAS  Google Scholar 

  135. Sun, K. et al. Thermally cross-linkable thermally activated delayed fluorescent materials for efficient blue solution-processed organic light-emitting diodes. J. Mater. Chem. C 4, 8973–8979 (2016).

    Article  CAS  Google Scholar 

  136. Shao, S. et al. Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect. J. Am. Chem. Soc. 139, 17739–17742 (2017).

    Article  CAS  Google Scholar 

  137. Köhler, A. & Beljonne, D. The singlet-triplet exchange energy in conjugated polymers. Adv. Funct. Mater. 14, 11–18 (2004).

    Article  CAS  Google Scholar 

  138. Wei, Q. et al. Conjugation-induced thermally activated delayed fluorescence (TADF): from conventional non-TADF units to TADF-active polymers. Adv. Funct. Mater. 27, 1605051 (2017).

    Article  CAS  Google Scholar 

  139. Reineke, S. Organic light-emitting diodes: Phosphorescence meets its match. Nat. Photon. 8, 269–270 (2014).

    Article  CAS  Google Scholar 

  140. Dias, F. B. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap. Phil. Trans. R. Soc. A 373, 20140447 (2015).

    Article  CAS  Google Scholar 

  141. Uchida, M., Adachi, M., Koyama, T. & Taniguchi, Y. Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. J. Appl. Phys. 86, 1680–1687 (1999).

    Article  CAS  Google Scholar 

  142. Tsung, K. K. & So, S. K. Carrier trapping and scattering in amorphous organic hole transporter. Appl. Phys. Lett. 92, 103315 (2008).

    Article  CAS  Google Scholar 

  143. Wang, S. et al. Ultrahigh color-stable, solution-processed, white OLEDs using a dendritic binary host and long-wavelength dopants with different charge trapping depths. Adv. Opt. Mater. 3, 1349–1354 (2015).

    Article  CAS  Google Scholar 

  144. Zhang, Y. & Forrest, S. R. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes. Phys. Rev. Lett. 108, 267404 (2012).

    Article  CAS  Google Scholar 

  145. Lin, X. et al. Highly efficient TADF polymer electroluminescence with reduced efficiency roll-off via interfacial exciplex host strategy. ACS Appl. Mater. Interfaces 10, 47–52 (2018).

    Article  CAS  Google Scholar 

  146. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article  CAS  Google Scholar 

  147. Fu, Q., Chen, J., Shi, C. & Ma, D. Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 4, 6579–6586 (2012).

    Article  CAS  Google Scholar 

  148. Wu, W., Tang, R., Li, Q. & Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 44, 3997–4022 (2015).

    Article  CAS  Google Scholar 

  149. Li, C. et al. Thermally activated delayed fluorescence pendant copolymers with electron and hole-transporting spacers. ACS Appl. Mater. Interfaces 10, 5731–5739 (2018).

    Article  CAS  Google Scholar 

  150. Ward, J. S. et al. The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor-acceptor charge-transfer molecules. Chem. Commun. 52, 2612–2615 (2016).

    Article  CAS  Google Scholar 

  151. Furue, R., Nishimoto, T., Park, I. S., Lee, J. & Yasuda, T. Aggregation-induced delayed fluorescence based on donor/acceptor-tethered janus carborane triads: unique photophysical properties of nondoped OLEDs. Angew. Chem. Int. Ed. 128, 7287–7291 (2016).

    Article  Google Scholar 

  152. Li, C. et al. Solution-processable thermally activated delayed fluorescence white OLEDs based on dual-emission polymers with tunable emission colors and aggregation-enhanced emission properties. Adv. Opt. Mater. 5, 1700435 (2017).This report provides a novel route of combining TADF and aggregation-induced emission in a polymeric emitter to enhance the efficiency.

    Article  CAS  Google Scholar 

  153. Shinar, J. & Shinar, R. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J. Phys. D Appl. Phys. 41, 133001 (2008).

    Article  CAS  Google Scholar 

  154. Freeman, D. M. E. et al. Synthesis and exciton dynamics of donor-orthogonal acceptor conjugated polymers: reducing the singlet-triplet energy gap. J. Am. Chem. Soc. 139, 11073–11080 (2017).

    Article  CAS  Google Scholar 

  155. Xie, Y. & Li, Z. Thermally activated delayed fluorescent polymers. J. Polym. Sci. Part A Polym. Chem. 55, 575–584 (2017).

    Article  CAS  Google Scholar 

  156. Huang, S. et al. Computational prediction for singlet- and triplet-transition energies of charge-transfer compounds. J. Chem. Theory Comput. 9, 3872–3877 (2013).

    Article  CAS  Google Scholar 

  157. Peng, Q. et al. Theoretical study of conversion and decay processes of excited triplet and singlet states in a thermally activated delayed fluorescence molecule. J. Phys. Chem. C 121, 13448–13456 (2017).

    Article  CAS  Google Scholar 

  158. Tian, X., Sun, H., Zhang, Q. & Adachi, C. Theoretical predication for transition energies of thermally activated delayed fluorescence molecules. Chinese Chem. Lett. 27, 1445–1452 (2016).

    Article  CAS  Google Scholar 

  159. Chen, X. K., Zhang, S. F., Fan, J. X. & Ren, A. M. Nature of highly efficient thermally activated delayed fluorescence in organic light-emitting diode emitters: nonadiabatic effect between excited states. J. Phys. Chem. C 119, 9728–9733 (2015).

    Article  CAS  Google Scholar 

  160. Marian, C. M. Mechanism of the triplet-to-singlet up conversion in the assistant dopant Acrxtn. J. Phys. Chem. C 120, 3715–3721 (2016).

    Article  CAS  Google Scholar 

  161. Nakanotani, H. et al. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5, 4016 (2014).

    Article  CAS  Google Scholar 

  162. Meng, L. et al. Highly efficient nondoped organic light emitting diodes based on thermally activated delayed fluorescence emitter with quantum well structure. ACS Appl. Mater. Interfaces 8, 20955–20961 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the National Natural Science Foundations of China under Grant Nos. 51521062 and 21274009 (Z.R. and S.Y.) and the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EL/L02621X/1 (M.R.B.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to the discussion of content, as well as the writing and editing of the article, before submission.

Corresponding authors

Correspondence to Zhongjie Ren, Shouke Yan or Martin R. Bryce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Figures (PDF 522 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, C., Ren, Z. et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat Rev Mater 3, 18020 (2018). https://doi.org/10.1038/natrevmats.2018.20

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2018.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing