Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanofibrils in nature and materials engineering

Abstract

Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hierarchical structure of silk, cellulose and chitin.
Figure 2: Nanoconfinement and mechanical properties of silk.
Figure 3: Mechanical and optical properties of nanofibrils.
Figure 4: Artificial spinning of biopolymer nanofibrils.
Figure 5: 2D and 3D nanofibril fabrication.
Figure 6: Structural colour of anisotropic nanofibrils.
Figure 7: Rational design of nanofibrillar materials.

References

  1. 1

    Neville, A. C. Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge Univ. Press, New York, 1993).

    Book  Google Scholar 

  2. 2

    Meyers, M. A. & Chen, P.Y. in Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials 53–97 (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  3. 3

    Mitov, M. Cholesteric liquid crystals in living matter. Soft Matter 13, 4176–4209 (2017).

    Article  CAS  Google Scholar 

  4. 4

    Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766 (2012).

    Article  CAS  Google Scholar 

  5. 5

    Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

    Article  CAS  Google Scholar 

  6. 6

    Bidhendi, A. J. & Geitmann, A. Relating the mechanics of the primary plant cell wall to morphogenesis. J. Exp. Bot. 67, 449–461 (2016).

    Article  CAS  Google Scholar 

  7. 7

    Giesa, T. & Buehler, M. J. Nanoconfinement and the strength of biopolymers. Annu. Rev. Biophys. 42, 651–673 (2013).

    Article  CAS  Google Scholar 

  8. 8

    Keten, S., Xu, Z. P., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of βsheet crystals in silk. Nat. Mater. 9, 359–367 (2010). This paper introduces the nanoconfinement of silk nanocrystals.

    Article  CAS  Google Scholar 

  9. 9

    Giesa, T., Pugno, N. M., Wong, J. Y., Kaplan, D. L. & Buehler, M. J. What's inside the box? – length-scales that govern fracture processes of polymer fibers. Adv. Mater. 26, 412–417 (2014).

    Article  CAS  Google Scholar 

  10. 10

    Fratzl, P. & Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  11. 11

    Fu, C. J., Shao, Z. Z. & Fritz, V. Animal silks: their structures, properties and artificial production. Chem. Commun. 6515–6529 (2009).

  12. 12

    Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012).

    Article  CAS  Google Scholar 

  13. 13

    Naleway, S. E., Porter, M. M., McKittrick, J. & Meyers, M. A. Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 5455–5476 (2015).

    Article  CAS  Google Scholar 

  14. 14

    Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    Article  CAS  Google Scholar 

  15. 15

    Ravi Kumar, M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000).

    Article  Google Scholar 

  16. 16

    Wang, S., Lu, A. & Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016).

    Article  CAS  Google Scholar 

  17. 17

    Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008).

    Article  CAS  Google Scholar 

  18. 18

    Capadona, J. R. et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765–769 (2007).

    Article  CAS  Google Scholar 

  19. 19

    De France, K. J., Hoare, T. & Cranston, E. D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609–4631 (2017).

    Article  CAS  Google Scholar 

  20. 20

    Kelly, J. A., Giese, M., Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. The development of chiral nematic mesoporous materials. Acc. Chem. Res. 47, 1088–1096 (2014).

    Article  CAS  Google Scholar 

  21. 21

    Dufresne, A. Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220–227 (2013).

    Article  CAS  Google Scholar 

  22. 22

    Giese, M., Blusch, L. K., Khan, M. K. & MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54, 2888–2910 (2015).

    Article  CAS  Google Scholar 

  23. 23

    Duan, B. et al. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem. Int. Ed. 54, 5152–5156 (2015).

    Article  CAS  Google Scholar 

  24. 24

    Ling, S. et al. Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018).

    Article  CAS  Google Scholar 

  25. 25

    Lundahl, M. J., Klar, V., Wang, L., Ago, M. & Rojas, O. J. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19 (2017).

    Article  CAS  Google Scholar 

  26. 26

    Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15, 2709–2717 (2014).

    Article  CAS  Google Scholar 

  27. 27

    Das, P. et al. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels. Biomacromolecules 13, 4205–4212 (2012).

    Article  CAS  Google Scholar 

  28. 28

    Walther, A., Timonen, J. V. I., Díez, I., Laukkanen, A. & Ikkala, O. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv. Mater. 23, 2924–2928 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Iwamoto, S., Isogai, A. & Iwata, T. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12, 831–836 (2011).

    Article  CAS  Google Scholar 

  30. 30

    Lundahl, M. J. et al. Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci. Rep. 6, 30695 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Li, Y. et al. Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Mater. 7, e150 (2015).

    Article  CAS  Google Scholar 

  32. 32

    Mertaniemi, H. et al. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82, 208–220 (2016).

    Article  CAS  Google Scholar 

  33. 33

    Hooshmand, S., Aitomäki, Y., Norberg, N., Mathew, A. P. & Oksman, K. Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces 7, 13022–13028 (2015).

    Article  CAS  Google Scholar 

  34. 34

    Ling, S. et al. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 8, 1387 (2017). This paper describes improved dry spinning techniques for producing polymorphic and mechanically enhanced regenerated silk fibres.

    Article  CAS  Google Scholar 

  35. 35

    Håkansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    Article  CAS  Google Scholar 

  36. 36

    Mittal, N. et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11, 5148–5159 (2017). This paper demonstrates a microfluidic spinning method to obtain ultrastrong cellulose nanofibril-based regenerated fibres.

    Article  CAS  Google Scholar 

  37. 37

    Ji, S. et al. High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv. Mater. 29, 1700538 (2017).

    Article  CAS  Google Scholar 

  38. 38

    Zhu, H. et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2016).

    Article  CAS  Google Scholar 

  39. 39

    Ling, S. et al. Design and function of biomimetic multilayer water purification membranes. Sci. Adv. 3, 1601939 (2017). This paper introduces a rational material design strategy to fabricate high-performance water purification membranes.

    Article  CAS  Google Scholar 

  40. 40

    Kim, J. K. et al. Hierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteries. ACS Nano 11, 6114–6121 (2017).

    Article  CAS  Google Scholar 

  41. 41

    Jin, H. et al. Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. J. Mater. Chem. B 1, 835–840 (2013).

    Article  CAS  Google Scholar 

  42. 42

    Liu, Y., Yu, S.H. & Bergström, L. Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201703277 (2017).

  43. 43

    Shahzadi, K. et al. Reduced graphene oxide/alumina, a good accelerant for cellulose-based artificial nacre with excellent mechanical, barrier, and conductive properties. ACS Nano 11, 5717–5725 (2017).

    Article  CAS  Google Scholar 

  44. 44

    Egan, P., Sinko, R., LeDuc, P. R. & Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 6, 7418 (2015).

    Article  Google Scholar 

  45. 45

    Nova, A., Keten, S., Pugno, N. M., Redaelli, A. & Buehler, M. J. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10, 2626–2634 (2010).

    Article  CAS  Google Scholar 

  46. 46

    Frische, S., Maunsbach, A. B. & Vollrath, F. Elongate cavities and skin–core structure in Nephila spider silk observed by electron microscopy. J. Microsc. 189, 64–70 (1998).

    Article  CAS  Google Scholar 

  47. 47

    Pilate, G. et al. Lignification and tension wood. C. R. Biol. 327, 889–901 (2004).

    Article  CAS  Google Scholar 

  48. 48

    Du, N. et al. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 91, 4528–4535 (2006).

    Article  CAS  Google Scholar 

  49. 49

    Déjardin, A. et al. Wood formation in Angiosperms. C. R. Biol. 333, 325–334 (2010).

    Article  CAS  Google Scholar 

  50. 50

    Altaner, C. M. & Jarvis, M. C. Modelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stress. J. Theor. Biol. 253, 434–445 (2008).

    Article  CAS  Google Scholar 

  51. 51

    Fratzl, P., Burgert, I. & Keckes, J. Mechanical model for the deformation of the wood cell wall. Z. Metallkd. 95, 579–584 (2004).

    Article  CAS  Google Scholar 

  52. 52

    Joseleau, J.P., Imai, T., Kuroda, K. & Ruel, K. Detection in situ and characterization of lignin in the Glayer of tension wood fibres of Populus deltoides. Planta 219, 338–345 (2004).

    Article  CAS  Google Scholar 

  53. 53

    Eder, M., Arnould, O., Dunlop, J. W. C., Hornatowska, J. & Salmén, L. Experimental micromechanical characterisation of wood cell walls. Wood Sci. Technol. 47, 163–182 (2013).

    Article  CAS  Google Scholar 

  54. 54

    Fratzl, P. & Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009).

    Article  CAS  Google Scholar 

  55. 55

    Stevens, C. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. Vol. 10 (John Wiley & Sons, 2010).

    Google Scholar 

  56. 56

    Keckes, J. et al. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810–813 (2003).

    Article  CAS  Google Scholar 

  57. 57

    Adler, D. C. & Buehler, M. J. Mesoscale mechanics of wood cell walls under axial strain. Soft Matter 9, 7138–7144 (2013).

    Article  CAS  Google Scholar 

  58. 58

    Jin, K., Qin, Z. & Buehler, M. J. Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198–206 (2015).

    Article  CAS  Google Scholar 

  59. 59

    Burgert, I. in Materials Design Inspired by Nature: Function Through Inner Architecture (eds Fratzl, P., Dunlop, J. W. C. & Weinkamer, R. ) 128–150 (The Royal Society of Chemistry, Dorchester, 2013).

    Book  Google Scholar 

  60. 60

    Bouligand, Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217 (1972).

    Article  CAS  Google Scholar 

  61. 61

    Neville, A. C. Biology of the Arthropod Cuticle (Springer Science & Business Media, Berlin, 1975).

    Book  Google Scholar 

  62. 62

    Fabritius, H.O. et al. Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspir. Biomim. 11, 055006 (2016).

    Article  CAS  Google Scholar 

  63. 63

    Raabe, D., Sachs, C. & Romano, P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53, 4281–4292 (2005).

    Article  CAS  Google Scholar 

  64. 64

    Nikolov, S. et al. Revealing the Design Principles of High-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22, 519–526 (2010).

    Article  CAS  Google Scholar 

  65. 65

    Weaver, J. C. et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012). This paper presents the exceptional damage tolerance mechanism of the stomatopod dactyl club.

    Article  CAS  Google Scholar 

  66. 66

    Patek, S. N., Korff, W. L. & Caldwell, R. L. Biomechanics: Deadly strike mechanism of a mantis shrimp. Nature 428, 819–820 (2004).

    Article  CAS  Google Scholar 

  67. 67

    Patek, S. N. & Caldwell, R. L. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. J. Exp. Biol. 208, 3655–3664 (2005).

    Article  CAS  Google Scholar 

  68. 68

    Yaraghi, N. A. et al. A sinusoidally architected helicoidal biocomposite. Adv. Mater. 28, 6835–6844 (2016).

    Article  CAS  Google Scholar 

  69. 69

    Amini, S., Tadayon, M., Idapalapati, S. & Miserez, A. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater. 14, 943–950 (2015).

    Article  CAS  Google Scholar 

  70. 70

    Grunenfelder, L. K. et al. Bio-inspired impact-resistant composites. Acta Biomater. 10, 3997–4008 (2014).

    Article  CAS  Google Scholar 

  71. 71

    Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017).

    Article  CAS  Google Scholar 

  72. 72

    Libby, E. et al. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light. J. Opt. 16, 082001 (2014).

    Article  Google Scholar 

  73. 73

    Sharma, V., Crne, M., Park, J. O. & Srinivasarao, M. Structural origin of circularly polarized iridescence in Jeweled beetles. Science 325, 449–451 (2009).

    Article  CAS  Google Scholar 

  74. 74

    Wilts, B. D., Whitney, H. M., Glover, B. J., Steiner, U. & Vignolini, S. Natural helicoidal structures: morphology, self-assembly and optical properties. Mater. Today Proc. 1S, 177–185 (2014).

    Article  Google Scholar 

  75. 75

    Vignolini, S. et al. Pointillist structural color in Pollia fruit. Proc. Natl Acad. Sci. USA 109, 15712–15715 (2012). This paper demonstrates the origin of structural colour in P. condensata.

    Article  Google Scholar 

  76. 76

    Palffy-Muhoray, P. Liquid crystals New designs in cholesteric colour. Nature 391, 745–746 (1998).

    Article  CAS  Google Scholar 

  77. 77

    Tamaoki, N., Parfenov, A. V., Masaki, A. & Matsuda, H. Rewritable full-color recording on a thin solid film of a cholesteric low-molecular-weight compound. Adv. Mater. 9, 1102–1104 (1997).

    Article  CAS  Google Scholar 

  78. 78

    de Vries, H. Rotatory power and other optical properties of certain liquid crystals. Acta Cryst. 4, 219–226 (1951).

    Article  CAS  Google Scholar 

  79. 79

    Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519–1542 (2014).

    Article  CAS  Google Scholar 

  80. 80

    Bordel, D., Putaux, J.L. & Heux, L. Orientation of native cellulose in an electric field. Langmuir 22, 4899–4901 (2006).

    Article  CAS  Google Scholar 

  81. 81

    Kimura, F. et al. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21, 2034–2037 (2005).

    Article  CAS  Google Scholar 

  82. 82

    Blell, R. et al. Generating inplane orientational order in multilayer films prepared by spray-assisted layerbylayer assembly. ACS Nano 11, 84–94 (2017).

    Article  CAS  Google Scholar 

  83. 83

    Angelini, L. G., Lazzeri, A., Levita, G., Fontanelli, D. & Bozzi, C. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind. Crops Prod. 11, 145–161 (2000).

    Article  Google Scholar 

  84. 84

    Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  85. 85

    Jin, H. J. & Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature 424, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  86. 86

    Siró, I. & Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010).

    Article  CAS  Google Scholar 

  87. 87

    Tseng, P. et al. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nat. Nanotechnol. 12, 474–480 (2017). This paper introduces geometric confinement to control nanofibrillar arrangement.

    Article  CAS  Google Scholar 

  88. 88

    Sultan, S., Siqueira, G., Zimmermann, T. & Mathew, A. P. 3D printing of nano-cellulosic biomaterials for medical applications. Curr. Opin. Biomed. Eng. 2, 29–34 (2017).

    Article  Google Scholar 

  89. 89

    Suzuki, S. & Teramoto, Y. Simple inkjet process to fabricate microstructures of chitinous nanocrystals for cell patterning. Biomacromolecules 18, 1993–1999 (2017).

    Article  CAS  Google Scholar 

  90. 90

    Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016). This paper describes a programmable 4D printing method to construct nanofibrillar architectures with dynamic response.

    Article  CAS  Google Scholar 

  91. 91

    Håkansson, K. M. O. et al. Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Tech. 1, 1600096 (2016).

    Article  CAS  Google Scholar 

  92. 92

    Siqueira, G. et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017).

    Article  CAS  Google Scholar 

  93. 93

    Kokkinis, D., Schaffner, M. & Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6, 8643 (2015).

    Article  CAS  Google Scholar 

  94. 94

    Li, Y. et al. 3Dprinted, allinone evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).

    Article  CAS  Google Scholar 

  95. 95

    Martínez Ávila, H., Schwarz, S., Rotter, N. & Gatenholm, P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 1, 22–35 (2016).

    Article  Google Scholar 

  96. 96

    Dumais, J. & Forterre, Y. “Vegetable dynamicks”: the role of water in plant movements. Annu. Rev. Fluid Mech. 44, 453–478 (2012).

    Article  Google Scholar 

  97. 97

    Forterre, Y. & Dumais, J. Generating helices in nature. Science 333, 1715–1716 (2011).

    Article  CAS  Google Scholar 

  98. 98

    Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

    Article  CAS  Google Scholar 

  99. 99

    Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).

    Article  CAS  Google Scholar 

  100. 100

    Dunlop, J. W., Weinkamer, R. & Fratzl, P. Artful interfaces within biological materials. Mater. Today 14, 70–78 (2011).

    Article  Google Scholar 

  101. 101

    Burgert, I. & Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Phil. Trans. A Math. Phys. Eng. Sci. 367, 1541–1557 (2009).

    Article  CAS  Google Scholar 

  102. 102

    Studart, A. R. Biologically inspired dynamic material systems. Angew. Chem. Int. Ed. 54, 3400–3416 (2015).

    Article  CAS  Google Scholar 

  103. 103

    Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011).

    Article  CAS  Google Scholar 

  104. 104

    Majoinen, J., Kontturi, E., Ikkala, O. & Gray, D. G. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19, 1599–1605 (2012).

    Article  CAS  Google Scholar 

  105. 105

    Belamie, E., Davidson, P. & Giraud-Guille, M. M. Structure and chirality of the nematic phase in αchitin suspensions. J. Phys. Chem. B 108, 14991–15000 (2004).

    Article  CAS  Google Scholar 

  106. 106

    Robinson, C. Liquid-crystalline structures in solutions of a polypeptide. Trans. Faraday Soc. 52, 571–592 (1956).

    Article  CAS  Google Scholar 

  107. 107

    Meseck, G. R., Terpstra, A. S. & MacLachlan, M. J. Liquid crystal templating of nanomaterials with nature's toolbox. Curr. Opin. Colloid Interface Sci. 29, 9–20 (2017).

    Article  CAS  Google Scholar 

  108. 108

    Lagerwall, J. P. F. et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6, e80 (2014).

    Article  CAS  Google Scholar 

  109. 109

    Nguyen, T.D. & MacLachlan, M. J. Biomimetic chiral nematic mesoporous materials from crab cuticles. Adv. Opt. Mater. 2, 1031–1037 (2014).

    Article  CAS  Google Scholar 

  110. 110

    Fernandes, S. N. et al. Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater. 29, 1603560 (2017).

    Article  CAS  Google Scholar 

  111. 111

    Nguyen, T.D., Peres, B. U., Carvalho, R. M. & MacLachlan, M. J. Photonic hydrogels from chiral nematic mesoporous chitosan nanofibril assemblies. Adv. Funct. Mater. 26, 2875–2881 (2016).

    Article  CAS  Google Scholar 

  112. 112

    Wu, T. et al. A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J. Mater. Chem. C 4, 9687–9696 (2016).

    Article  CAS  Google Scholar 

  113. 113

    Siqueira, G., Abdillahi, H., Bras, J. & Dufresne, A. High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17, 289–298 (2010).

    Article  CAS  Google Scholar 

  114. 114

    Mu, X. & Gray, D. G. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir 30, 9256–9260 (2014).

    Article  CAS  Google Scholar 

  115. 115

    Shopsowitz, K. E., Kelly, J. A., Hamad, W. Y. & MacLachlan, M. J. Biopolymer templated glass with a twist: Controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv. Funct. Mater. 24, 327–338 (2014).

    Article  CAS  Google Scholar 

  116. 116

    Nguyen, T.D., Hamad, W. Y. & MacLachlan, M. J. CdS quantum dots encapsulated in chiral nematic mesoporous silica: New iridescent and luminescent materials. Adv. Funct. Mater. 24, 777–783 (2014).

    Article  CAS  Google Scholar 

  117. 117

    Frka-Petesic, B., Radavidson, H., Jean, B. & Heux, L. Dynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fields. Adv. Mater. 29, 1606208 (2017).

    Article  CAS  Google Scholar 

  118. 118

    De France, K. J., Yager, K. G., Hoare, T. & Cranston, E. D. Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32, 7564–7571 (2016).

    Article  CAS  Google Scholar 

  119. 119

    Khan, M. K. et al. Flexible mesoporous photonic resins with tunable chiral nematic structures. Angew. Chem. Int. Ed. 52, 8921–8924 (2013).

    Article  CAS  Google Scholar 

  120. 120

    Giese, M., Blusch, L. K., Khan, M. K., Hamad, W. Y. & MacLachlan, M. J. Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew. Chem. Int. Ed. 53, 8880–8884 (2014).

    Article  CAS  Google Scholar 

  121. 121

    Yao, K., Meng, Q., Bulone, V. & Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 29, 1701323 (2017).

    Article  CAS  Google Scholar 

  122. 122

    Khan, M. K., Bsoul, A., Walus, K., Hamad, W. Y. & MacLachlan, M. J. Photonic patterns printed in chiral nematic mesoporous resins. Angew. Chem. Int. Ed. 54, 4304–4308 (2015).

    Article  CAS  Google Scholar 

  123. 123

    Khan, M. K., Hamad, W. Y. & MacLachlan, M. J. Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties. Adv. Mater. 26, 2323–2328 (2014).

    Article  CAS  Google Scholar 

  124. 124

    Kelly, J. A., Yu, M., Hamad, W. Y. & MacLachlan, Large, M. J. crack-free freestanding films with chiral nematic structures. Adv. Opt. Mater. 1, 295–299 (2013).

    Article  Google Scholar 

  125. 125

    Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010). The paper discusses chiral nematic cellulose nanocrystals as templates for mesoporous structures.

    Article  CAS  Google Scholar 

  126. 126

    Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. Flexible and iridescent chiral nematic mesoporous organosilica films. J. Am. Chem. Soc. 134, 867–870 (2012).

    Article  CAS  Google Scholar 

  127. 127

    Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew. Chem. Int. Ed. 50, 10991–10995 (2011).

    Article  CAS  Google Scholar 

  128. 128

    Shopsowitz, K. E., Stahl, A., Hamad, W. Y. & MacLachlan, M. J. Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew. Chem. Int. Ed. 51, 6886–6890 (2012).

    Article  CAS  Google Scholar 

  129. 129

    Schlesinger, M., Giese, M., Blusch, L. K., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose. Chem. Commun. 51, 530–533 (2015).

    Article  CAS  Google Scholar 

  130. 130

    Qi, H., Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J. Am. Chem. Soc. 133, 3728–3731 (2011).

    Article  CAS  Google Scholar 

  131. 131

    Kelly, J. A. et al. Responsive photonic hydrogels based on nanocrystalline cellulose. Angew. Chem. Int. Ed. 52, 8912–8916 (2013).

    Article  CAS  Google Scholar 

  132. 132

    Parker, R. M. et al. Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano 10, 8443–8449 (2016). This paper introduces the geometrically confined self-assembly of cellulose nanocrystals.

    Article  CAS  Google Scholar 

  133. 133

    Li, Y. et al. Colloidal cholesteric liquid crystal in spherical confinement. Nat. Commun. 7, 12520 (2016).

    Article  CAS  Google Scholar 

  134. 134

    Jativa, F., Schutz, C., Bergstrom, L., Zhang, X. & Wicklein, B. Confined self-assembly of cellulose nanocrystals in a shrinking droplet. Soft Matter 11, 5374–5380 (2015).

    Article  CAS  Google Scholar 

  135. 135

    Wang, P.X., Hamad, W. Y. & MacLachlan, M. J. Polymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystals. Angew. Chem. Int. Ed. 55, 12460–12464 (2016).

    Article  CAS  Google Scholar 

  136. 136

    Cranford, S. W. & Buehler, M. J. Biomateriomics. Springer Series in Materials Science, Vol. 165 (Springer Science & Business Media, Heidelberg, 2012).

    Google Scholar 

  137. 137

    Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8, 175–188 (2009).

    Article  CAS  Google Scholar 

  138. 138

    Huang, P.S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  Google Scholar 

  139. 139

    Kaltofen, S. et al. Computational de novo design of a self-assembling peptide with predefined structure. J. Mol. Biol. 427, 550–562 (2015).

    Article  CAS  Google Scholar 

  140. 140

    López de la Paz, M. et al. De novo designed peptide-based amyloid fibrils. Proc. Natl Acad. Sci. USA 99, 16052–16057 (2002).

    Article  CAS  Google Scholar 

  141. 141

    Zhang, H. V. et al. Computationally designed peptides for self-assembly of nanostructured lattices. Sci. Adv. 2, 1600307 (2016).

    Article  CAS  Google Scholar 

  142. 142

    Gallardo, R. et al. De novo design of a biologically active amyloid. Science 354, aah4949 (2016).

    Article  CAS  Google Scholar 

  143. 143

    Huang, W. et al. Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials. Acc. Chem. Res. 50, 866–876 (2017).

    Article  CAS  Google Scholar 

  144. 144

    Lin, S. et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat. Commun. 6, 6892 (2015).

    Article  Google Scholar 

  145. 145

    Tarakanova, A., Huang, W., Weiss, A. S., Kaplan, D. L. & Buehler, M. J. Computational smart polymer design based on elastin protein mutability. Biomaterials 127, 49–60 (2017).

    Article  CAS  Google Scholar 

  146. 146

    Huang, W. et al. Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk–elastin-like proteins. Adv. Funct. Mater. 26, 4113–4123 (2016).

    Article  CAS  Google Scholar 

  147. 147

    Ling, S., Li, C., Jin, K., Kaplan, D. L. & Buehler, M. J. Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv. Mater. 28, 7783–7790 (2016).

    Article  CAS  Google Scholar 

  148. 148

    Ling, S. et al. Modulating materials by orthogonally oriented βstrands: Composites of amyloid and silk fibroin fibrils. Adv. Mater. 26, 4569–4574 (2014).

    Article  CAS  Google Scholar 

  149. 149

    Ling, S., Jin, K., Kaplan, D. L. & Buehler, M. J. Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett. 16, 3795–3800 (2016).

    Article  CAS  Google Scholar 

  150. 150

    Toivonen, M. S., Kaskela, A., Rojas, O. J., Kauppinen, E. I. & Ikkala, O. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv. Funct. Mater. 25, 6618–6626 (2015).

    Article  CAS  Google Scholar 

  151. 151

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol.https://doi.org/10.1038/s41565-017-0035-5 (2018).

  152. 152

    Arvidsson, R., Nguyen, D. & Svanström, M. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ. Sci. Technol. 49, 6881–6890 (2015).

    Article  CAS  Google Scholar 

  153. 153

    Li, Q., McGinnis, S., Sydnor, C., Wong, A. & Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 1, 919–928 (2013).

    CAS  Google Scholar 

  154. 154

    Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  Google Scholar 

  155. 155

    Ehrlich, H. Chitin and collagen as universal and alternative templates in biomineralization. Int. Geol. Rev. 52, 661–699 (2010).

    Article  Google Scholar 

  156. 156

    Barthelat, F., Yin, Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 1, 16007 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the students and colleagues who have worked with us over the years on research projects related to the theme of this Review. The authors also acknowledge the US National Institutes of Health (NIH) (U01EB014976, R01DE016525), the Air Force Office of Scientific Research (FA8650-16C-5020) and the Office of Naval Research (ONR) (N000141612333) for their support of studies related to the topic of this Review. S.L. acknowledges a starting grant given by ShanghaiTech University.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to David L. Kaplan or Markus J. Buehler.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ling, S., Kaplan, D. & Buehler, M. Nanofibrils in nature and materials engineering. Nat Rev Mater 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing