Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A cost and resource analysis of sodium-ion batteries


Sodium-ion batteries have been identified as appealing alternatives to lithium-ion batteries because they are made from raw materials that are less expensive, more abundant and less toxic. However, the frequently discussed cost advantage of sodium-ion batteries has, so far, not been examined in detail. In this Perspective, we use the Battery Performance and Cost (BatPaC) model to undertake a cost analysis of the materials for sodium-ion and lithium-ion cells, as well as complete batteries, and determine the effect of exchanging lithium with sodium, as well as the effect of replacing the material used for the anode current collector foil, on the cost. Moreover, we compare the calculated production costs of exemplary sodium-ion and lithium-ion batteries and highlight the most relevant parameters for optimization. Finally, the major raw materials for lithium-ion cathodes are examined in terms of potential supply risks because supply issues may lead to increased costs. Through the use of a scenario-based supply and demand analysis, the risks to the supply of lithium and cobalt are assessed, and implications for battery research are discussed. Overall, we provide a broad and interdisciplinary perspective on modern batteries and future directions for this field, with a focus on sodium-ion batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cost comparison of model sodium-ion and lithium-ion batteries.
Figure 2: Production scale and mining interdependencies of elements for battery materials.
Figure 3: Average active materials mixtures for reference devices.
Figure 4: Battery size and element requirements for reference devices.
Figure 5: Estimated number of devices and related energy demand for 2016–2050.
Figure 6: Supply risk for lithium and cobalt.


  1. 1

    Armand, M. & Tarascon, J.M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Yoshino, A. The birth of the lithium-ion battery. Angew. Chemie Int. Ed. 51, 5798–5800 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Scrosati, B. History of lithium batteries. J. Solid State Electrochem. 15, 1623–1630 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Nishi, Y. The development of lithium ion secondary batteries. Chem. Rec. 1, 406–413 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Nishi, Y. in Lithium-Ion Batteries (eds Yoshio, M., Brodd, R. J. & Kozawa, A. ) v–vii (Springer, New York, 2009).

    Google Scholar 

  6. 6

    Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017).

    CAS  Article  Google Scholar 

  7. 7

    Murray, J. L. The Al−Na (aluminum−sodium) system. Bull. Alloy Phase Diagrams 4, 407–410 (1983).

    Article  Google Scholar 

  8. 8

    Larcher, D. & Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2014).

    Article  Google Scholar 

  9. 9

    United States Geological Survey. Mineral commodity summaries 2018. USGS Mineral Resources Program (2018).

  10. 10

    Gruber, P. W. et al. Global lithium availability. J. Ind. Ecol. 15, 760–775 (2011).

    Article  Google Scholar 

  11. 11

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Kim, Y., Ha, K.H., Oh, S. M. & Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 20, 11980–11992 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Berg, E. J., Villevieille, C., Streich, D., Trabesinger, S. & Novák, P. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Nelson, P. A., Gallagher, K. G., Bloom, I. & Dees, D. W. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Argonne National Laboratory (2012).

    Google Scholar 

  16. 16

    Gaines, L. & Cuenca, R. Costs of lithium-ion batteries for vehicles. Argonne National Laboratory (2000).

    Google Scholar 

  17. 17

    Ciez, R. E. & Whitacre, J. F. The cost of lithium is unlikely to upend the price of Li-ion storage systems. J. Power Sources 320, 310–313 (2016).

    CAS  Article  Google Scholar 

  18. 18

    United States Geological Survey. Mineral Commodity Summaries 2017. USGS Mineral Resources Program (2017).

  19. 19

    United States Geological Survey. Metal Prices in the United States Through 2010: U. S. Geological Survey Scientific Investigations Report 2012–5188. USGS Publications Warehouse (2013).

  20. 20

    Billaud, J. et al. β-NaMnO2: a high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 136, 17243–17248 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Kim, Y. et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045–3049 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Li, W. et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29, 1605820 (2017).

    Article  Google Scholar 

  23. 23

    Baumann, M., Peters, J. F., Weil, M. & Grunwald, A. CO2 footprint and life-cycle costs of electrochemical energy storage for stationary grid applications. Energy Technol. 5, 1071–1083 (2017).

    CAS  Article  Google Scholar 

  24. 24

    Peters, J. F., Baumann, M., Zimmermann, B., Braun, J. & Weil, M. The environmental impact of Li-ion batteries and the role of key parameters — a review. Renew. Sustain. Energy Rev. 67, 491–506 (2017).

    CAS  Article  Google Scholar 

  25. 25

    Mu, L. et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3 layered metal oxide cathode. Adv. Mater. 27, 6928–6933 (2015).

    CAS  Article  Google Scholar 

  26. 26

    The National Center for Scientific Research. A promising new prototype of battery. CNRS (2015).

  27. 27

    Keller, M., Buchholz, D. & Passerini, S. Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Adv. Energy Mater. 6, 1501555 (2016).

    Article  Google Scholar 

  28. 28

    Keller, M., Vaalma, C., Buchholz, D. & Passerini, S. Development and characterization of high-performance sodium-ion cells based on layered oxide and hard carbon. ChemElectroChem 3, 1124–1132 (2016).

    CAS  Article  Google Scholar 

  29. 29

    Xia, X. & Dahn, J. R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett. 15, A1–A4 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Kondou, H., Kim, J. & Watanabe, H. Thermal analysis on Na plating in sodium ion battery. Electrochemistry 85, 647–649 (2017).

    CAS  Article  Google Scholar 

  31. 31

    Arora, P., White, R. E. & Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Guo, R., Lu, L., Ouyang, M. & Feng, X. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Sci. Rep. 6, 30248 (2016).

    CAS  Article  Google Scholar 

  33. 33

    Komaba, S., Hasegawa, T., Dahbi, M. & Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Eshetu, G. G. et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions. ChemSusChem 9, 462–471 (2016).

    CAS  Article  Google Scholar 

  35. 35

    Paulsen, J., Komaba, S., Hara, R., Yabuuchi, N. & Kajiyama, M. EP2962346 (2014).

  36. 36

    Kesler, S. E. et al. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012).

    Article  Google Scholar 

  37. 37

    Nassar, N. T., Graedel, T. E. & Harper, E. M. Byproduct metals are technologically essential but have problematic supply. Sci. Adv. 1, e1400180 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Evans, K. in Critical Metals Handbook (ed. Gunn, G. ) 230–260 (Wiley, Oxford, 2014).

    Google Scholar 

  39. 39

    An, J. W. et al. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118, 64–70 (2012).

    Article  Google Scholar 

  40. 40

    Vikström, H., Davidsson, S. & Höö k, M. Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013).

    Article  Google Scholar 

  41. 41

    Galaxy Resources. Annual Report 2012. Galaxy Resources (2013).

  42. 42

    The Cobalt Institute. Application of cobalt in rechargeable batteries. The Cobalt Institute (2018).

  43. 43

    Weil, M. & Ziemann, S. in Lithium-Ion Batteries (ed. Pistoia, G. ) 509–528 (Elsevier, Amsterdam, 2014).

    Book  Google Scholar 

  44. 44

    Amnesty International. ‘This is what we die for.’ Human rights abuses in the Democratic Republic of the Congo power the global trade in cobalt. Amnesty International (2016).

  45. 45

    Pillot, C. Lithium ion battery raw material supply & demand 2016–2025. Avicenne Energy (2017).

    Google Scholar 

  46. 46

    Roland Berger Strategy Consultants. The lithium-ion battery value chain. Peter Sauber Argentur (2012).

  47. 47

    Chung, D., Elgqvist, E. & Santhanagopalan, S. Automotive lithium-ion cell manufacturing: regional cost structures and supply chain considerations. National Renewable Energy Laboratory (2016).

    Google Scholar 

Download references


The authors thank L. Grande for fruitful discussions and acknowledge the financial support of the Helmholtz Association. J. Riegert and K. Peters are acknowledged for their help with preparing the manuscript text and figures before submission.

Author information




C.V. researched the data and conducted the calculations. C.V. and D.B. wrote the manuscript. All authors contributed to the discussion of the results and implications and commented on the manuscript at all stages. S.P. edited the manuscript before submission.

Corresponding authors

Correspondence to Daniel Buchholz or Stefano Passerini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Methods Figures and Tables (PDF 3820 kb)

Supplementary information

Supplementary Dataset (XLSX 54 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaalma, C., Buchholz, D., Weil, M. et al. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3, 18013 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing