Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic force microscopy-based characterization and design of biointerfaces

Abstract

Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: AFM imaging principles and applications characterizing biointerfaces.
Figure 2: AFM-based force spectroscopy from single molecules to cells.
Figure 3: AFM-based imaging and mapping of mechanical properties of biointerfaces.
Figure 4: AFM-based imaging and affinity mapping of biointerfaces.
Figure 5: Characterizing reactions of biointerfaces in real time using AFM-based microsensors.
Figure 6: AFM-based sculpting, patterning and assembly of biointerfaces.
Figure 7: Combining AFM with other microscopic and spectroscopic approaches.

References

  1. 1

    Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Ross, A. M. & Lahann, J. Current trends and challenges in biointerfaces science and engineering. Annu. Rev. Chem. Biomol. 6, 161–186 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Andrews, R. N., Co, C. C. & Ho, C. C. Engineering dynamic biointerfaces. Curr. Opin. Chem. Eng. 11, 28–33 (2016).

    Article  Google Scholar 

  5. 5

    Gerber, C. & Lang, H. P. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986). This paper describes the invention of AFM.

    CAS  Article  Google Scholar 

  7. 7

    Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Radmacher, M., Tillmann, R. W., Fritz, M. & Gaub, H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1905 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Ando, T., Uchihashi, T. & Kodera, N. High-speed AFM and applications to biomolecular systems. Ann. Rev. Biophys. 42, 393–414 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Zhang, S., Aslan, H., Besenbacher, F. & Dong, M. Quantitative biomolecular imaging by dynamic nanomechanical mapping. Chem. Soc. Rev. 43, 7412–7429 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. http://dx.doi.org/10.1038/nnano.2017.45 (2017).

  13. 13

    Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Hinterdorfer, P. & Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Müller, D. J., Helenius, J., Alsteens, D. & Dufrêne, Y. F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  CAS  Google Scholar 

  16. 16

    Dufrêne, Y. F., Martinez-Martin, D., Medalsy, I., Alsteens, D. & Müller, D. J. Multiparametric imaging of biological systems by force–distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

    Article  CAS  Google Scholar 

  17. 17

    Lang, H. P. & Gerber, C. Microcantilever sensors. Top. Curr. Chem. 285, 1–27 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Müller, D. J. & Dufrêne, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    Article  CAS  Google Scholar 

  19. 19

    Pires, D. et al. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Puchner, E. M. & Gaub, H. E. Single-molecule mechanoenzymatics. Ann. Rev. Biophys. 41, 497–518 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Cattin, C. J. et al. Mechanical control of mitotic progression in single animal cells. Proc. Natl Acad. Sci. USA 112, 11258–11263 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Kufer, S. K., Puchner, E. M., Gumpp, H., Liedl, T. & Gaub, H. E. Single-molecule cut-and-paste surface assembly. Science 319, 594–596 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Engel, A. & Müller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Kuznetsov, Y. G. & McPherson, A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol. Mol. Biol. Rev. 75, 268–285 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Ido, S. et al. Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7, 1817–1822 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Pyne, A., Thompson, R., Leung, C., Roy, D. & Hoogenboom, B. W. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10, 3257–3261 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Ido, S. et al. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat. Mater. 13, 264–270 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Seelert, H. et al. Proton powered turbine of a plant motor. Nature 405, 418–419 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Fotiadis, D. et al. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Müller, D. J., Hand, G. M., Engel, A. & Sosinsky, G. Conformational changes in surface structures of isolated Connexin26 gap junctions. EMBO J. 21, 3598–3607 (2002).

    Article  Google Scholar 

  33. 33

    Müller, D. J. & Engel, A. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285, 1347–1351 (1999).

    Article  Google Scholar 

  34. 34

    Mari, S. A. et al. pH-induced conformational change of the beta-barrel-forming protein OmpG reconstituted into native E. coli lipids. J. Mol. Biol. 396, 610–616 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Czajkowsky, D. M., Hotze, E. M., Shao, Z. & Tweten, R. K. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J. 23, 3206–3215 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Shibata, M., Uchihashi, T., Yamashita, H., Kandori, H. & Ando, T. Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy. Angew. Chem. Int. Ed. 50, 4410–4413 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Mari, S. A. et al. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl Acad. Sci. USA 108, 20802–20807 (2011).

    Article  Google Scholar 

  38. 38

    Rangl, M. et al. Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nat. Commun. 7, 12789 (2016).

    CAS  Article  Google Scholar 

  39. 39

    Müller, D. J. et al. Observing membrane protein diffusion at subnanometer resolution. J. Mol. Biol. 327, 925–930 (2003).

    Article  CAS  Google Scholar 

  40. 40

    Karner, A. et al. Tuning membrane protein mobility by confinement into nanodomains. Nat. Nanotechnol. http://dx.doi.org/10.1038/nnano.2016.236 (2016).

  41. 41

    Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010). This study describes single-motor proteins walking along actin filaments.

    CAS  Article  Google Scholar 

  42. 42

    Cisneros, D. A., Hung, C., Franz, C. M. & Müller, D. J. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J. Struct. Biol. 154, 232–245 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Stamov, D. R., Stock, E., Franz, C. M., Jahnke, T. & Haschke, H. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution. Ultramicroscopy 149, 86–94 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Lehto, T., Miaczynska, M., Zerial, M., Müller, D. J. & Severin, F. Observing the growth of individual actin filaments in cell extracts by time-lapse atomic force microscopy. FEBS Lett. 551, 25–28 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Sharma, S. et al. Nanostructured self-assembly of inverted formin 2 (INF2) and F-actin-INF2 complexes revealed by atomic force microscopy. Langmuir 30, 7533–7539 (2014).

    CAS  Article  Google Scholar 

  46. 46

    Friedrichs, J., Taubenberger, A., Franz, C. M. & Müller, D. J. Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM. J. Mol. Biol. 372, 594–607 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Gudzenko, T. & Franz, C. M. Studying early stages of fibronectin fibrillogenesis in living cells by atomic force microscopy. Mol. Biol. Cell 26, 3190–3204 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Stark, M., Stark, R. W., Heckl, W. M. & Guckenberger, R. Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl Acad. Sci. USA 99, 8473–8478 (2002).

    CAS  Article  Google Scholar 

  49. 49

    Martinez-Martin, D., Herruzo, E. T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 106, 198101 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Raman, A. et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat. Nanotechnol. 6, 809–814 (2011).

    CAS  Article  Google Scholar 

  51. 51

    Hansma, P. K., Schitter, G., Fantner, G. E. & Prater, C. High-speed atomic force microscopy. Science 314, 601–602 (2006).

    CAS  Article  Google Scholar 

  52. 52

    Fantner, G. E. et al. Components for high speed atomic force microscopy. Ultramicroscopy 106, 881–887 (2006).

    CAS  Article  Google Scholar 

  53. 53

    Viani, M. B. et al. Probing protein–protein interactions in real time. Nat. Struct. Biol. 7, 644–647 (2000). This paper introduces the use of ultrashort AFM cantilevers to detect fast interactions, which is the basis for high-speed AFM imaging and force spectroscopy.

    CAS  Article  Google Scholar 

  54. 54

    Watanabe-Nakayama, T., Itami, M., Kodera, N., Ando, T. & Konno, H. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Sci. Rep. 6, 28975 (2016).

    CAS  Article  Google Scholar 

  55. 55

    Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

    CAS  Article  Google Scholar 

  56. 56

    Yamashita, H. et al. Single-molecule imaging on living bacterial cell surface by high-speed AFM. J. Mol. Biol. 422, 300–309 (2012).

    CAS  Article  Google Scholar 

  57. 57

    Sakiyama, Y., Mazur, A., Kapinos, L. E. & Lim, R. Y. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat. Nanotechnol. 11, 719–723 (2016).

    CAS  Article  Google Scholar 

  58. 58

    Butt, H. J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    CAS  Article  Google Scholar 

  59. 59

    Ducker, W. A., Senden, T. J. & Pashley, R. M. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991).

    CAS  Article  Google Scholar 

  60. 60

    Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).

    CAS  Article  Google Scholar 

  61. 61

    Krieg, M., Dunn, A. R. & Goodman, M. B. Mechanical control of the sense of touch by beta-spectrin. Nat. Cell Biol. 16, 224–233 (2014).

    CAS  Article  Google Scholar 

  62. 62

    Vasquez, V., Krieg, M., Lockhead, D. & Goodman, M. B. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep. 6, 70–80 (2014).

    CAS  Article  Google Scholar 

  63. 63

    Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008). This study uses AFM to settle a long-standing dispute regarding whether it is cell adhesion or cortex tension that is responsible for cell sorting in the developing zebrafish embyro.

    CAS  Article  Google Scholar 

  64. 64

    Strilic, B. et al. Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr. Biol. 20, 2003–2009 (2010).

    CAS  Article  Google Scholar 

  65. 65

    Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607–610 (2001).

    CAS  Article  Google Scholar 

  66. 66

    Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    CAS  Article  Google Scholar 

  67. 67

    Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007).

    CAS  Article  Google Scholar 

  68. 68

    Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389–393 (2009).

    CAS  Article  Google Scholar 

  69. 69

    Martinez-Martin, D. et al. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS ONE 7, e30204 (2012).

    CAS  Article  Google Scholar 

  70. 70

    Roos, W. H. et al. Mechanics of bacteriophage maturation. Proc. Natl Acad. Sci. USA 109, 2342–2347 (2012).

    CAS  Article  Google Scholar 

  71. 71

    Marchetti, M., Wuite, G. & Roos, W. H. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr. Opin. Virol. 18, 82–88 (2016).

    CAS  Article  Google Scholar 

  72. 72

    Janmey, P. A., Georges, P. C. & Hvidt, S. Basic rheology for biologists. Methods Cell Biol. 83, 3–27 (2007).

    CAS  Google Scholar 

  73. 73

    Nawaz, S. et al. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE 7, e45297 (2012).

    CAS  Article  Google Scholar 

  74. 74

    Medalsy, I. D. & Müller, D. J. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7, 2642–2650 (2013).

    CAS  Article  Google Scholar 

  75. 75

    Herruzo, E. T., Perrino, A. P. & Garcia, R. Fast nanomechanical spectroscopy of soft matter. Nat. Commun. 5, 3126 (2014).

    Article  CAS  Google Scholar 

  76. 76

    Stewart, M. P. et al. Wedged AFM-cantilevers for parallel plate cell mechanics. Methods 60, 186–194 (2013).

    CAS  Article  Google Scholar 

  77. 77

    Fischer-Friedrich, E., Hyman, A. A., Julicher, F., Müller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

    CAS  Article  Google Scholar 

  78. 78

    Fischer-Friedrich, E. et al. Rheology of the active cell cortex in mitosis. Biophys. J. 111, 589–600 (2016).

    CAS  Article  Google Scholar 

  79. 79

    Lee, G. U., Kidwell, D. A. & Colton, R. J. Sensing discrete streptavidin–biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    CAS  Article  Google Scholar 

  80. 80

    Moy, V. T., Florin, E. L. & Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

    CAS  Article  Google Scholar 

  81. 81

    Baumann, F., Heucke, S. F., Pippig, D. A. & Gaub, H. E. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision. Rev. Sci. Instrum. 86, 035109 (2015).

    Article  CAS  Google Scholar 

  82. 82

    Evans, E. A. & Calderwood, D. A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    CAS  Article  Google Scholar 

  83. 83

    Dudko, O. K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl Acad. Sci. USA 105, 15755–15760 (2008).

    CAS  Article  Google Scholar 

  84. 84

    Friddle, R. W., Noy, A. & De Yoreo, J. J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl Acad. Sci. USA 109, 13573–13578 (2012).

    CAS  Article  Google Scholar 

  85. 85

    Woodside, M. T. & Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Ann. Rev. Biophys. 43, 19–39 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Perez-Jimenez, R. et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat. Struct. Mol. Biol. 18, 592–596 (2011).

    CAS  Article  Google Scholar 

  87. 87

    Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M. & Fernandez, J. M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl Acad. Sci. USA 98, 468–472 (2001).

    CAS  Article  Google Scholar 

  88. 88

    Stahl, S. W., Puchner, E. M. & Gaub, H. E. Photothermal cantilever actuation for fast single-molecule force spectroscopy. Rev. Sci. Instrum. 80, 073702 (2009).

    Article  CAS  Google Scholar 

  89. 89

    Krieg, M., Helenius, J., Heisenberg, C. P. & Müller, D. J. A bond for a lifetime: employing membrane nanotubes from living cells to determine receptor–ligand kinetics. Angew. Chem. Int. Ed. 47, 9775–9777 (2008).

    CAS  Article  Google Scholar 

  90. 90

    Alsteens, D. et al. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape. Nat. Methods 12, 845–851 (2015).

    CAS  Article  Google Scholar 

  91. 91

    Wildling, L. et al. Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J. Biol. Chem. 287, 105–113 (2012).

    CAS  Article  Google Scholar 

  92. 92

    Friedrichs, J., Helenius, J. & Müller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).

    CAS  Article  Google Scholar 

  93. 93

    Schoeler, C. et al. Mapping mechanical force propagation through biomolecular complexes. Nano Lett. 15, 7370–7376 (2015).

    CAS  Article  Google Scholar 

  94. 94

    Sieben, C. et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl Acad. Sci. USA 109, 13626–13631 (2012).

    CAS  Article  Google Scholar 

  95. 95

    Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017). This paper maps virus-binding events on animal cells and simultaneously extracts the steps and free energy landscape of viral ligands binding to cell surface receptors.

    CAS  Article  Google Scholar 

  96. 96

    King, G. M., Carter, A. R., Churnside, A. B., Eberle, L. S. & Perkins, T. T. Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions. Nano Lett. 9, 1451–1456 (2009).

    CAS  Article  Google Scholar 

  97. 97

    Bull, M. S., Sullan, R. M., Li, H. & Perkins, T. T. Improved single molecule force spectroscopy using micromachined cantilevers. ACS Nano 8, 4984–4995 (2014).

    CAS  Article  Google Scholar 

  98. 98

    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997). This paper characterizes the mechanically induced unfolding and reversible refolding of single protein domains using AFM-based SMFS.

    CAS  Article  Google Scholar 

  99. 99

    Bippes, C. A. & Müller, D. J. High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep. Prog. Phys. 74, 086601 (2011).

    Article  CAS  Google Scholar 

  100. 100

    Puchner, E. M. & Gaub, H. E. Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19, 605–614 (2009).

    CAS  Article  Google Scholar 

  101. 101

    Žoldák, G. & Rief, M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr. Opin. Struct. Biol. 23, 48–57 (2013).

    Article  CAS  Google Scholar 

  102. 102

    Kawamura, S., Colozo, A. T., Ge, L., Müller, D. J. & Park, P. S. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness. J. Biol. Chem. 287, 21826–21835 (2012).

    CAS  Article  Google Scholar 

  103. 103

    Mashaghi, A. et al. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500, 98–101 (2013).

    CAS  Article  Google Scholar 

  104. 104

    Nunes, J. M., Mayer-Hartl, M., Hartl, F. U. & Müller, D. J. Action of the Hsp70 chaperone system observed with single proteins. Nat. Commun. 6, 6307 (2015).

    CAS  Article  Google Scholar 

  105. 105

    Park, P. S. et al. Stabilizing effect of Zn2+ in native bovine rhodopsin. J. Biol. Chem. 282, 11377–11385 (2007).

    CAS  Article  Google Scholar 

  106. 106

    Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000). This paper describes the mechanically induced stepwise unfolding of membrane proteins using AFM-based SMFS.

    CAS  Article  Google Scholar 

  107. 107

    Damaghi, M., Koster, S., Bippes, C. A., Yildiz, O. & Müller, D. J. One β-hairpin follows the other: exploring refolding pathways and kinetics of the transmembrane β-barrel protein OmpG. Angew. Chem. Int. Ed. 50, 7422–7424 (2011).

    CAS  Article  Google Scholar 

  108. 108

    Kessler, M., Gottschalk, K. E., Janovjak, H., Müller, D. J. & Gaub, H. E. Bacteriorhodopsin folds into the membrane against an external force. J. Mol. Biol. 357, 644–654 (2006).

    CAS  Article  Google Scholar 

  109. 109

    Thoma, J., Bosshart, P., Pfreundschuh, M. & Müller, D. J. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure 20, 2185–2190 (2012).

    CAS  Article  Google Scholar 

  110. 110

    Serdiuk, T. et al. YidC assists the stepwise and stochastic folding of membrane proteins. Nat. Chem. Biol. 12, 911–917 (2016).

    CAS  Article  Google Scholar 

  111. 111

    Thoma, J., Burmann, B. M., Hiller, S. & Müller, D. J. Impact of holdase chaperones Skp and SurA on the folding of beta-barrel outer-membrane proteins. Nat. Struct. Mol. Biol. 22, 795–802 (2015).

    CAS  Article  Google Scholar 

  112. 112

    Struckmeier, J. et al. Fully automated single-molecule force spectroscopy for screening applications. Nanotechnology 19, 384020 (2008).

    Article  CAS  Google Scholar 

  113. 113

    Otten, M. et al. From genes to protein mechanics on a chip. Nat. Methods 11, 1127–1130 (2014).

    CAS  Article  Google Scholar 

  114. 114

    Friedrichs, J. et al. A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60, 169–178 (2013).

    CAS  Article  Google Scholar 

  115. 115

    Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317 (2000). This paper introduces AFM-based force spectroscopy to quantify the adhesive forces established by living cells.

    CAS  Article  Google Scholar 

  116. 116

    Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564 (2005).

    CAS  Article  Google Scholar 

  117. 117

    Te Riet, J. et al. Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6. J. Cell Sci. 127, 1595–1606 (2014).

    CAS  Article  Google Scholar 

  118. 118

    Alsteens, D., Van Dijck, P., Lipke, P. N. & Dufrêne, Y. F. Quantifying the forces driving cell–cell adhesion in a fungal pathogen. Langmuir 29, 13473–13480 (2013).

    CAS  Article  Google Scholar 

  119. 119

    Beaussart, A. et al. Single-cell force spectroscopy of probiotic bacteria. Biophys. J. 104, 1886–1892 (2013).

    CAS  Article  Google Scholar 

  120. 120

    Friedrichs, J., Helenius, J. & Müller, D. J. Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk. Proteomics 10, 1455–1462 (2010).

    CAS  Article  Google Scholar 

  121. 121

    Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6, 383–387 (2009).

    CAS  Article  Google Scholar 

  122. 122

    Gonnermann, C. et al. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup. Integr. Biol. (Camb.) 7, 356–363 (2015).

    CAS  Article  Google Scholar 

  123. 123

    Ramanathan, S. P. et al. Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat. Cell Biol. 17, 148–159 (2015).

    CAS  Article  Google Scholar 

  124. 124

    Rouven Bruckner, B., Pietuch, A., Nehls, S., Rother, J. & Janshoff, A. Ezrin is a major regulator of membrane tension in epithelial cells. Sci. Rep. 5, 14700 (2015).

    CAS  Article  Google Scholar 

  125. 125

    Heu, C., Berquand, A., Elie-Caille, C. & Nicod, L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J. Struct. Biol. 178, 1–7 (2012).

    CAS  Article  Google Scholar 

  126. 126

    Hecht, F. M. et al. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter 11, 4584–4591 (2015).

    CAS  Article  Google Scholar 

  127. 127

    Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl Acad. Sci. USA 113, 410–415 (2016).

    CAS  Article  Google Scholar 

  128. 128

    Beaussart, A., El- Kirat-Chatel, S., Fontaine, T., Latge, J. P. & Dufrêne, Y. F. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale 7, 14996–15004 (2015).

    CAS  Article  Google Scholar 

  129. 129

    Dong, M., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 4, 514–517 (2009).

    CAS  Article  Google Scholar 

  130. 130

    Medalsy, I., Hensen, U. & Müller, D. J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew. Chem. Int. Ed. 50, 12103–12108 (2011).

    CAS  Article  Google Scholar 

  131. 131

    Wegmann, S., Medalsy, I. D., Mandelkow, E. & Müller, D. J. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proc. Natl Acad. Sci. USA 110, E313–E321 (2013).

    CAS  Article  Google Scholar 

  132. 132

    Zhang, S. et al. Coexistence of ribbon and helical fibrils originating from hIAPP(20–29) revealed by quantitative nanomechanical atomic force microscopy. Proc. Natl Acad. Sci. USA 110, 2798–2803 (2013).

    CAS  Article  Google Scholar 

  133. 133

    Grandbois, M., Dettmann, W., Benoit, M. & Gaub, H. E. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

    CAS  Article  Google Scholar 

  134. 134

    Dague, E. et al. Chemical force microscopy of single live cells. Nano Lett. 7, 3026–3030 (2007).

    CAS  Article  Google Scholar 

  135. 135

    Dupres, V. et al. The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat. Chem. Biol. 5, 857–862 (2009).

    CAS  Article  Google Scholar 

  136. 136

    Guo, S. F. et al. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample. Nat. Nanotechnol. 11, 817–823 (2016).

    CAS  Article  Google Scholar 

  137. 137

    Pfreundschuh, M., Hensen, U. & Müller, D. J. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. Nano Lett. 13, 5585–5593 (2013).

    CAS  Article  Google Scholar 

  138. 138

    Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrêne, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4, 2926 (2013).

    Article  CAS  Google Scholar 

  139. 139

    Pfreundschuh, M. et al. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat. Commun. 6, 8857 (2015).

    CAS  Article  Google Scholar 

  140. 140

    Pfreundschuh, M., Alsteens, D., Hilbert, M., Steinmetz, M. O. & Müller, D. J. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. Nano Lett. 14, 2957–2964 (2014).

    CAS  Article  Google Scholar 

  141. 141

    Kim, D. & Sahin, O. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy. Nat. Nanotechnol. 10, 264–269 (2015).

    CAS  Article  Google Scholar 

  142. 142

    Dong, M. & Sahin, O. A nanomechanical interface to rapid single-molecule interactions. Nat. Commun. 2, 247 (2011).

    Article  CAS  Google Scholar 

  143. 143

    Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Ann. Rev. Biophys. 37, 399–416 (2008).

    CAS  Article  Google Scholar 

  144. 144

    Janovjak, H., Struckmeier, J. & Müller, D. J. Hydrodynamic effects in fast AFM single-molecule force measurements. Eur. Biophys. J. 34, 91–96 (2005).

    CAS  Article  Google Scholar 

  145. 145

    Amo, C. A. & Garcia, R. Fundamental high-speed limits in single-molecule, single-cell, and nanoscale force spectroscopies. ACS Nano 10, 7117–7124 (2016).

    CAS  Article  Google Scholar 

  146. 146

    Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M. & Scheuring, S. High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342, 741–743 (2013).

    CAS  Article  Google Scholar 

  147. 147

    Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000). This study introduces the use of microcantilevers to sense biomolecular binding.

    CAS  Article  Google Scholar 

  148. 148

    McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    CAS  Article  Google Scholar 

  149. 149

    Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1, 214–220 (2006).

    CAS  Article  Google Scholar 

  150. 150

    Braun, T. et al. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nat. Nanotechnol. 4, 179–185 (2009).

    CAS  Article  Google Scholar 

  151. 151

    Ndieyira, J. W. et al. Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. Nat. Nanotechnol. 9, 225–232 (2014).

    CAS  Article  Google Scholar 

  152. 152

    Patil, S. B. et al. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays. Nat. Nanotechnol. 10, 899–907 (2015).

    CAS  Article  Google Scholar 

  153. 153

    Huber, F., Lang, H. P., Backmann, N., Rimoldi, D. & Gerber, C. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat. Nanotechnol. 8, 125–129 (2013).

    CAS  Article  Google Scholar 

  154. 154

    Huber, F. et al. Fast diagnostics of BRAF mutations in biopsies from malignant melanoma. Nano Lett. 16, 5373–5377 (2016).

    CAS  Article  Google Scholar 

  155. 155

    Barnes, J. R., Stephenson, R. J., Welland, M. E., Gerber, C. & Gimzewski, J. K. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 372, 79–81 (1994).

    CAS  Article  Google Scholar 

  156. 156

    Kasas, S. et al. Detecting nanoscale vibrations as signature of life. Proc. Natl Acad. Sci. USA 112, 378–381 (2015).

    CAS  Article  Google Scholar 

  157. 157

    Carbonell, C. & Braunschweig, A. B. Toward 4D nanoprinting with tip-induced organic surface reactions. Acc. Chem. Res. http://dx.doi.org/10.1021/acs.accounts.6b00307 (2016).

  158. 158

    Tinazli, A., Piehler, J., Beuttler, M., Guckenberger, R. & Tampe, R. Native protein nanolithography that can write, read and erase. Nat. Nanotechnol. 2, 220–225 (2007).

    CAS  Article  Google Scholar 

  159. 159

    Martinez, R. V. et al. Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles. Adv. Mater. 22, 588–591 (2010).

    CAS  Article  Google Scholar 

  160. 160

    Felts, J. R., Onses, M. S., Rogers, J. A. & King, W. P. Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Adv. Mater. 26, 2999–3002 (2014).

    CAS  Article  Google Scholar 

  161. 161

    Shi, J., Chen, J. & Cremer, P. S. Sub-100 nm patterning of supported bilayers by nanoshaving lithography. J. Am. Chem. Soc. 130, 2718–2719 (2008).

    CAS  Article  Google Scholar 

  162. 162

    Cisneros, D. A., Friedrichs, J., Taubenberger, A., Franz, C. M. & Müller, D. J. Creating ultrathin nanoscopic collagen matrices for biological and biotechnological applications. Small 3, 956–963 (2007).

    CAS  Article  Google Scholar 

  163. 163

    Szoszkiewicz, R. et al. High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Lett. 7, 1064–1069 (2007).

    CAS  Article  Google Scholar 

  164. 164

    Paul, P. C., Knoll, A. W., Holzner, F., Despont, M. & Duerig, U. Rapid turnaround scanning probe nanolithography. Nanotechnology 22, 275306 (2011).

    Article  CAS  Google Scholar 

  165. 165

    Gotsmann, B., Duerig, U., Frommer, J. & Hawker, C. J. Exploiting chemical switching in a Diels–Alder polymer for nanoscale probe lithography and data storage. Adv. Funct. Mater. 16, 1499–1505 (2006).

    CAS  Article  Google Scholar 

  166. 166

    Milner, A. A., Zhang, K. & Prior, Y. Floating tip nanolithography. Nano Lett. 8, 2017–2022 (2008).

    CAS  Article  Google Scholar 

  167. 167

    Carroll, K. M. et al. Fabricating nanoscale chemical gradients with ThermoChemical NanoLithography. Langmuir 29, 8675–8682 (2013).

    CAS  Article  Google Scholar 

  168. 168

    Jaschke, M. et al. The atomic force microscope as a tool to study and manipulate local surface properties. Biosens. Bioelectron. 11, 601–612 (1996).

    CAS  Article  Google Scholar 

  169. 169

    Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2, 145–155 (2007).

    CAS  Article  Google Scholar 

  170. 170

    Lenhert, S., Mirkin, C. A. & Fuchs, H. In situ lipid dip-pen nanolithography under water. Scanning 32, 15–23 (2010).

    CAS  Google Scholar 

  171. 171

    Kim, K. H., Moldovan, N. & Espinosa, H. D. A nanofountain probe with sub-100 nm molecular writing resolution. Small 1, 632–635 (2005).

    CAS  Article  Google Scholar 

  172. 172

    Onses, M. S. et al. Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat. Nanotechnol. 8, 667–675 (2013).

    CAS  Article  Google Scholar 

  173. 173

    Lenhert, S. et al. Lipid multilayer gratings. Nat. Nanotechnol. 5, 275–279 (2010).

    CAS  Article  Google Scholar 

  174. 174

    Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    CAS  Article  Google Scholar 

  175. 175

    Albrecht, C. et al. DNA: a programmable force sensor. Science 301, 367–370 (2003).

    CAS  Article  Google Scholar 

  176. 176

    Pippig, D. A., Baumann, F., Strackharn, M., Aschenbrenner, D. & Gaub, H. E. Protein–DNA chimeras for nano assembly. ACS Nano 8, 6551–6555 (2014).

    CAS  Article  Google Scholar 

  177. 177

    Kufer, S. K. et al. Optically monitoring the mechanical assembly of single molecules. Nat. Nanotechnol. 4, 45–49 (2009).

    CAS  Article  Google Scholar 

  178. 178

    Puchner, E. M., Kufer, S. K., Strackharn, M., Stahl, S. W. & Gaub, H. E. Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste. Nano Lett. 8, 3692–3695 (2008).

    CAS  Article  Google Scholar 

  179. 179

    Strackharn, M., Stahl, S. W., Puchner, E. M. & Gaub, H. E. Functional assembly of aptamer binding sites by single-molecule cut-and-paste. Nano Lett. 12, 2425–2428 (2012).

    CAS  Article  Google Scholar 

  180. 180

    Franz, C. M. & Müller, D. J. Analysing focal adhesion structure by AFM. J. Cell Sci. 118, 5315–5323 (2005).

    CAS  Article  Google Scholar 

  181. 181

    Cordes, T. et al. Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett. 10, 645–651 (2010).

    CAS  Article  Google Scholar 

  182. 182

    Monserrate, A., Casado, S. & Flors, C. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts. Chemphyschem 15, 647–650 (2014).

    CAS  Article  Google Scholar 

  183. 183

    Fukuda, S. et al. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Rev. Sci. Instrum. 84, 073706 (2013).

    Article  CAS  Google Scholar 

  184. 184

    Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52, 5940–5954 (2013).

    CAS  Article  Google Scholar 

  185. 185

    Berweger, S. et al. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135, 18292–18295 (2013).

    CAS  Article  Google Scholar 

  186. 186

    Ruggeri, F. S. et al. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 6, 7831 (2015).

    CAS  Article  Google Scholar 

  187. 187

    Hansma, P. K., Drake, B., Marti, O., Gould, S. A. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989). This classic study describes the invention of scanning ion conductance microscopy.

    CAS  Article  Google Scholar 

  188. 188

    Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).

    CAS  Article  Google Scholar 

  189. 189

    Novak, P. et al. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels. Neuron 79, 1067–1077 (2013).

    CAS  Article  Google Scholar 

  190. 190

    Takahashi, Y. et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew. Chem. Int. Ed. 50, 9638–9642 (2011).

    CAS  Article  Google Scholar 

  191. 191

    Shevchuk, A. I. et al. An alternative mechanism of clathrin-coated pit closure revealed by ion conductance microscopy. J. Cell Biol. 197, 499–508 (2012).

    CAS  Article  Google Scholar 

  192. 192

    Novak, P. et al. Imaging single nanoparticle interactions with human lung cells using fast ion conductance microscopy. Nano Lett. 14, 1202–1207 (2014).

    CAS  Article  Google Scholar 

  193. 193

    Shevchuk, A. I. et al. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. 45, 2212–2216 (2006).

    CAS  Article  Google Scholar 

  194. 194

    Klausen, L. H., Fuhs, T. & Dong, M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat. Commun. 7, 12447 (2016).

    CAS  Article  Google Scholar 

  195. 195

    Ossola, D. et al. Simultaneous scanning ion conductance microscopy and atomic force microscopy with microchanneled cantilevers. Phys. Rev. Lett. 115, 238103 (2015).

    Article  CAS  Google Scholar 

  196. 196

    Leo-Macias, A. et al. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat. Commun. 7, 10342 (2016).

    CAS  Article  Google Scholar 

  197. 197

    Galvagnion, C. et al. Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    CAS  Article  Google Scholar 

  198. 198

    Lind, T. K., Zielinska, P., Wacklin, H. P., Urbanczyk-Lipkowska, Z. & Cardenas, M. Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes. ACS Nano 8, 396–408 (2014).

    CAS  Article  Google Scholar 

  199. 199

    Ko, S. H. et al. Synergistic self-assembly of RNA and DNA molecules. Nat. Chem. 2, 1050–1055 (2010).

    CAS  Article  Google Scholar 

  200. 200

    Sapra, K. T. et al. One beta hairpin after the other: exploring mechanical unfolding pathways of the transmembrane beta-barrel protein OmpG. Angew. Chem. Int. Ed. 48, 8306–8308 (2009).

    CAS  Article  Google Scholar 

  201. 201

    Strackharn, M., Pippig, D. A., Meyer, P., Stahl, S. W. & Gaub, H. E. Nanoscale arrangement of proteins by single-molecule cut-and-paste. J. Am. Chem. Soc. 134, 15193–15196 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

D.A. was supported by the Belgian National Foundation for Scientific Research (FNRS) and the Université catholique de Louvain (Fonds Spéciaux de Recherche). D.A. is a Research Associate FNRS. D.J.M. was supported by the Swiss National Science Foundation (SNF; grant 310030B_160225) and the NCCR Molecular Systems Engineering. C.G. and D.J.M. were supported by the Swiss Nanoscience Institute. H.E.G. acknowledges financial support by the ERC grant CelluFuel.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alsteens, D., Gaub, H., Newton, R. et al. Atomic force microscopy-based characterization and design of biointerfaces. Nat Rev Mater 2, 17008 (2017). https://doi.org/10.1038/natrevmats.2017.8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing