Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond


The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor–sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Probing condensed matter physics using NV magnetometry.
Figure 2: Imaging static magnetic textures with NV magnetometry.
Figure 3: Probing thermally excited spin systems.
Figure 4: NV magnetometry of static current patterns.
Figure 5: Magnetic noise generated by current fluctuations in an electron liquid.


  1. 1

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Hasan, M. Z. & Kane, C. L. Colloquium : topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Blundell, S. J. Spin-polarized muons in condensed matter physics. Contemp. Phys. 40, 175–192 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Walstedt, R. E. The NMR Probe of High-Tc Materials (Springer, 2008).

    Google Scholar 

  7. 7

    Bramwell, S. T. & Keimer, B. Neutron scattering from quantum condensed matter. Nat. Mater. 13, 763–767 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Embon, L. et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Lee, I. et al. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466, 845–848 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nat. Mater. 12, 787–791 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  CAS  Google Scholar 

  14. 14

    Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Thiel, L. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).

    CAS  Article  Google Scholar 

  22. 22

    Stepanov, V., Cho, F. H., Abeywardana, C. & Takahashi, S. High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 106, 063111 (2015).

    Article  CAS  Google Scholar 

  23. 23

    Aslam, N. et al. Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators. Rev. Sci. Instrum. 86, 064704 (2015).

    Article  CAS  Google Scholar 

  24. 24

    Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Childress, L., Walsworth, R. & Lukin, M. Atom-like crystal defects: from quantum computers to biological sensors. Phys. Today 67, 38–43 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Jensen, K., Kehayias, P. & Budker, D. in High Sensitivity Magnetometers (eds Grosz, A., Haji-Sheikh, M. & Mukhopadhyay, S. ) 553–576 (Springer, 2017).

    Book  Google Scholar 

  28. 28

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Wrachtrup, J. & Finkler, A. Single spin magnetic resonance. J. Magn. Reson. 269, 225–236 (2016).

    CAS  Article  Google Scholar 

  30. 30

    Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    CAS  Article  Google Scholar 

  31. 31

    De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    CAS  Article  Google Scholar 

  34. 34

    De Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Jakobi, I. et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotechnol. 12, 67–72 (2017).

    CAS  Article  Google Scholar 

  36. 36

    Stark, A. et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).

    Article  CAS  Google Scholar 

  37. 37

    Cai, J. M. et al. Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012).

    Article  Google Scholar 

  38. 38

    Pham, L. M. et al. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B 93, 045425 (2016).

    Article  CAS  Google Scholar 

  39. 39

    Rosskopf, T., Zopes, J., Boss, J. M. & Degen, C. L. A quantum spectrum analyzer enhanced by a nuclear spin memory. npj Quantum Inf. 3, 33 (2017).

    Article  Google Scholar 

  40. 40

    Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    CAS  Article  Google Scholar 

  41. 41

    Bucher, D. B. et al. High resolution magnetic resonance spectroscopy using solid-state spins. Preprint at (2017).

  42. 42

    Myers, B. A., Ariyaratne, A. & Jayich, A. C. B. Double-quantum spin-relaxation limits to coherence of near-surface nitrogen-vacancy centers. Phys. Rev. Lett. 118, 197201 (2017).

    CAS  Article  Google Scholar 

  43. 43

    Momenzadeh, S. A. et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15, 165–169 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Riedel, D. et al. Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond. Phys. Rev. Appl. 2, 064011 (2014).

    Article  CAS  Google Scholar 

  46. 46

    Tetienne, J.-P. et al. Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Arai, K. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol. 10, 859–864 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    CAS  Article  Google Scholar 

  50. 50

    Shields, B. J., Unterreithmeier, Q. P., de Leon, N. P., Park, H. & Lukin, M. D. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Jensen, K. et al. Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 112, 160802 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Häberle, T. et al. Nuclear quantum-assisted magnetometer on the nanoscale. Preprint at (2016).

  53. 53

    Li, P.-B., Xiang, Z.-L., Rabl, P. & Nori, F. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016).

    Article  CAS  Google Scholar 

  54. 54

    Steiner, M., Neumann, P., Beck, J., Jelezko, F. & Wrachtrup, J. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond. Phys. Rev. B 81, 035205 (2010).

    Article  CAS  Google Scholar 

  55. 55

    Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).

    Google Scholar 

  56. 56

    Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

    CAS  Article  Google Scholar 

  57. 57

    Burek, M. J. et al. High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014).

    CAS  Article  Google Scholar 

  58. 58

    Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    CAS  Article  Google Scholar 

  59. 59

    Dovzhenko, Y. et al. Imaging the spin texture of a skyrmion under ambient conditions using an atomic-sized sensor. Preprint at (2016).

  60. 60

    Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

    Article  CAS  Google Scholar 

  61. 61

    Appel, P. et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016).

    Article  CAS  Google Scholar 

  62. 62

    Pelliccione, M., Myers, B. A., Pascal, L. M. A., Das, A. & Bleszynski Jayich, A. C. Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond. Phys. Rev. Appl. 2, 054014 (2014).

    Article  CAS  Google Scholar 

  63. 63

    Häberle, T., Schmid-Lorch, D., Reinhard, F. & Wrachtrup, J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).

    Article  CAS  Google Scholar 

  64. 64

    Appel, P., Ganzhorn, M., Neu, E. & Maletinsky, P. Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

    Article  CAS  Google Scholar 

  65. 65

    Hingant, T. et al. Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicrometer resolution. Phys. Rev. Appl. 4, 014003 (2015).

    Article  CAS  Google Scholar 

  66. 66

    Bonetti, S. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale. J. Phys. Condens. Matter. 29, 133004 (2017).

    Article  Google Scholar 

  67. 67

    Blakely, R. J. Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  68. 68

    Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013).

    CAS  Article  Google Scholar 

  70. 70

    Tetienne, J.-P. et al. Nitrogen-vacancy-center imaging of bubble domains in a 6-Å film of cobalt with perpendicular magnetization. J. Appl. Phys. 115, 17501D (2014).

    Article  CAS  Google Scholar 

  71. 71

    Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

    CAS  Article  Google Scholar 

  72. 72

    Gross, I. et al. Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in X |CoFeB| MgO heterostructures with a scanning NV magnetometer (X = Ta, TaN, and W). Phys. Rev. B 94, 064413 (2016).

    Article  CAS  Google Scholar 

  73. 73

    Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

    CAS  Article  Google Scholar 

  74. 74

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    CAS  Article  Google Scholar 

  75. 75

    Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat. Nanotechnol. 8, 723–728 (2013).

    CAS  Article  Google Scholar 

  76. 76

    Khvalkovskiy, A. V. et al. Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

    Article  CAS  Google Scholar 

  77. 77

    Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).

    CAS  Article  Google Scholar 

  78. 78

    Parkin, S. S. P. et al. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    CAS  Article  Google Scholar 

  79. 79

    Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    CAS  Article  Google Scholar 

  80. 80

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    CAS  Article  Google Scholar 

  81. 81

    Tetienne, J.-P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article  CAS  Google Scholar 

  82. 82

    Simpson, D. A. et al. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep. 6, 22797 (2016).

    CAS  Article  Google Scholar 

  83. 83

    Hong, S. et al. Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155–161 (2013).

    CAS  Article  Google Scholar 

  84. 84

    Gould, M. et al. Room-temperature detection of a single 19 nm super-paramagnetic nanoparticle with an imaging magnetometer. Appl. Phys. Lett. 105, 072406 (2014).

    Article  CAS  Google Scholar 

  85. 85

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    CAS  Article  Google Scholar 

  86. 86

    Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    CAS  Article  Google Scholar 

  87. 87

    Schollwöck, U., Richter, J., Farnell, D. J. J. & Bishop, R. F. Quantum Magnetism (Springer-Verlag, 2004).

    Book  Google Scholar 

  88. 88

    Furrer, A., Strässle, T. & Mesot, J. Neutron Scattering in Condensed Matter Physics (World Scientific, 2009).

    Book  Google Scholar 

  89. 89

    Van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single-electron spins. Nat. Commun. 6, 7886 (2015).

    CAS  Article  Google Scholar 

  90. 90

    Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 306 (1966).

    Article  Google Scholar 

  91. 91

    Schwabl, F. Advanced Quantum Mechanics (Springer-Verlag, 2008).

    Google Scholar 

  92. 92

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    CAS  Article  Google Scholar 

  93. 93

    DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129–134 (2015).

    CAS  Article  Google Scholar 

  94. 94

    Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    CAS  Article  Google Scholar 

  95. 95

    Müller, C. et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703 (2014).

    Article  CAS  Google Scholar 

  96. 96

    Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    CAS  Article  Google Scholar 

  98. 98

    Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C Solid State Phys. 19, 7013–7033 (1986).

    Article  Google Scholar 

  99. 99

    Farle, M. Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755–826 (1998).

    CAS  Article  Google Scholar 

  100. 100

    Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    CAS  Article  Google Scholar 

  101. 101

    Wolfe, C. S. et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

    Article  CAS  Google Scholar 

  102. 102

    Wolfe, C. S. et al. Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins. Appl. Phys. Lett. 108, 232409 (2016).

    Article  CAS  Google Scholar 

  103. 103

    Page, M. R. et al. Optically detected ferromagnetic resonance in metallic ferromagnets via nitrogen vacancy centers in diamond. Preprint at (2016).

  104. 104

    Wolf, M. S., Badea, R. & Berezovsky, J. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex. Nat. Commun. 7, 11584 (2016).

    CAS  Article  Google Scholar 

  105. 105

    Andrich, P. et al. Hybrid nanodiamond-YIG systems for efficient quantum information processing and nanoscale sensing. Preprint at (2017).

  106. 106

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    CAS  Article  Google Scholar 

  107. 107

    Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    CAS  Article  Google Scholar 

  108. 108

    Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    CAS  Article  Google Scholar 

  109. 109

    Lee, M. et al. Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016).

    CAS  Article  Google Scholar 

  110. 110

    Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    CAS  Article  Google Scholar 

  111. 111

    Chang, K. et al. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17, 2367–2373 (2017).

    CAS  Article  Google Scholar 

  112. 112

    Nowodzinski, A. et al. Nitrogen-vacancy centers in diamond for current imaging at the redistributive layer level of integrated circuits. Microelectron. Reliab. 55, 1549–1553 (2015).

    CAS  Article  Google Scholar 

  113. 113

    Kaipio, J. P. & Somersalo, E. in Statistical and Computational Inverse Problems (eds Kaipio, J. P. & Somersalo, E. ) 7–48 (Springer-Verlag, 2005).

    Google Scholar 

  114. 114

    Meltzer, A. Y., Levin, E. & Zeldov, E. Direct reconstruction of two-dimensional currents in thin films from magnetic field measurements. Preprint at (2017)

  115. 115

    Tetienne, J.-P. et al. Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).

    Article  CAS  Google Scholar 

  116. 116

    Waxman, A. et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B 89, 054509 (2014).

    Article  CAS  Google Scholar 

  117. 117

    Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

    CAS  Article  Google Scholar 

  118. 118

    Clem, J. R. Theory of flux-flow noise voltage in superconductors. Phys. Rev. B 1, 2140–2155 (1970).

    Article  Google Scholar 

  119. 119

    Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65 (1964).

    Article  Google Scholar 

  120. 120

    Agarwal, K. et al. Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems. Phys. Rev. B 95, 155107 (2017).

    Article  Google Scholar 

  121. 121

    Kolkowitz, S. et al. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    CAS  Article  Google Scholar 

  122. 122

    Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  123. 123

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  124. 124

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  125. 125

    Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    CAS  Article  Google Scholar 

  126. 126

    Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    CAS  Article  Google Scholar 

  127. 127

    Dussaux, A. et al. Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe. Nat. Commun. 7, 12430 (2016).

    CAS  Article  Google Scholar 

  128. 128

    Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

    CAS  Article  Google Scholar 

  129. 129

    Stano, P., Klinovaja, J., Yacoby, A. & Loss, D. Local spin susceptibilities of low-dimensional electron systems. Phys. Rev. B 88, 045441 (2013).

    Article  CAS  Google Scholar 

  130. 130

    Trifunovic, L., Pedrocchi, F. L. & Loss, D. Long-distance entanglement of spin qubits via ferromagnet. Phys. Rev. X 3, 041023 (2013).

    Google Scholar 

  131. 131

    Dolde, F. et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond. Phys. Rev. Lett. 112, 097603 (2014).

    Article  CAS  Google Scholar 

  132. 132

    Jamonneau, P. et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys. Rev. B 93, 024305 (2016).

    Article  CAS  Google Scholar 

  133. 133

    Tisler, J. et al. Single defect center scanning near-field optical microscopy on graphene. Nano Lett. 13, 3152–3156 (2013).

    CAS  Article  Google Scholar 

  134. 134

    Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene. Nat. Nanotechnol. 10, 135–139 (2014).

    Article  CAS  Google Scholar 

  135. 135

    Lima, E. A. & Weiss, B. P. Obtaining vector magnetic field maps from single-component measurements of geological samples. J. Geophys. Res. 114, B06102 (2009).

    Article  Google Scholar 

  136. 136

    de Sousa, R. in Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures (ed. Fanciulli, M. ) 183–220 (Springer, 2009).

    Book  Google Scholar 

  137. 137

    Jackson, J. D. Classical Electrodynamics (Wiley, 1999).

    Google Scholar 

  138. 138

    Giuliani, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  139. 139

    Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    Article  CAS  Google Scholar 

  140. 140

    West, A. D. et al. A simple model for calculating magnetic nanowire domain wall fringing fields. J. Phys. D. Appl. Phys. 45, 095002 (2012).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amir Yacoby.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat Rev Mater 3, 17088 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing