Review Article | Published:

Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

Nature Reviews Materials volume 3, Article number: 17088 (2018) | Download Citation

Abstract

The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor–sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Van der Waals heterostructures. Nature 499, 419–425 (2013).

  2. 2.

    & Colloquium : topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  3. 3.

    , , & Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

  4. 4.

    et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

  5. 5.

    Spin-polarized muons in condensed matter physics. Contemp. Phys. 40, 175–192 (1999).

  6. 6.

    The NMR Probe of High-Tc Materials (Springer, 2008).

  7. 7.

    & Neutron scattering from quantum condensed matter. Nat. Mater. 13, 763–767 (2014).

  8. 8.

    et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).

  9. 9.

    et al. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466, 845–848 (2010).

  10. 10.

    et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

  11. 11.

    et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nat. Mater. 12, 787–791 (2013).

  12. 12.

    , , , & Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

  13. 13.

    Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

  14. 14.

    et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

  15. 15.

    et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

  16. 16.

    et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

  17. 17.

    et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).

  18. 18.

    et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

  19. 19.

    et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

  20. 20.

    et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

  21. 21.

    et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).

  22. 22.

    , , & High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 106, 063111 (2015).

  23. 23.

    et al. Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators. Rev. Sci. Instrum. 86, 064704 (2015).

  24. 24.

    , , & Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

  25. 25.

    , & Atom-like crystal defects: from quantum computers to biological sensors. Phys. Today 67, 38–43 (2014).

  26. 26.

    et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

  27. 27.

    , & in High Sensitivity Magnetometers (eds Grosz, A., Haji-Sheikh, M. & Mukhopadhyay, S.) 553–576 (Springer, 2017).

  28. 28.

    et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

  29. 29.

    & Single spin magnetic resonance. J. Magn. Reson. 269, 225–236 (2016).

  30. 30.

    et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

  31. 31.

    , , , & Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

  32. 32.

    et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

  33. 33.

    et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

  34. 34.

    , , & Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

  35. 35.

    et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotechnol. 12, 67–72 (2017).

  36. 36.

    et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).

  37. 37.

    et al. Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012).

  38. 38.

    et al. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B 93, 045425 (2016).

  39. 39.

    , , & A quantum spectrum analyzer enhanced by a nuclear spin memory. npj Quantum Inf. 3, 33 (2017).

  40. 40.

    , , & Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

  41. 41.

    et al. High resolution magnetic resonance spectroscopy using solid-state spins. Preprint at (2017).

  42. 42.

    , & Double-quantum spin-relaxation limits to coherence of near-surface nitrogen-vacancy centers. Phys. Rev. Lett. 118, 197201 (2017).

  43. 43.

    et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15, 165–169 (2015).

  44. 44.

    et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

  45. 45.

    et al. Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond. Phys. Rev. Appl. 2, 064011 (2014).

  46. 46.

    et al. Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016).

  47. 47.

    et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol. 10, 859–864 (2015).

  48. 48.

    et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

  49. 49.

    et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

  50. 50.

    , , , & Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

  51. 51.

    et al. Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 112, 160802 (2014).

  52. 52.

    et al. Nuclear quantum-assisted magnetometer on the nanoscale. Preprint at (2016).

  53. 53.

    , , & Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016).

  54. 54.

    , , , & Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond. Phys. Rev. B 81, 035205 (2010).

  55. 55.

    et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).

  56. 56.

    et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

  57. 57.

    et al. High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014).

  58. 58.

    et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

  59. 59.

    et al. Imaging the spin texture of a skyrmion under ambient conditions using an atomic-sized sensor. Preprint at (2016).

  60. 60.

    et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

  61. 61.

    et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016).

  62. 62.

    , , , & Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond. Phys. Rev. Appl. 2, 054014 (2014).

  63. 63.

    , , & Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).

  64. 64.

    , , & Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

  65. 65.

    et al. Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicrometer resolution. Phys. Rev. Appl. 4, 014003 (2015).

  66. 66.

    X-ray imaging of spin currents and magnetisation dynamics at the nanoscale. J. Phys. Condens. Matter. 29, 133004 (2017).

  67. 67.

    Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, 1995).

  68. 68.

    et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

  69. 69.

    et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013).

  70. 70.

    et al. Nitrogen-vacancy-center imaging of bubble domains in a 6-Å film of cobalt with perpendicular magnetization. J. Appl. Phys. 115, 17501D (2014).

  71. 71.

    et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

  72. 72.

    et al. Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in X |CoFeB| MgO heterostructures with a scanning NV magnetometer (X = Ta, TaN, and W). Phys. Rev. B 94, 064413 (2016).

  73. 73.

    et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

  74. 74.

    & Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

  75. 75.

    et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat. Nanotechnol. 8, 723–728 (2013).

  76. 76.

    et al. Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

  77. 77.

    , & Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).

  78. 78.

    et al. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  79. 79.

    , & Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

  80. 80.

    et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

  81. 81.

    et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

  82. 82.

    et al. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep. 6, 22797 (2016).

  83. 83.

    et al. Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155–161 (2013).

  84. 84.

    et al. Room-temperature detection of a single 19 nm super-paramagnetic nanoparticle with an imaging magnetometer. Appl. Phys. Lett. 105, 072406 (2014).

  85. 85.

    Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  86. 86.

    et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

  87. 87.

    , , & Quantum Magnetism (Springer-Verlag, 2004).

  88. 88.

    , & Neutron Scattering in Condensed Matter Physics (World Scientific, 2009).

  89. 89.

    , , & Nanometre-scale probing of spin waves using single-electron spins. Nat. Commun. 6, 7886 (2015).

  90. 90.

    The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 306 (1966).

  91. 91.

    Advanced Quantum Mechanics (Springer-Verlag, 2008).

  92. 92.

    et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

  93. 93.

    et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129–134 (2015).

  94. 94.

    et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

  95. 95.

    et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703 (2014).

  96. 96.

    et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2014).

  97. 97.

    et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

  98. 98.

    & Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C Solid State Phys. 19, 7013–7033 (1986).

  99. 99.

    Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755–826 (1998).

  100. 100.

    et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

  101. 101.

    et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

  102. 102.

    et al. Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins. Appl. Phys. Lett. 108, 232409 (2016).

  103. 103.

    et al. Optically detected ferromagnetic resonance in metallic ferromagnets via nitrogen vacancy centers in diamond. Preprint at (2016).

  104. 104.

    , & Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex. Nat. Commun. 7, 11584 (2016).

  105. 105.

    et al. Hybrid nanodiamond-YIG systems for efficient quantum information processing and nanoscale sensing. Preprint at (2017).

  106. 106.

    , & Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

  107. 107.

    et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016).

  108. 108.

    et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

  109. 109.

    et al. Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016).

  110. 110.

    & Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

  111. 111.

    et al. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17, 2367–2373 (2017).

  112. 112.

    et al. Nitrogen-vacancy centers in diamond for current imaging at the redistributive layer level of integrated circuits. Microelectron. Reliab. 55, 1549–1553 (2015).

  113. 113.

    & in Statistical and Computational Inverse Problems (eds & ) 7–48 (Springer-Verlag, 2005).

  114. 114.

    , & Direct reconstruction of two-dimensional currents in thin films from magnetic field measurements. Preprint at (2017)

  115. 115.

    et al. Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).

  116. 116.

    et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B 89, 054509 (2014).

  117. 117.

    Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

  118. 118.

    Theory of flux-flow noise voltage in superconductors. Phys. Rev. B 1, 2140–2155 (1970).

  119. 119.

    Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65 (1964).

  120. 120.

    et al. Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems. Phys. Rev. B 95, 155107 (2017).

  121. 121.

    et al. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

  122. 122.

    Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, 2012).

  123. 123.

    et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

  124. 124.

    et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

  125. 125.

    et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

  126. 126.

    et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

  127. 127.

    et al. Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe. Nat. Commun. 7, 12430 (2016).

  128. 128.

    , & The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

  129. 129.

    , , & Local spin susceptibilities of low-dimensional electron systems. Phys. Rev. B 88, 045441 (2013).

  130. 130.

    , & Long-distance entanglement of spin qubits via ferromagnet. Phys. Rev. X 3, 041023 (2013).

  131. 131.

    et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond. Phys. Rev. Lett. 112, 097603 (2014).

  132. 132.

    et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys. Rev. B 93, 024305 (2016).

  133. 133.

    et al. Single defect center scanning near-field optical microscopy on graphene. Nano Lett. 13, 3152–3156 (2013).

  134. 134.

    et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene. Nat. Nanotechnol. 10, 135–139 (2014).

  135. 135.

    & Obtaining vector magnetic field maps from single-component measurements of geological samples. J. Geophys. Res. 114, B06102 (2009).

  136. 136.

    in Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures (ed. Fanciulli, M.) 183–220 (Springer, 2009).

  137. 137.

    Classical Electrodynamics (Wiley, 1999).

  138. 138.

    Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

  139. 139.

    et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

  140. 140.

    et al. A simple model for calculating magnetic nanowire domain wall fringing fields. J. Phys. D. Appl. Phys. 45, 095002 (2012).

Download references

Author information

Author notes

    • Francesco Casola
    •  & Toeno van der Sar

    These authors contributed equally to this work.

Affiliations

  1. Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.

    • Francesco Casola
    • , Toeno van der Sar
    •  & Amir Yacoby
  2. Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA.

    • Francesco Casola
  3. Kavli Institute of Nanoscience, Delft Univeristy of Technology, 2628CJ Delft, Netherlands.

    • Toeno van der Sar

Authors

  1. Search for Francesco Casola in:

  2. Search for Toeno van der Sar in:

  3. Search for Amir Yacoby in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Amir Yacoby.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2017.88