Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

Abstract

The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor–sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing condensed matter physics using NV magnetometry.
Figure 2: Imaging static magnetic textures with NV magnetometry.
Figure 3: Probing thermally excited spin systems.
Figure 4: NV magnetometry of static current patterns.
Figure 5: Magnetic noise generated by current fluctuations in an electron liquid.

Similar content being viewed by others

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium : topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  3. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  CAS  Google Scholar 

  4. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  5. Blundell, S. J. Spin-polarized muons in condensed matter physics. Contemp. Phys. 40, 175–192 (1999).

    Article  CAS  Google Scholar 

  6. Walstedt, R. E. The NMR Probe of High-Tc Materials (Springer, 2008).

    Google Scholar 

  7. Bramwell, S. T. & Keimer, B. Neutron scattering from quantum condensed matter. Nat. Mater. 13, 763–767 (2014).

    Article  CAS  Google Scholar 

  8. Embon, L. et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).

    Article  CAS  Google Scholar 

  9. Lee, I. et al. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466, 845–848 (2010).

    Article  CAS  Google Scholar 

  10. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    Article  CAS  Google Scholar 

  11. Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nat. Mater. 12, 787–791 (2013).

    Article  CAS  Google Scholar 

  12. Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    Article  CAS  Google Scholar 

  13. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  CAS  Google Scholar 

  14. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  15. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  16. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  17. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).

    Article  CAS  Google Scholar 

  18. Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    Article  CAS  Google Scholar 

  19. Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    Article  CAS  Google Scholar 

  20. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

    Article  CAS  Google Scholar 

  21. Thiel, L. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).

    Article  CAS  Google Scholar 

  22. Stepanov, V., Cho, F. H., Abeywardana, C. & Takahashi, S. High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 106, 063111 (2015).

    Article  CAS  Google Scholar 

  23. Aslam, N. et al. Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators. Rev. Sci. Instrum. 86, 064704 (2015).

    Article  CAS  Google Scholar 

  24. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  CAS  Google Scholar 

  25. Childress, L., Walsworth, R. & Lukin, M. Atom-like crystal defects: from quantum computers to biological sensors. Phys. Today 67, 38–43 (2014).

    Article  CAS  Google Scholar 

  26. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  Google Scholar 

  27. Jensen, K., Kehayias, P. & Budker, D. in High Sensitivity Magnetometers (eds Grosz, A., Haji-Sheikh, M. & Mukhopadhyay, S. ) 553–576 (Springer, 2017).

    Book  Google Scholar 

  28. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  CAS  Google Scholar 

  29. Wrachtrup, J. & Finkler, A. Single spin magnetic resonance. J. Magn. Reson. 269, 225–236 (2016).

    Article  CAS  Google Scholar 

  30. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  31. De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  CAS  Google Scholar 

  32. Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    Article  CAS  Google Scholar 

  33. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    Article  CAS  Google Scholar 

  34. De Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  CAS  Google Scholar 

  35. Jakobi, I. et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotechnol. 12, 67–72 (2017).

    Article  CAS  Google Scholar 

  36. Stark, A. et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).

    Article  CAS  Google Scholar 

  37. Cai, J. M. et al. Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012).

    Article  Google Scholar 

  38. Pham, L. M. et al. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B 93, 045425 (2016).

    Article  CAS  Google Scholar 

  39. Rosskopf, T., Zopes, J., Boss, J. M. & Degen, C. L. A quantum spectrum analyzer enhanced by a nuclear spin memory. npj Quantum Inf. 3, 33 (2017).

    Article  Google Scholar 

  40. Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    Article  CAS  Google Scholar 

  41. Bucher, D. B. et al. High resolution magnetic resonance spectroscopy using solid-state spins. Preprint at https://arxiv.org/abs/1705.08887 (2017).

  42. Myers, B. A., Ariyaratne, A. & Jayich, A. C. B. Double-quantum spin-relaxation limits to coherence of near-surface nitrogen-vacancy centers. Phys. Rev. Lett. 118, 197201 (2017).

    Article  CAS  Google Scholar 

  43. Momenzadeh, S. A. et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15, 165–169 (2015).

    Article  CAS  Google Scholar 

  44. Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

    Article  CAS  Google Scholar 

  45. Riedel, D. et al. Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond. Phys. Rev. Appl. 2, 064011 (2014).

    Article  CAS  Google Scholar 

  46. Tetienne, J.-P. et al. Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016).

    Article  CAS  Google Scholar 

  47. Arai, K. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol. 10, 859–864 (2015).

    Article  CAS  Google Scholar 

  48. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article  CAS  Google Scholar 

  49. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    Article  CAS  Google Scholar 

  50. Shields, B. J., Unterreithmeier, Q. P., de Leon, N. P., Park, H. & Lukin, M. D. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    Article  CAS  Google Scholar 

  51. Jensen, K. et al. Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 112, 160802 (2014).

    Article  CAS  Google Scholar 

  52. Häberle, T. et al. Nuclear quantum-assisted magnetometer on the nanoscale. Preprint at http://arxiv.org/abs/1610.03621 (2016).

  53. Li, P.-B., Xiang, Z.-L., Rabl, P. & Nori, F. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016).

    Article  CAS  Google Scholar 

  54. Steiner, M., Neumann, P., Beck, J., Jelezko, F. & Wrachtrup, J. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond. Phys. Rev. B 81, 035205 (2010).

    Article  CAS  Google Scholar 

  55. Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).

    Google Scholar 

  56. Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

    Article  CAS  Google Scholar 

  57. Burek, M. J. et al. High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014).

    Article  CAS  Google Scholar 

  58. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  59. Dovzhenko, Y. et al. Imaging the spin texture of a skyrmion under ambient conditions using an atomic-sized sensor. Preprint at https://arxiv.org/abs/1611.00673 (2016).

  60. Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

    Article  CAS  Google Scholar 

  61. Appel, P. et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016).

    Article  CAS  Google Scholar 

  62. Pelliccione, M., Myers, B. A., Pascal, L. M. A., Das, A. & Bleszynski Jayich, A. C. Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond. Phys. Rev. Appl. 2, 054014 (2014).

    Article  CAS  Google Scholar 

  63. Häberle, T., Schmid-Lorch, D., Reinhard, F. & Wrachtrup, J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).

    Article  CAS  Google Scholar 

  64. Appel, P., Ganzhorn, M., Neu, E. & Maletinsky, P. Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

    Article  CAS  Google Scholar 

  65. Hingant, T. et al. Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicrometer resolution. Phys. Rev. Appl. 4, 014003 (2015).

    Article  CAS  Google Scholar 

  66. Bonetti, S. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale. J. Phys. Condens. Matter. 29, 133004 (2017).

    Article  Google Scholar 

  67. Blakely, R. J. Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  68. Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

    Article  CAS  Google Scholar 

  69. Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013).

    Article  CAS  Google Scholar 

  70. Tetienne, J.-P. et al. Nitrogen-vacancy-center imaging of bubble domains in a 6-Å film of cobalt with perpendicular magnetization. J. Appl. Phys. 115, 17501D (2014).

    Article  CAS  Google Scholar 

  71. Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

    Article  CAS  Google Scholar 

  72. Gross, I. et al. Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in X |CoFeB| MgO heterostructures with a scanning NV magnetometer (X = Ta, TaN, and W). Phys. Rev. B 94, 064413 (2016).

    Article  CAS  Google Scholar 

  73. Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

    Article  CAS  Google Scholar 

  74. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  75. Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat. Nanotechnol. 8, 723–728 (2013).

    Article  CAS  Google Scholar 

  76. Khvalkovskiy, A. V. et al. Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

    Article  CAS  Google Scholar 

  77. Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).

    Article  CAS  Google Scholar 

  78. Parkin, S. S. P. et al. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  79. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  80. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  CAS  Google Scholar 

  81. Tetienne, J.-P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article  CAS  Google Scholar 

  82. Simpson, D. A. et al. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep. 6, 22797 (2016).

    Article  CAS  Google Scholar 

  83. Hong, S. et al. Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155–161 (2013).

    Article  CAS  Google Scholar 

  84. Gould, M. et al. Room-temperature detection of a single 19 nm super-paramagnetic nanoparticle with an imaging magnetometer. Appl. Phys. Lett. 105, 072406 (2014).

    Article  CAS  Google Scholar 

  85. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  86. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  CAS  Google Scholar 

  87. Schollwöck, U., Richter, J., Farnell, D. J. J. & Bishop, R. F. Quantum Magnetism (Springer-Verlag, 2004).

    Book  Google Scholar 

  88. Furrer, A., Strässle, T. & Mesot, J. Neutron Scattering in Condensed Matter Physics (World Scientific, 2009).

    Book  Google Scholar 

  89. Van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single-electron spins. Nat. Commun. 6, 7886 (2015).

    Article  CAS  Google Scholar 

  90. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 306 (1966).

    Article  Google Scholar 

  91. Schwabl, F. Advanced Quantum Mechanics (Springer-Verlag, 2008).

    Google Scholar 

  92. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  93. DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129–134 (2015).

    Article  CAS  Google Scholar 

  94. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  95. Müller, C. et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703 (2014).

    Article  CAS  Google Scholar 

  96. Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2014).

    Article  CAS  Google Scholar 

  97. Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    Article  CAS  Google Scholar 

  98. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C Solid State Phys. 19, 7013–7033 (1986).

    Article  Google Scholar 

  99. Farle, M. Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755–826 (1998).

    Article  CAS  Google Scholar 

  100. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    Article  CAS  Google Scholar 

  101. Wolfe, C. S. et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

    Article  CAS  Google Scholar 

  102. Wolfe, C. S. et al. Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins. Appl. Phys. Lett. 108, 232409 (2016).

    Article  CAS  Google Scholar 

  103. Page, M. R. et al. Optically detected ferromagnetic resonance in metallic ferromagnets via nitrogen vacancy centers in diamond. Preprint at http://arxiv.org/abs/1607.07485 (2016).

  104. Wolf, M. S., Badea, R. & Berezovsky, J. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex. Nat. Commun. 7, 11584 (2016).

    Article  CAS  Google Scholar 

  105. Andrich, P. et al. Hybrid nanodiamond-YIG systems for efficient quantum information processing and nanoscale sensing. Preprint at http://arxiv.org/abs/1701.07401 (2017).

  106. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  Google Scholar 

  107. Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    Article  CAS  Google Scholar 

  108. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  CAS  Google Scholar 

  109. Lee, M. et al. Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016).

    Article  CAS  Google Scholar 

  110. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  111. Chang, K. et al. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17, 2367–2373 (2017).

    Article  CAS  Google Scholar 

  112. Nowodzinski, A. et al. Nitrogen-vacancy centers in diamond for current imaging at the redistributive layer level of integrated circuits. Microelectron. Reliab. 55, 1549–1553 (2015).

    Article  CAS  Google Scholar 

  113. Kaipio, J. P. & Somersalo, E. in Statistical and Computational Inverse Problems (eds Kaipio, J. P. & Somersalo, E. ) 7–48 (Springer-Verlag, 2005).

    Google Scholar 

  114. Meltzer, A. Y., Levin, E. & Zeldov, E. Direct reconstruction of two-dimensional currents in thin films from magnetic field measurements. Preprint at https://arxiv.org/abs/1711.06123 (2017)

  115. Tetienne, J.-P. et al. Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).

    Article  CAS  Google Scholar 

  116. Waxman, A. et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B 89, 054509 (2014).

    Article  CAS  Google Scholar 

  117. Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

    Article  CAS  Google Scholar 

  118. Clem, J. R. Theory of flux-flow noise voltage in superconductors. Phys. Rev. B 1, 2140–2155 (1970).

    Article  Google Scholar 

  119. Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65 (1964).

    Article  Google Scholar 

  120. Agarwal, K. et al. Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems. Phys. Rev. B 95, 155107 (2017).

    Article  Google Scholar 

  121. Kolkowitz, S. et al. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    Article  CAS  Google Scholar 

  122. Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  123. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  124. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  CAS  Google Scholar 

  125. Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    Article  CAS  Google Scholar 

  126. Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    Article  CAS  Google Scholar 

  127. Dussaux, A. et al. Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe. Nat. Commun. 7, 12430 (2016).

    Article  CAS  Google Scholar 

  128. Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

    Article  CAS  Google Scholar 

  129. Stano, P., Klinovaja, J., Yacoby, A. & Loss, D. Local spin susceptibilities of low-dimensional electron systems. Phys. Rev. B 88, 045441 (2013).

    Article  CAS  Google Scholar 

  130. Trifunovic, L., Pedrocchi, F. L. & Loss, D. Long-distance entanglement of spin qubits via ferromagnet. Phys. Rev. X 3, 041023 (2013).

    Google Scholar 

  131. Dolde, F. et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond. Phys. Rev. Lett. 112, 097603 (2014).

    Article  CAS  Google Scholar 

  132. Jamonneau, P. et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys. Rev. B 93, 024305 (2016).

    Article  CAS  Google Scholar 

  133. Tisler, J. et al. Single defect center scanning near-field optical microscopy on graphene. Nano Lett. 13, 3152–3156 (2013).

    Article  CAS  Google Scholar 

  134. Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene. Nat. Nanotechnol. 10, 135–139 (2014).

    Article  CAS  Google Scholar 

  135. Lima, E. A. & Weiss, B. P. Obtaining vector magnetic field maps from single-component measurements of geological samples. J. Geophys. Res. 114, B06102 (2009).

    Article  Google Scholar 

  136. de Sousa, R. in Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures (ed. Fanciulli, M. ) 183–220 (Springer, 2009).

    Book  Google Scholar 

  137. Jackson, J. D. Classical Electrodynamics (Wiley, 1999).

    Google Scholar 

  138. Giuliani, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  139. Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    Article  CAS  Google Scholar 

  140. West, A. D. et al. A simple model for calculating magnetic nanowire domain wall fringing fields. J. Phys. D. Appl. Phys. 45, 095002 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Yacoby.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat Rev Mater 3, 17088 (2018). https://doi.org/10.1038/natrevmats.2017.88

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing