Photoresponsive biomaterials for targeted drug delivery and 4D cell culture

Article metrics

Abstract

Biological signalling is regulated through a complex and tightly choreographed interplay between cells and their extracellular matrix. The spatiotemporal control of these interactions is essential for tissue function, and disruptions to this dialogue often result in aberrant cell fate and disease. When disturbances are well understood, correct biological function can be restored through the precise introduction of therapeutics. Moreover, model systems with modifiable physiochemical properties are needed to probe the effects of therapeutic molecules and to investigate cell–matrix interactions. Photoresponsive biomaterials benefit from spatiotemporal tunability, which allows for site-specific therapeutic delivery in vivo and 4D modulation of synthetic cell culture platforms to mimic the dynamic heterogeneity of the human body in vitro. In this Review, we discuss how light can be exploited to modify different biomaterials in the context of photomediated drug delivery and phototunable cell culture platforms. We survey various photochemistries for their applicability in vitro and in vivo and for the biochemical and biophysical modification of materials. Finally, we highlight emerging tools and provide an outlook for the field of photoresponsive biomaterials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photoresponsive biomaterials as platforms for targeted drug delivery and 4D cell culture.
Figure 2: Photocontrolled delivery of bioactive molecules.
Figure 3: Photomediated biochemical alteration of biomaterials.
Figure 4: Photomediated biophysical alteration of biomaterials.
Figure 5: Independent physiochemical tuning of biomaterials to mimic in vivo processes.

References

  1. 1

    Palczewski, K. Chemistry and biology of vision. J. Biol. Chem. 287, 1612–1619 (2012).

  2. 2

    Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G. & Heckel, A. Light-controlled tools. Angew. Chem. Int. Ed. 51, 8446–8476 (2012).

  3. 3

    Yu, H., Li, J., Wu, D., Qiu, Z. & Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39, 464–473 (2010).

  4. 4

    Zhu, C., Ninh, C. & Bettinger, C. J. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering. Biomacromolecules 15, 3474–3494 (2014).

  5. 5

    Cui, J., Miguel, V. S. & del Campo, A. Light-triggered multifunctionality at surfaces mediated by photolabile protecting groups. Macromol. Rapid Commun. 34, 310–329 (2013).

  6. 6

    Kaplan, J. H., Forbush, B. & Hoffman, J. F. Rapid photolytic release of adenosine 5′-triphosphate from a protected analog: utilization by the sodium:potassium pump of human red blood cell ghosts. Biochemistry 17, 1929–1935 (1978).

  7. 7

    Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).

  8. 8

    Ercole, F., Davis, T. P. & Evans, R. A. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem. 1, 37–54 (2010).

  9. 9

    Wang, Y., Shim, M. S., Levinson, N. S., Sung, H.-W. & Xia, Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater. 24, 4206–4220 (2014).

  10. 10

    Barhoumi, A., Liu, Q. & Kohane, D. S. Ultraviolet light-mediated drug delivery: principles, applications, and challenges. J. Control. Release 219, 31–42 (2015).

  11. 11

    Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014).

  12. 12

    Olejniczak, J., Carling, C.-J. & Almutairi, A. Photocontrolled release using one-photon absorption of visible or NIR light. J. Control. Release 219, 18–30 (2015).

  13. 13

    Breitinger, H.-G. A., Wieboldt, R., Ramesh, D., Carpenter, B. K. & Hess, G. P. Synthesis and characterization of photolabile derivatives of serotonin for chemical kinetic investigations of the serotonin 5-HT 3 receptor. Biochemistry 39, 5500–5508 (2000).

  14. 14

    Shi, Y. et al. Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J. Mater. Chem. B 3, 8771–8774 (2015).

  15. 15

    Paul, A. et al. Photoresponsive real time monitoring silicon quantum dots for regulated delivery of anticancer drugs. J. Mater. Chem. B 4, 521–528 (2016).

  16. 16

    Cabane, E., Malinova, V., Menon, S., Palivan, C. G. & Meier, W. Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 7, 9167–9176 (2011).

  17. 17

    Kohman, R. E., Cha, S. S., Man, H.-Y. & Han, X. Light-triggered release of bioactive molecules from DNA nanostructures. Nano Lett. 16, 2781–2785 (2016).

  18. 18

    Shestopalov, I. A., Sinha, S. & Chen, J. K. Light-controlled gene silencing in zebrafish embryos. Nat. Chem. Biol. 3, 650–651 (2007).

  19. 19

    Inlay, M. A. et al. Synthesis of a photocaged tamoxifen for light-dependent activation of Cre-ER recombinase-driven gene modification. Chem. Commun. 49, 4971–4973 (2013).

  20. 20

    Li, L. et al. Aptamer photoregulation in vivo. Proc. Natl Acad. Sci. USA 111, 17099–17103 (2014).

  21. 21

    Huynh, C. T. et al. Photocleavable hydrogels for light-triggered siRNA release. Adv. Healthc. Mater. 5, 305–310 (2015).

  22. 22

    Faal, T. et al. 4-Hydroxytamoxifen probes for light-dependent spatiotemporal control of Cre-ER mediated reporter gene expression. Mol. Biosyst. 11, 783–790 (2015).

  23. 23

    Sarode, B. R., Kover, K., Tong, P. Y., Zhang, C. & Friedman, S. H. Light control of insulin release and blood glucose using an injectable photoactivated depot. Mol. Pharm. 13, 3835–3841 (2016).

  24. 24

    D'souza, A. J. M. & Topp, E. M. Release from polymeric prodrugs: linkages and their degradation. J. Pharm. Sci. 93, 1962–1979 (2004).

  25. 25

    Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O. & Almutairi, A. UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132, 9540–9542 (2010).

  26. 26

    Huu, V. A. N. et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J. Control. Release 200, 71–77 (2015). This study reports the first in vivo therapeutic release from photodegradable polymeric nanoparticles in the eye.

  27. 27

    Aujard, I. et al. o-Nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation. Chem. Eur. J. 12, 6865–6879 (2006).

  28. 28

    Holmes, C. P. Model studies for new o-nitrobenzyl photolabile linkers: substituent effects on the rates of photochemical cleavage. J. Org. Chem. 62, 2370–2380 (1997).

  29. 29

    Griffin, D. R. & Kasko, A. M. Photoselective delivery of model therapeutics from hydrogels. ACS Macro Lett. 1, 1330–1334 (2012). This study describes the wavelength-selective release of multiple therapeutics from a single biomaterial.

  30. 30

    Donato, L. et al. Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter γ-aminobutyric acid at λ + 800 nm. Angew. Chem. Int. Ed. 51, 1840–1843 (2012).

  31. 31

    Olejniczak, J., Sankaranarayanan, J., Viger, M. L. & Almutairi, A. Highest efficiency two-photon degradable copolymer for remote controlled release. ACS Macro Lett. 2, 683–687 (2013).

  32. 32

    Carling, C.-J. et al. Efficient red light photo-uncaging of active molecules in water upon assembly into nanoparticles. Chem. Sci. 7, 2392–2398 (2015).

  33. 33

    Yang, Y. et al. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale 5, 231–238 (2013).

  34. 34

    Yang, Y., Velmurugan, B., Liu, X. & Xing, B. NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 9, 2937–2944 (2013).

  35. 35

    Wang, W. et al. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 15, 6332–6338 (2015).

  36. 36

    Yan, B., Boyer, J.-C., Branda, N. R. & Zhao, Y. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 133, 19714–19717 (2011).

  37. 37

    Yan, B., Boyer, J.-C., Habault, D., Branda, N. R. & Zhao, Y. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134, 16558–16561 (2012).

  38. 38

    Sudimack, J. & Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41, 147–162 (2000).

  39. 39

    Fan, N.-C., Cheng, F.-Y., Ho, J. A. & Yeh, C.-S. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed. 51, 8806–8810 (2012).

  40. 40

    Choi, S. K. et al. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem. Commun. 46, 2632–2634 (2010).

  41. 41

    Hu, X., Tian, J., Liu, T., Zhang, G. & Liu, S. Photo-triggered release of caged camptothecin prodrugs from dually responsive shell cross-linked micelles. Macromolecules 46, 6243–6256 (2013).

  42. 42

    Azagarsamy, M. A., Alge, D. L., Radhakrishnan, S. J., Tibbitt, M. W. & Anseth, K. S. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules 13, 2219–2224 (2012).

  43. 43

    Koren, E. & Torchilin, V. P. Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med. 18, 385–393 (2012).

  44. 44

    Shamay, Y., Adar, L., Ashkenasy, G. & David, A. Light induced drug delivery into cancer cells. Biomaterials 32, 1377–1386 (2011).

  45. 45

    Yang, Y. Y., Yang, Y. Y., Xie, X., Cai, X. & Mei, X. Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier. J. Drug Target. 22, 891–900 (2014).

  46. 46

    Lin, W. et al. Enhanced small interfering RNA delivery into cells by exploiting the additive effect between photo-sensitive peptides and targeting ligands. J. Pharm. Pharmacol. 67, 1215–1231 (2015).

  47. 47

    Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem.http://dx.doi.org/10.1038/nchem.2917 (2018).

  48. 48

    Lee, J. S., Deng, X., Han, P. & Cheng, J. Dual stimuli-responsive poly(β-amino ester) nanoparticles for on-demand burst release. Macromol. Biosci. 15, 1314–1322 (2015).

  49. 49

    Liu, G., Zhou, L., Guan, Y., Su, Y. & Dong, C.-M. Multi-responsive polypeptidosome: characterization, morphology transformation, and triggered drug delivery. Macromol. Rapid Commun. 35, 1673–1678 (2014).

  50. 50

    Klinger, D. & Landfester, K. Dual stimuli-responsive poly(2-hydroxyethyl methacrylate-co-methacrylic acid) microgels based on photo-cleavable cross-linkers: pH-dependent swelling and light-induced degradation. Macromolecules 44, 9758–9772 (2011). This study describes multi-stimuli-responsive drug delivery for differential release profiles of a single therapeutic.

  51. 51

    Zhang, Y. et al. Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7, 18179–18187 (2015).

  52. 52

    Givens, R. S. & Matuszewski, B. Photochemistry of phosphate esters: an efficient method for the generation of electrophiles. J. Am. Chem. Soc. 106, 6860–6861 (1984).

  53. 53

    Suzuki, A. Z. et al. Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org. Lett. 5, 4867–4870 (2003).

  54. 54

    Geissler, D. et al. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. 44, 1195–1198 (2005).

  55. 55

    Jin, Q., Mitschang, F. & Agarwal, S. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules 12, 3684–3691 (2011).

  56. 56

    Huang, Q., Bao, C., Ji, W., Wang, Q. & Zhu, L. Photocleavable coumarin crosslinkers based polystyrene microgels: phototriggered swelling and release. J. Mater. Chem. 22, 18275 (2012).

  57. 57

    Mal, N. K., Fujiwara, M., Tanaka, Y., Taguchi, T. & Matsukata, M. Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41. Chem. Mater. 15, 3385–3394 (2003).

  58. 58

    Lin, Q. et al. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. J. Am. Chem. Soc. 132, 10645–10647 (2010).

  59. 59

    Ji, W. et al. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B 1, 5942 (2013).

  60. 60

    Ando, H., Furuta, T., Tsien, R. Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat. Genet. 28, 317–325 (2001).

  61. 61

    Seo, H. J. & Kim, J.-C. 7-Acetoxycoumarin dimer-incorporated and folate-decorated liposomes: photoresponsive release and in vitro targeting and efficacy. Bioconjug. Chem. 25, 533–542 (2014).

  62. 62

    Long, Y.-B., Gu, W.-X., Pang, C., Ma, J. & Gao, H. Construction of coumarin-based cross-linked micelles with pH responsive hydrazone bond and tumor targeting moiety. J. Mater. Chem. B 4, 1480–1488 (2016).

  63. 63

    Ohtsuki, T. et al. Phototriggered protein syntheses by using (7-diethylaminocoumarin-4-yl)methoxycarbonyl-caged aminoacyl tRNAs. Nat. Commun. 7, 12501 (2016).

  64. 64

    Lin, Q. et al. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 25, 1981–1986 (2013).

  65. 65

    Fournier, L. et al. A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. ACS Chem. Biol. 8, 1528–1536 (2013).

  66. 66

    Fournier, L. et al. Coumarinylmethyl caging groups with redshifted absorption. Chem. Eur. J. 19, 17494–17507 (2013).

  67. 67

    Furuta, T. et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Natl Acad. Sci. USA 96, 1193–1200 (1999).

  68. 68

    Babin, J. et al. A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem. Int. Ed. 48, 3329–3332 (2009).

  69. 69

    Kumar, S. et al. Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J. Mater. Chem. 22, 7252 (2012).

  70. 70

    Lux, C. d. G et al. Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 16, 3286–3296 (2015).

  71. 71

    Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

  72. 72

    Kano, K. et al. Photoresponsive membranes. Regulation of membrane properties by photoreversible cis-trans isomerization of azobenzenes. Chem. Lett. 9, 421–424 (1980).

  73. 73

    Bisby, R. H., Mead, C. & Morgan, C. G. Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochem. Photobiol. 72, 57–61 (2000).

  74. 74

    Wang, Y. et al. Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26, 709–715 (2010).

  75. 75

    Zhang, H. et al. Reversible morphology transitions of supramolecular polymer self-assemblies for switch-controlled drug release. Chem. Commun. 51, 15366–15369 (2015).

  76. 76

    Liu, D., Wang, S., Xu, S. & Liu, H. Photocontrollable intermittent release of doxorubicin hydrochloride from liposomes embedded by azobenzene-contained glycolipid. Langmuir 33, 1004–1012 (2017).

  77. 77

    Sheldon, J. E., Dcona, M. M., Lyons, C. E., Hackett, J. C. & Hartman, M. C. T. Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem. 14, 40–49 (2015).

  78. 78

    Angelos, S., Choi, E., Vogtle, F., DeCola, L. & Zink, J. I. Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J. Phys. Chem. C 111, 6589–6592 (2007).

  79. 79

    Lu, J., Choi, E., Tamanoi, F. & Zink, J. I. Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4, 421–426 (2008).

  80. 80

    Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J. & Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 135, 14000–14003 (2013).

  81. 81

    Tarn, D. et al. A reversible light-operated nanovalve on mesoporous silica nanoparticles. Nanoscale 6, 3335–3343 (2014).

  82. 82

    Zhu, Y. & Fujiwara, M. Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. Angew. Chem. Int. Ed. 46, 2241–2244 (2007).

  83. 83

    Yuan, Q. et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 6, 6337–6344 (2012).

  84. 84

    Liu, J., Bu, W., Pan, L. & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013).

  85. 85

    Bléger, D., Schwarz, J., Brouwer, A. M. & Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 134, 20597–20600 (2012).

  86. 86

    Knie, C. et al. ortho-fluoroazobenzenes: visible light switches with very long-lived Z isomers. Chem. Eur. J. 20, 16492–16501 (2014).

  87. 87

    Konrad, D. B., Frank, J. A. & Trauner, D. Synthesis of redshifted azobenzene photoswitches by late-stage functionalization. Chem. Eur. J. 22, 4364–4368 (2016).

  88. 88

    Frank, J. A. et al. Photoswitchable fatty acids enable optical control of TRPV1. Nat. Commun. 6, 7118 (2015).

  89. 89

    Broichhagen, J., Frank, J. A. & Trauner, D. A. Roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

  90. 90

    Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).

  91. 91

    Achilleos, D. S., Hatton, T. A. & Vamvakaki, M. Light-regulated supramolecular engineering of polymeric nanocapsules. J. Am. Chem. Soc. 134, 5726–5729 (2012).

  92. 92

    Son, S., Shin, E. & Kim, B.-S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 15, 628–634 (2014).

  93. 93

    Chen, S., Jiang, F., Cao, Z., Wang, G. & Dang, Z.-M. Photo, pH, and thermo triple-responsive spiropyran-based copolymer nanoparticles for controlled release. Chem. Commun. 51, 12633–12636 (2015).

  94. 94

    Chen, S. et al. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH. Macromolecules 49, 7490–7496 (2016).

  95. 95

    Chang, D., Yan, W., Yang, Y., Wang, Q. & Zou, L. Reversible light-controllable intelligent gel based on simple spiropyran-doped with biocompatible lecithin. Dye. Pigment. 134, 186–189 (2016).

  96. 96

    Tong, R., Hemmati, H. D., Langer, R. & Kohane, D. S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012). This study describes photoisomerization-directed release for repetitive dosing deep within tissue.

  97. 97

    Tong, R., Chiang, H. H. & Kohane, D. S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl Acad. Sci. USA 110, 19048–19053 (2013).

  98. 98

    Wolff, L. About diazoanhydrides. Liebigs Ann. Chemie 325, 129–195 (1902).

  99. 99

    Urdabayev, N. K. & Popik, V. V. Wolff rearrangement of 2-diazo-1(2H)-naphthalenone induced by nonresonant two-photon absorption of NIR radiation. J. Am. Chem. Soc. 126, 4058–4059 (2004).

  100. 100

    Goodwin, A. P., Mynar, J. L., Ma, Y., Fleming, G. R. & Fréchet, J. M. J. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc. 127, 9952–9953 (2005).

  101. 101

    Mynar, J. L. et al. Two-photon degradable supramolecular assemblies of linear-dendritic copolymers. Chem. Commun. 2081–2082 (2007).

  102. 102

    Sun, L., Yang, Y., Dong, C.-M. & Wei, Y. Two-photon-sensitive and sugar-targeted nanocarriers from degradable and dendritic amphiphiles. Small 7, 401–406 (2011).

  103. 103

    Yuan, Y. et al. Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release. Nanoscale 7, 3067–3076 (2015).

  104. 104

    Ahmad, R., Fu, J., He, N. & Li, S. Advanced gold nanomaterials for photothermal therapy of cancer. J. Nanosci. Nanotechnol. 15, 1–14 (2015).

  105. 105

    Gu, L., Koymen, A. R. & Mohanty, S. K. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam. Sci. Rep. 4, 5106 (2014).

  106. 106

    Febvay, S., Marini, D. M., Belcher, A. M. & Clapham, D. E. Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. Nano Lett. 10, 2211–2219 (2010).

  107. 107

    Vivero-Escoto, J. L., Slowing, I. I., Wu, C.-W. & Lin, V. S.-Y. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 131, 3462–3463 (2009).

  108. 108

    Troutman, T. S., Leung, S. J. & Romanowski, M. Light-induced content release from plasmon resonant liposomes. Adv. Mater. 21, 2334–2338 (2009).

  109. 109

    Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).

  110. 110

    Rengan, A. K., Jagtap, M., De, A., Banerjee, R. & Srivastava, R. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale 6, 916–923 (2014).

  111. 111

    Basuki, J. S. et al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew. Chem. Int. Ed. 56, 966–971 (2017).

  112. 112

    Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

  113. 113

    Aznar, E. et al. pH- and photo-switched release of guest molecules from mesoporous silica supports. J. Am. Chem. Soc. 131, 6833–6843 (2009).

  114. 114

    Kang, H. et al. Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5, 5094–5099 (2011).

  115. 115

    Lee, J., Park, H. & Kim, W. J. Nano ‘chocolate waffle’ for near-IR responsive drug releasing system. Small 11, 5315–5323 (2015).

  116. 116

    Tang, Y. et al. An aptamer-targeting photoresponsive drug delivery system using ‘off–on’ graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale 7, 6304–6310 (2015).

  117. 117

    Cobley, C. M., Au, L., Chen, J. & Xia, Y. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv. 7, 577–587 (2010).

  118. 118

    Hribar, K. C., Lee, M. H., Lee, D. & Burdick, J. A. Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites. ACS Nano 5, 2948–2956 (2011).

  119. 119

    Niidome, T. et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343–347 (2006).

  120. 120

    MacLeod, M. J. & Johnson, J. A. PEGylated N-heterocyclic carbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J. Am. Chem. Soc. 137, 7974–7977 (2015).

  121. 121

    Li, W. et al. Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials 65, 76–85 (2015).

  122. 122

    Yu, H. et al. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv. Funct. Mater. 25, 2489–2500 (2015).

  123. 123

    Sherlock, S. P., Tabakman, S. M., Xie, L. & Dai, H. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano 5, 1505–1512 (2011).

  124. 124

    Chen, W. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29, 1603864 (2017).

  125. 125

    Kim, H. et al. Visible light-triggered on-demand drug release from hybrid hydrogels and its application in transdermal patches. Adv. Healthc. Mater. 4, 2071–2077 (2015).

  126. 126

    Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 24, 19 (1995).

  127. 127

    Ackroyd, R., Kelty, C., Brown, N. & Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74, 656 (2001).

  128. 128

    Bio, M. et al. Site-specific and far-red-light-activatable prodrug of combretastatin A-4 using photo-unclick chemistry. J. Med. Chem. 56, 3936–3942 (2013).

  129. 129

    Hossion, A. M. L., Bio, M., Nkepang, G., Awuah, S. G. & You, Y. Visible light controlled release of anticancer drug through double activation of prodrug. ACS Med. Chem. Lett. 4, 124–127 (2013).

  130. 130

    Ke, M.-R. et al. A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy. Eur. J. Med. Chem. 127, 200–209 (2017).

  131. 131

    Rwei, A. Y. et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl Acad. Sci. USA 112, 15719–15724 (2015).

  132. 132

    Berg, K. & Moan, J. Lysosomes as photochemical targets. Int. J. Cancer 59, 814–822 (1994).

  133. 133

    Berg, K. et al. Photochemical Internalization: a novel technique for delivery of macromolecules into cytosol. Cancer Res. 59, 1180–1183 (1999).

  134. 134

    Selbo, P. K. et al. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J. Control. Release 148, 2–12 (2010).

  135. 135

    Nishiyama, N. et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 4, 934–941 (2005).

  136. 136

    Carter, K. A. et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5, 3546 (2014).

  137. 137

    Luo, D. et al. Porphyrin-phospholipid liposomes with tunable leakiness. J. Control. Release 220, 484–494 (2015).

  138. 138

    DeForest, C. A. & Anseth, K. S. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3, 421–444 (2012).

  139. 139

    Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).

  140. 140

    Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006). This study demonstrates physiochemical photopatterning within hydrogel biomaterials.

  141. 141

    Lee, S.-H. H., Moon, J. J. & West, J. L. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962–2968 (2008).

  142. 142

    Hoffmann, J. C. & West, J. L. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter 6, 5056–5063 (2010).

  143. 143

    Hahn, M. S. et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519–2524 (2006).

  144. 144

    DeLong, S. A., Moon, J. J. & West, J. L. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26, 3227–3234 (2005).

  145. 145

    Culver, J. C. et al. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24, 2344–2348 (2012).

  146. 146

    Moon, J. J., Hahn, M. S., Kim, I., Nsiah, B. A. & West, J. L. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng. Part A 15, 579–585 (2009).

  147. 147

    Leslie-Barbick, J. E., Shen, C., Chen, C. & West, J. L. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. Part A 17, 221–229 (2011).

  148. 148

    Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249–253 (2004).

  149. 149

    Wosnick, J. H. & Shoichet, M. S. Three-dimensional chemical patterning of transparent hydrogels. Chem. Mater. 20, 55–60 (2008).

  150. 150

    Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011). This study describes the strategy to simultaneously immobilize multiple proteins within a synthetic cell culture platform.

  151. 151

    Wylie, R. G. & Shoichet, M. S. Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules 12, 3789–3796 (2011).

  152. 152

    Luo, Y. & Shoichet, M. S. Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules 5, 2315–2323 (2004).

  153. 153

    Polizzotti, B. D., Fairbanks, B. D. & Anseth, K. S. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules 9, 1084–1087 (2008).

  154. 154

    Adzima, B. J. et al. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem. 3, 258–261 (2011).

  155. 155

    155. Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Ed. 11, 439–457 (2000).

  156. 156

    DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photocoupling and photodegradation reactions. Nat. Chem. 3, 925–931 (2011).

  157. 157

    Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

  158. 158

    DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

  159. 159

    DeForest, C. A., Sims, E. A. & Anseth, K. S. Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem. Mater. 22, 4783–4790 (2010).

  160. 160

    Sawicki, L. A. & Kloxin, A. M. Design of thiol-ene photoclick hydrogels using facile techniques for cell culture applications. Biomater. Sci. 2, 1612–1626 (2014).

  161. 161

    Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

  162. 162

    Alge, D. L., Azagarsamy, M. A., Donohue, D. F. & Anseth, K. S. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules 14, 949–953 (2013).

  163. 163

    Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 9803–9811 (2013).

  164. 164

    Wade, R. J., Bassin, E. J., Gramlich, W. M. & Burdick, J. A. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater. 27, 1356–1362 (2015).

  165. 165

    Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1071–1077 (2013).

  166. 166

    Griffin, D. R. et al. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. ChemBioChem 15, 233–242 (2014).

  167. 167

    Petersen, S. et al. Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. 120, 3236–3239 (2008).

  168. 168

    Ohmuro-Matsuyama, Y. & Tatsu, Y. Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew. Chem. Int. Ed. 47, 7527–7529 (2008).

  169. 169

    Weis, S., Lee, T. T., del Campo, A. & García, A. J. Dynamic cell-adhesive microenvironments and their effect on myogenic differentiation. Acta Biomater. 9, 8059–8066 (2013).

  170. 170

    Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater 14, 352–360 (2015). This study describes a powerful example in which biomaterial photomodification, including spatial patterning, is performed in vivo.

  171. 171

    Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009). A demonstration of cytocompatible biomaterial photodegradation.

  172. 172

    Griffin, D. R. & Kasko, A. M. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012).

  173. 173

    Azagarsamy, M. A. & Anseth, K. S. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. 52, 13803–13807 (2013).

  174. 174

    DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51, 1816–1819 (2011).

  175. 175

    Gandavarapu, N. R., Azagarsamy, M. A. & Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26, 2521–2526 (2014).

  176. 176

    DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015). This study depicts a powerful approach to reversibly modify hydrogels with full-length proteins in the presence of live cells.

  177. 177

    Farahani, P. E., Adelmund, S. M., Shadish, J. A. & DeForest, C. A. Photomediated oxime ligation as a bioorthogonal tool for spatiotemporally-controlled hydrogel formation and modification. J. Mater. Chem. B 5, 4435–4442 (2017).

  178. 178

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

  179. 179

    Reilly, G. C. & Engler, A. J. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (201§0).

  180. 180

    Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124, 9–18 (2011).

  181. 181

    Nemir, S., Hayenga, H. N. & West, J. L. PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105, 636–644 (2010).

  182. 182

    Guvendiren, M., Perepelyuk, M., Wells, R. G. & Burdick, J. A. Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. J. Mech. Behav. Biomed. Mater. 38, 198–208 (2014).

  183. 183

    Nowatzki, P. J., Franck, C., Maskarinec, S. A., Ravichandran, G. & Tirrell, D. A. Mechanically tunable thin films of photosensitive artificial proteins: preparation and characterization by nanoindentation. Macromolecules 41, 1839–1845 (2008).

  184. 184

    Khetan, S., Katz, J. S. & Burdick, J. A. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5, 1601–1606 (2009).

  185. 185

    Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010).

  186. 186

    Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013). This study describes the on-demand material crosslinking used to reveal the importance of matrix interactions for stem cell differentiation.

  187. 187

    Liu, Z. et al. Spatiotemporally controllable and cytocompatible approach builds 3D cell culture matrix by photo-uncaged-thiol michael addition reaction. Adv. Mater. 26, 3912–3917 (2014).

  188. 188

    Mosiewicz, K. A., Kolb, L., Van Der Vlies, A. J. & Lutolf, M. P. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater. Sci. 2, 1640–1651 (2014).

  189. 189

    Cui, J., Wang, M., Zheng, Y., Rodríguez Muñiz, G. M. & del Campo, A. Light-triggered cross-linking of alginates with caged Ca2+. Biomacromolecules 14, 1251–1256 (2013).

  190. 190

    Stowers, R. S., Allen, S. C. & Suggs, L. J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl Acad. Sci. USA 112, 1953–1958 (2015).

  191. 191

    Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

  192. 192

    Heintz, K. A. et al. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv. Healthc. Mater. 5, 2153–2160 (2016).

  193. 193

    Berkovitch, Y., Yelin, D. & Seliktar, D. Photo-patterning PEG-based hydrogels for neuronal engineering. Eur. Polym. J. 72, 473–483 (2015).

  194. 194

    Johnson, J. A., Finn, M. G., Koberstein, J. T. & Turro, N. J. Synthesis of photocleavable linear macromonomers by ATRP and star macromonomers by a tandem ATRP-click reaction: precursors to photodegradable model networks. Macromolecules 40, 3589–3598 (2007).

  195. 195

    Kloxin, A. M., Tibbitt, M. W. & Anseth, K. S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5, 1867–1887 (2010).

  196. 196

    Johnson, J. A., Baskin, J. M., Bertozzi, C. R., Koberstein, J. T. & Turro, N. J. Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chem. Commun. 0, 3064–3066 (2008).

  197. 197

    Wong, D. Y., Griffin, D. R., Reed, J. & Kasko, A. M. Photodegradable hydrogels to generate positive and negative features over multiple length scales. Macromolecules 43, 2824–2831 (2010).

  198. 198

    Frey, M. T. & Wang, Y. L. A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter 5, 1918–1924 (2009).

  199. 199

    Tsang, K. M. C. et al. Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv. Funct. Mater. 25, 977–986 (2015).

  200. 200

    Kirschner, C. M. & Anseth, K. S. In situ control of cell substrate microtopographies using photolabile hydrogels. Small 9, 578–584 (2013).

  201. 201

    Kloxin, A. M., Tibbitt, M. W., Kasko, A. M., Fairbairn, J. a & Anseth, K. S. Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater. 22, 61–66 (2010).

  202. 202

    Tibbitt, M. W., Kloxin, A. M., Dyamenahalli, K. U. & Anseth, K. S. Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter 6, 5100–5108 (2010).

  203. 203

    Kloxin, A. M., Benton, J. A. & Anseth, K. S. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31, 1–8 (2010).

  204. 204

    Wang, H., Haeger, S. M., Kloxin, A. M., Leinwand, L. A. & Anseth, K. S. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS ONE 7, e39969 (2012).

  205. 205

    Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

  206. 206

    Tibbitt, M. W., Kloxin, A. M., Sawicki, L. A. & Anseth, K. S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).

  207. 207

    McKinnon, D. D., Brown, T. E., Kyburz, K. A., Kiyotake, E. & Anseth, K. S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules 15, 2808–2816 (2014).

  208. 208

    Arakawa, C. K., Badeau, B. A., Zheng, Y. & Deforest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

  209. 209

    Bernard, A. B., Lin, C.-C. C. & Anseth, K. S. A microwell cell culture platform for the aggregation of pancreatic beta-cells. Tissue Eng. Part C Methods 18, 583–592 (2012).

  210. 210

    Lewis, K. J. R. et al. In vitro model alveoli from photodegradable microsphere templates. Biomater. Sci. 3, 821–832 (2015).

  211. 211

    Kloxin, A. M. et al. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr. Biol. 4, 1540–1549 (2012).

  212. 212

    Fairbanks, B. D., Singh, S. P., Bowman, C. N. & Anseth, K. S. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44, 2444–2450 (2011).

  213. 213

    Tamura, M. et al. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques. Sci. Rep. 4, 4793 (2014).

  214. 214

    Truong, V. X. et al. Photodegradable gelatin-based hydrogels prepared by bioorthogonal click chemistry for cell encapsulation and release. Biomacromolecules 16, 2246–2253 (2015).

  215. 215

    Ki, C. S., Shih, H. & Lin, C. C. Facile preparation of photodegradable hydrogels by photopolymerization. Polymer 54, 2115–2122 (2013).

  216. 216

    Zhu, C. C. & Bettinger, C. J. Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J. Mater. Chem. B 2, 1613–1618 (2014).

  217. 217

    Azagarsamy, M. A., McKinnon, D. D., Age, D. L. & Anseth, K. S. Coumarin-based photodegradable hydrogel: design, synthesis, gelation, and degradation kinetics. ACS Macro Lett. 3, 515–519 (2014).

  218. 218

    Andreopoulos, F. M. et al. Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. J. Am. Chem. Soc. 118, 6235–6240 (1996).

  219. 219

    Andreopoulos, F. M., Beckman, E. J. & Russell, A. J. Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998).

  220. 220

    Andreopoulos, F. M., Beckman, E. J. & Russell, A. J. Photoswitchable PEG-CA hydrogels and factors that affect their photosensitivity. J. Polym. Sci. Part A Polym. Chem. 38, 1466–1476 (2000).

  221. 221

    Zheng, Y. et al. A novel photoscissile poly(ethylene glycol)-based hydrogel. Adv. Funct. Mater. 11, 37–40 (2001).

  222. 222

    Zheng, Y. J. et al. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002).

  223. 223

    Sako, Y. & Takaguchi, Y. A photo-responsive hydrogelator having gluconamides at its peripheral branches. Org. Biomol. Chem. 6, 3843–3847 (2008).

  224. 224

    Chen, Y. & Geh, J. L. Copolymers derived from 7-acryloyloxy-4-methylcoumarin and acrylates: 2. Reversible photocrosslinking and photocleavage. Polymer 37, 4481–4486 (1996).

  225. 225

    Maddipatla, M. V. S. N. et al. Photoresponsive coumarin polyesters that exhibit cross-linking and chain scission properties. Macromolecules 46, 5133–5140 (2013).

  226. 226

    Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S. & Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010).

  227. 227

    Rosales, A. M., Mabry, K. M., Nehls, E. M. & Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015).

  228. 228

    Rape, A. D., Zibinsky, M., Murthy, N. & Kumar, S. A synthetic hydrogel for the high-throughput study of cell–ECM interactions. Nat. Commun. 6, 8129 (2015).

  229. 229

    Smith, D. J. et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nat. Nanotechnol. 11, 95–102 (2016).

  230. 230

    Sharma, B. et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med. 5, 167ra6 (2013).

  231. 231

    San Miguel, V., Bochet, C. G. & del Campo, A. Wavelength-selective caged surfaces: how many functional levels are possible? J. Am. Chem. Soc. 133, 5380–5388 (2011).

  232. 232

    Brown, T. E., Marozas, I. A. & Anseth, K. S. Amplified photodegradation of cell-laden hydrogels via an addition-fragmentation chain transfer reaction. Adv. Mater. 29, 1605001 (2017).

  233. 233

    Zhao, Y.-L. & Stoddart, J. F. Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009).

  234. 234

    Wang, D., Wagner, M., Butt, H.-J. & Wu, S. Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue. Soft Matter 11, 7656–7662 (2015).

  235. 235

    Schindler, S. E. et al. Photo-activatable Cre recombinase regulates gene expression in vivo. Sci. Rep 5, 13627 (2015).

  236. 236

    Kawano, F., Okazaki, R., Yazawa, M. & Sato, M. A photoactivatable Cre–loxP recombination system for optogenetic genome engineering. Nat. Chem. Biol. 12, 1059–1064 (2016).

  237. 237

    Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

  238. 238

    Nihongaki, Y., Furuhata, Y., Otabe, T., Hasegawa, Saki Yoshimoto, K. & Sato, M. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017).

Download references

Acknowledgements

C.A.D. gratefully acknowledges support in the form of a faculty early career development (CAREER) award from the National Science Foundation (DMR-1652141), an innovation pilot award from the Institute of Stem Cell & Regenerative Medicine and a royalty research grant (A112554) from the University of Washington.

Author information

All authors contributed equally to the preparation of this manuscript.

Correspondence to Cole A. DeForest.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruskowitz, E., DeForest, C. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat Rev Mater 3, 17087 (2018) doi:10.1038/natrevmats.2017.87

Download citation

Further reading