Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organic electrochemical transistors

Abstract

Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The device physics of organic electrochemical transistors.
Figure 2: Different classes of materials used in organic electrochemical transistor channels.
Figure 3: Form factors of organic electrochemical transistors.
Figure 4: Applications of organic electrochemical transistors.
Figure 5: Comparison between organic electrochemical transistors and organic field-effect transistors.

Similar content being viewed by others

References

  1. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices. (John Wiley& Sons, 2006).

    Book  Google Scholar 

  2. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  3. Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    Article  CAS  Google Scholar 

  4. Nikolka, M. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2017).

    Article  CAS  Google Scholar 

  5. Dodabalapur, A. et al. Organic smart pixels. Appl. Phys. Lett. 73, 142–144 (1998).

    Article  CAS  Google Scholar 

  6. Someya, T. Building bionic skin. IEEE Spectr. 50, 50–56 (2013).

    Article  Google Scholar 

  7. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  CAS  Google Scholar 

  8. Torsi, L. et al. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater. 7, 412–417 (2008).

    Article  CAS  Google Scholar 

  9. Knopfmacher, O. et al. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 3954 (2014).

    Article  CAS  Google Scholar 

  10. White, H. S., Kittlesen, G. P. & Wrighton, M. S. Chemical derivatization of an array of 3 gold microelectrodes with polypyrrole — fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 5375–5377 (1984).

    Article  CAS  Google Scholar 

  11. Bernards, D. A. & Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007).

    Article  CAS  Google Scholar 

  12. Khodagholy, D. et al. High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).

    Article  CAS  Google Scholar 

  13. Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U. & Reuter, K. in PEDOT, Principles and Applications of an Intrinsically Conductive Polymer 113–166 (CRC Press, 2010).

    Book  Google Scholar 

  14. Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    Article  CAS  Google Scholar 

  15. Rivnay, J. et al. Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010–7014 (2013).

    Article  CAS  Google Scholar 

  16. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  CAS  Google Scholar 

  17. Rivnay, J. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251–e1400251 (2015).

    Article  CAS  Google Scholar 

  18. Strakosas, X., Bongo, M. & Owens, R. M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015).

    Article  CAS  Google Scholar 

  19. Lin, P. & Yan, F. Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24, 34–51 (2012).

    Article  CAS  Google Scholar 

  20. Nilsson, D., Robinson, N., Berggren, M. & Forchheimer, R. Electrochemical logic circuits. Adv. Mater. 17, 353–358 (2005).

    Article  CAS  Google Scholar 

  21. Hütter, P. C., Rothländer, T., Scheipl, G. & Stadlober, B. All screen-printed logic gates based on organic electrochemical transistors. IEEE Trans. Electron. Devices 62, 4231–4236 (2015).

    Article  Google Scholar 

  22. Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015).

    Article  CAS  Google Scholar 

  23. van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Article  CAS  Google Scholar 

  24. Proctor, C. M., Rivnay, J. & Malliaras, G. G. Understanding volumetric capacitance in conducting polymers. J. Polym. Sci. Part B Polym. Phys. 54, 1433–1436 (2016).

    Article  CAS  Google Scholar 

  25. Angione, M. D. et al. Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proc. Natl Acad. Sci. USA 109, 6429–6434 (2012).

    Article  Google Scholar 

  26. Bowling, R., Packard, R. T. & McCreery, R. L. Mechanism of electrochemical activation of carbon electrodes: role of graphite lattice defects. Langmuir 5, 683–688 (1989).

    Article  CAS  Google Scholar 

  27. Ranganathan, S. & McCreery, R. L. Electroanalytical performance of carbon films with near-atomic flatness. Anal. Chem. 73, 893–900 (2001).

    Article  CAS  Google Scholar 

  28. Buzsáki, G. Rhythms of the Brain. (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  29. Berggren, M., Nilsson, D. & Robinson, N. D. Organic materials for printed electronics. Nat. Mater. 6, 3–5 (2007).

    Article  CAS  Google Scholar 

  30. Robinson, N. D., Svensson, P.-O., Nilsson, D. & Berggren, M. On the current saturation observed in electrochemical polymer transistors. J. Electrochem. Soc. 153, H39 (2006).

    Article  CAS  Google Scholar 

  31. Friedlein, J. T., Shaheen, S. E., Malliaras, G. G. & McLeod, R. R. Optical measurements revealing nonuniform hole mobility in organic electrochemical transistors. Adv. Electron. Mater. 1, 1500189 (2015).

    Article  CAS  Google Scholar 

  32. Kaphle, V., Liu, S., Al-Shadeedi, A., Keum, C.-M. & Lüssem, B. Contact resistance effects in highly doped organic electrochemical transistors. Adv. Mater. 28, 8766–8770 (2016).

    Article  CAS  Google Scholar 

  33. Friedlein, J. T. et al. Influence of disorder on transfer characteristics of organic electrochemical transistors. Appl. Phys. Lett. 111, 023301 (2017).

    Article  CAS  Google Scholar 

  34. Giovannitti, A. et al. N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016).

    Article  CAS  Google Scholar 

  35. Laiho, A., Herlogsson, L., Forchheimer, R., Crispin, X. & Berggren, M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc. Natl Acad. Sci. USA 108, 15069–15073 (2011).

    Article  Google Scholar 

  36. Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    Article  CAS  Google Scholar 

  37. Cicoira, F. et al. Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 22, 1012–1016 (2010).

    Article  CAS  Google Scholar 

  38. Hütter, P. C., Rothländer, T., Haase, A., Trimmel, G. & Stadlober, B. Influence of geometry variations on the response of organic electrochemical transistors. Appl. Phys. Lett. 103, 043308 (2013).

    Article  CAS  Google Scholar 

  39. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

    Google Scholar 

  40. Bernards, D. A. et al. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116–120 (2008).

    Article  CAS  Google Scholar 

  41. Koutsouras, D. A. et al. Impedance spectroscopy of spun cast and electrochemically deposited PEDOT:PSS films on microfabricated electrodes with various areas. ChemElectroChem 4, 2321–2327 (2017).

    Article  CAS  Google Scholar 

  42. Martin, D. C. et al. The morphology of poly(3,4-ethylenedioxythiophene). Polym. Rev. 50, 340–384 (2010).

    Article  CAS  Google Scholar 

  43. Nardes, A. M. et al. Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films. Adv. Mater. 19, 1196–1200 (2007).

    Article  CAS  Google Scholar 

  44. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  CAS  Google Scholar 

  45. Stavrinidou, E. et al. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013).

    Article  CAS  Google Scholar 

  46. Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Article  CAS  Google Scholar 

  47. Inal, S., Malliaras, G. G. & Rivnay, J. Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. J. Mater. Chem. C 4, 3942–3947 (2016).

    Article  CAS  Google Scholar 

  48. Asplund, M., Nyberg, T. & Inganas, O. Electroactive polymers for neural interfaces. Polym. Chem. 1, 1374–1391 (2010).

    Article  CAS  Google Scholar 

  49. ElMahmoudy, M. et al. Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics. Macromol. Mater. Eng. 17, 1600497 (2017).

    Article  CAS  Google Scholar 

  50. Håkansson, A. et al. Effect of (3-glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. J. Polym. Sci. Part B Polym. Phys. 55, 814–820 (2017).

    Article  CAS  Google Scholar 

  51. Mantione, D. et al. Low-temperature cross-linking of PEDOT:PSS films using divinylsulfone. ACS Appl. Mater. Interfaces 9, 18254–18262 (2017).

    Article  CAS  Google Scholar 

  52. Olivier, Y. et al. 25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 2119–2136 (2014).

    Article  CAS  Google Scholar 

  53. Kim, D.-H. et al. in Indwelling Neural Implants: Strategies for Contending with the In-Vivo Environment (ed. Reichert, W. M. ) 165–207 (CRC Press/Taylor & Francis, 2008).

    Google Scholar 

  54. Berggren, M. & Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 19, 3201–3213 (2007).

    Article  CAS  Google Scholar 

  55. Inal, S. et al. Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. Part B Polym. Phys. 54, 147–151 (2016).

    Article  CAS  Google Scholar 

  56. Inal, S. et al. A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014).

    Article  CAS  Google Scholar 

  57. Zeglio, E. et al. Conjugated polyelectrolyte blends for electrochromic and electrochemical transistor devices. Chem. Mater. 27, 6385–6393 (2015).

    Article  CAS  Google Scholar 

  58. Strakosas, X. et al. A facile biofunctionalisation route for solution processable conducting polymer devices. J. Mater. Chem. B 2, 2537 (2014).

    Article  CAS  Google Scholar 

  59. Skotheim, T. A. & Reynolds, J. R. Handbook of Conducting Polymers. Conjugated Polymers: Processing and Applications. (CRC Press, 2007).

    Google Scholar 

  60. Winther-Jensen, B. & West, K. Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37, 4538–4543 (2004).

    Article  CAS  Google Scholar 

  61. Jimison, L. H. et al. PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. J. Mater. Chem. 22, 19498–19505 (2012).

    Article  CAS  Google Scholar 

  62. Bongo, M. et al. PEDOT:gelatin composites mediate brain endothelial cell adhesion. J. Mater. Chem. B 1, 3860–3867 (2013).

    Article  CAS  Google Scholar 

  63. Winther-Jensen, B., Kolodziejczyk, B. & Winther-Jensen, O. New one-pot poly(3,4-ethylenedioxythiophene): poly(tetrahydrofuran) memory material for facile fabrication of memory organic electrochemical transistors. APL Mater. 3, 014903 (2015).

    Article  CAS  Google Scholar 

  64. Khodagholy, D. et al. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 4440–4443 (2012).

    Article  CAS  Google Scholar 

  65. Nilsson, D., Kugler, T., Svensson, P. O. & Berggren, M. An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B Chem. 86, 193–197 (2002).

    Article  CAS  Google Scholar 

  66. Tarabella, G. et al. Effect of the gate electrode on the response of organic electrochemical transistors. Appl. Phys. Lett. 97, 123304 (2010).

    Article  CAS  Google Scholar 

  67. Tang, H., Lin, P., Chan, H. L. W. & Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 26, 4559–4563 (2011).

    Article  CAS  Google Scholar 

  68. Tang, H. et al. Conducting polymer transistors making use of activated carbon gate electrodes. ACS Appl. Mater. Interfaces 7, 969–973 (2015).

    Article  CAS  Google Scholar 

  69. Diaz, A. F. & Castillo, J. I. A polymer electrode with variable conductivity: polypyrrole. J. Chem. Soc., Chem. Commun. 397–398 (1980).

  70. Thackeray, J. W., White, H. S. & Wrighton, M. S. Poly(3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. J. Phys. Chem. 89, 5133–5140 (1985).

    Article  CAS  Google Scholar 

  71. Paul, E. W., Ricco, A. J. & Wrighton, M. S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 89, 1441–1447 (1985).

    Article  CAS  Google Scholar 

  72. Kittlesen, G. P., White, H. S. & Wrighton, M. S. Chemical derivatization of microelectrode arrays by oxidation of pyrrole and n-methylpyrrole — fabrication of molecule-based electronic devices. J. Am. Chem. Soc. 106, 7389–7396 (1984).

    Article  CAS  Google Scholar 

  73. Jernigan, J. C., Wilbourn, K. O. & Murray, R. W. A benzimidazobenzophenanthroline polymer molecular transistor fabricated using club sandwich electrodes. J. Electroanal. Chem. 222, 193–200 (1987).

    Article  CAS  Google Scholar 

  74. Takashima, W., Sasano, K., Asano, T. & Kaneto, K. Electroplasticity memory devices using conducting polymers and solid polymer electrolytes. Polym. Int. 27, 249–253 (1992).

    Article  CAS  Google Scholar 

  75. Kaneto, K., Asano, T. & Takashima, W. Memory device using a conducting polymer and solid polymer electrolyte. Jpn J.Appl. Phys. 30, L215 (1991).

    Article  CAS  Google Scholar 

  76. Matsue, T., Nishizawa, M., Sawaguchi, T. & Uchida, I. An enzyme switch sensitive to NADH. J. Chem. Soc., Chem. Commun. 1029–1031 (1991).

  77. Saxena, V., Shirodkar, V. & Prakash, R. A comparative study of a polyindole-based microelectrochemical transistor in aqueous and non-aqueous electrolytes. J. Solid State Electrochem. 4, 231–233 (2000).

    Article  CAS  Google Scholar 

  78. Bartlett, P. N. & Birkin, P. R. A. Microelectrochemical enzyme transistor responsive to glucose. Anal. Chem. 66, 1552–1559 (1994).

    Article  CAS  Google Scholar 

  79. Bartlett, P. N. Measurement of low glucose concentrations using a microelectrochemical enzyme transistor. Analyst 123, 387–392 (1998).

    Article  CAS  Google Scholar 

  80. Bartlett, P. N., Birkin, P. R., Wang, J. H., Palmisano, F. & De Benedetto, G. An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal. Chem. 70, 3685–3694 (1998).

    Article  CAS  Google Scholar 

  81. Rani, V. & Santhanam, K. S. V. Polycarbazole-based electrochemical transistor. J. Solid State Electrochem. 2, 99–101 (1998).

    Article  CAS  Google Scholar 

  82. Heywang, G. & Jonas, F. Poly(alkylenedioxythiophene)s — new, very stable conducting polymers. Adv. Mater. 4, 116–118 (1992).

    Article  CAS  Google Scholar 

  83. Qibing, P., Zuccarello, G., Ahlskog, M. & Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351 (1994).

    Article  Google Scholar 

  84. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000).

    Article  CAS  Google Scholar 

  85. Morvant, Mark, C. & Reynolds, John, R. In situ conductivity studies of poly(3,4-ethylenedioxythiophene). Synth. Met. 92, 57–61 (1998).

    Article  Google Scholar 

  86. Carlberg, J. C. & Inganäs, O. Fast optical spectroscopy of the electrochemical doping of poly(3,4-ethylenedioxythiophene). J. Electrochem. Soc. 145, 3810–3814 (1998).

    Article  CAS  Google Scholar 

  87. Nilsson, D. et al. Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002).

    Article  CAS  Google Scholar 

  88. Epstein, A. J., Hsu, F.-C., Chiou, N.-R. & Prigodin, V. N. Electric-field induced ion-leveraged metal–insulator transition in conducting polymer-based field effect devices. Curr. Appl. Phys. 2, 339–343 (2002).

    Article  Google Scholar 

  89. Andersson, P. et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater. 14, 1460–1464 (2002).

    Article  CAS  Google Scholar 

  90. Mabeck, J. T. et al. Microfluidic gating of an organic electrochemical transistor. Appl. Phys. Lett. 87, 013503 (2005).

    Article  CAS  Google Scholar 

  91. Bernards, D. A., Malliaras, G. G., Toombes, G. E. S. & Gruner, S. M. Gating of an organic transistor through a bilayer lipid membrane with ion channels. Appl. Phys. Lett. 89, 053505 (2006).

    Article  CAS  Google Scholar 

  92. Curto, V. F. An organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsystems Nanoengineer. 3, 17028 (2017).

    Article  Google Scholar 

  93. Alam, M. M., Wang, J., Guo, Y., Lee, S. P. & Tseng, H.-R. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B 109, 12777–12784 (2005).

    Article  CAS  Google Scholar 

  94. Wan, A. M.-D. et al. 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B 3, 5040–5048 (2015).

    Article  CAS  Google Scholar 

  95. Tehrani, P. et al. Patterning polythiophene films using electrochemical over-oxidation. Smart Mater. Struct. 14, N21–N25 (2005).

    Article  CAS  Google Scholar 

  96. Mannerbro, R., Ranlöf, M., Robinson, N. & Forchheimer, R. Inkjet printed electrochemical organic electronics. Synth. Met. 158, 556–560 (2008).

    Article  CAS  Google Scholar 

  97. Kolodziejczyk, B., Winther-Jensen, O., Pereira, B. A., Nair, S. S. & Winther-Jensen, B. Patterning of conducting layers on breathable substrates using laser engraving for gas sensors. J. Appl. Polym. Sci. 132, 42356 (2015).

    Article  CAS  Google Scholar 

  98. Gualandi, I. et al. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci. Rep. 6, 33637 (2016).

    Article  CAS  Google Scholar 

  99. Hamedi, M., Forchheimer, R. & Inganas, O. Towards woven logic from organic electronic fibres. Nat. Mater. 6, 357–362 (2007).

    Article  CAS  Google Scholar 

  100. Wang, Y. et al. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem. 408, 5779–5787 (2016).

    Article  CAS  Google Scholar 

  101. Tarabella, G. et al. A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 22, 23830–23834 (2012).

    Article  CAS  Google Scholar 

  102. Kawahara, J. et al. Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials. Org. Electron. 14, 3061–3069 (2013).

    Article  CAS  Google Scholar 

  103. Malti, A. et al. An organic mixed ion–electron conductor for power electronics. Adv. Sci. 3, 1500305 (2016).

    Article  CAS  Google Scholar 

  104. Stavrinidou, E. et al. Electronic plants. Sci. Adv. 1, e1501136 (2015).

    Article  Google Scholar 

  105. Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    Article  CAS  Google Scholar 

  106. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  Google Scholar 

  107. Williamson, A. et al. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv. Mater. 27, 4405–4410 (2015).

    Article  CAS  Google Scholar 

  108. Lee, W. et al. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 28, 9722–9728 (2016).

    Article  CAS  Google Scholar 

  109. Campana, A., Cramer, T., Simon, D. T., Berggren, M. & Biscarini, F. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014).

    Article  CAS  Google Scholar 

  110. Leleux, P. et al. Organic electrochemical transistors for clinical applications. Adv. Healthc. Mater. 4, 142 (2014).

    Article  CAS  Google Scholar 

  111. Braendlein, M., Lonjaret, T., Leleux, P., Badier, J.-M. & Malliaras, G. G. Voltage amplifier based on organic electrochemical transistor. Adv. Sci. 4, 1600247 (2017).

    Article  CAS  Google Scholar 

  112. Uguz, I. et al. Autoclave sterilization of PEDOT:PSS electrophysiology devices. Adv. Healthc. Mater. 5, 3094–3098 (2016).

    Article  CAS  Google Scholar 

  113. Yao, C., Li, Q., Guo, J., Yan, F. & Hsing, I. M. Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthc. Mater. 4, 528–533 (2014).

    Article  CAS  Google Scholar 

  114. Gu, X., Yao, C., Liu, Y. & Hsing, I.-M. 16-channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential. Adv. Healthc. Mater. 5, 2345–2351 (2016).

    Article  CAS  Google Scholar 

  115. Lin, P., Yan, F., Yu, J. J., Chan, H. L. W. & Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 22, 3655–3660 (2010).

    Article  CAS  Google Scholar 

  116. Jimison, L. H. et al. Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919–5923 (2012).

    Article  CAS  Google Scholar 

  117. Yao, C. et al. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells. Adv. Mater. 25, 6575–6580 (2013).

    Article  CAS  Google Scholar 

  118. Romeo, A. et al. Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system. Biosens. Bioelectron. 68, 791–797 (2015).

    Article  CAS  Google Scholar 

  119. Ramuz, M., Hama, A., Rivnay, J., Leleux, P. & Owens, R. M. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J. Mater. Chem. B 3, 5971–5977 (2015).

    Article  CAS  Google Scholar 

  120. Huerta, M., Rivnay, J., Ramuz, M., Hama, A. & Owens, R. M. Early detection of nephrotoxicity in vitro using a transparent conducting polymer device. Appl. Vitro Toxicol. 2, 17–25 (2016).

    Article  CAS  Google Scholar 

  121. Faria, G. C. et al. Organic electrochemical transistors as impedance biosensors. MRS Commun. 4, 189–194 (2014).

    Article  CAS  Google Scholar 

  122. Zhang, Y. et al. Supported lipid bilayer assembly on PEDOT:PSS films and transistors. Adv. Funct. Mater. 26, 7304–7313 (2016).

    Article  CAS  Google Scholar 

  123. Rivnay, J. et al. Organic electrochemical transistors for cell-based impedance sensing. Appl. Phys. Lett. 106, 043301 (2015).

    Article  CAS  Google Scholar 

  124. Rivnay, J. et al. Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers. Sci. Rep. 5, 11613 (2015).

    Article  CAS  Google Scholar 

  125. Ramuz, M. et al. Combined optical and electronic sensing of epithelial cells using planar organic transistors. Adv. Mater. 26, 7083–7090 (2014).

    Article  CAS  Google Scholar 

  126. Tria, S. A. et al. Dynamic monitoring of Salmonella typhimurium infection of polarized epithelia using organic transistors. Adv. Healthc. Mater. 3, 1053–1060 (2014).

    Article  CAS  Google Scholar 

  127. Huerta, M., Rivnay, J., Ramuz, M., Hama, A. & Owens, R. M. Research update: electrical monitoring of cysts using organic electrochemical transistors. APL Mater. 3, 030701 (2015).

    Article  CAS  Google Scholar 

  128. Bolin, M. H. et al. Active control of epithelial cell-density gradients grown along the channel of an organic electrochemical transistor. Adv. Mater. 21, 4379–4382 (2009).

    Article  CAS  Google Scholar 

  129. Lin, P., Yan, F. & Chan, H. L. W. Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2, 1637–1641 (2010).

    Article  CAS  Google Scholar 

  130. Sessolo, M., Rivnay, J., Bandiello, E., Malliaras, G. G. & Bolink, H. J. Ion-selective organic electrochemical transistors. Adv. Mater. 26, 4803–4807 (2014).

    Article  CAS  Google Scholar 

  131. Zhu, Z. T. et al. A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. Chem. Commun. 1556–1557 (2004).

  132. Tang, H., Yan, F., Lin, P., Xu, J. & Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 21, 2264–2272 (2011).

    Article  CAS  Google Scholar 

  133. Liao, C., Zhang, M., Niu, L., Zheng, Z. & Yan, F. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 1, 3820–3829 (2013).

    Article  CAS  Google Scholar 

  134. Yang, S. Y. et al. Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9, 704–708 (2009).

    Article  CAS  Google Scholar 

  135. Pappa, A.-M. et al. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 5, 2295–2302 (2016).

    Article  CAS  Google Scholar 

  136. Battista, E. et al. Enzymatic sensing with laccase-functionalized textile organic biosensors. Org. Electron. 40, 51–57 (2017).

    Article  CAS  Google Scholar 

  137. Bihar, E. et al. A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 6, 27582 (2016).

    Article  CAS  Google Scholar 

  138. Scheiblin, G., Coppard, R., Owens, R. M., Mailley, P. & Malliaras, G. G. Referenceless pH sensor using organic electrochemical transistors. Adv. Mater. Technol. 2, 1600141 (2017).

    Article  CAS  Google Scholar 

  139. Liao, C., Mak, C., Zhang, M., Chan, H. L. W. & Yan, F. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv. Mater. 27, 676–681 (2015).

    Article  CAS  Google Scholar 

  140. Braendlein, M. et al. Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 29, 1605744 (2017).

    Article  CAS  Google Scholar 

  141. Tybrandt, K., Kollipara, S. B. & Berggren, M. Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry. Sens. Actuators B Chem. 195, 651–656 (2014).

    Article  CAS  Google Scholar 

  142. Gualandi, I. et al. Selective detection of dopamine with an all PEDOT:PSS organic electrochemical transistor. Sci. Rep. 6, 35419 (2016).

    Article  CAS  Google Scholar 

  143. Mak, C. H. et al. Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. J. Mater. Chem. C 3, 6532–6538 (2015).

    Article  CAS  Google Scholar 

  144. Lin, P., Luo, X., Hsing, I. M. & Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 23, 4035–4040 (2011).

    Article  CAS  Google Scholar 

  145. He, R.-X. et al. Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072–22076 (2012).

    Article  CAS  Google Scholar 

  146. Berggren, M. et al. Browsing the real world using organic electronics, Si-chips, and a human touch. Adv. Mater. 28, 1911–1916 (2016).

    Article  CAS  Google Scholar 

  147. Andersson, P., Forchheimer, R., Tehrani, P. & Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 17, 3074–3082 (2007).

    Article  CAS  Google Scholar 

  148. Tao, X., Koncar, V. & Dufour, C. Geometry pattern for the wire organic electrochemical textile transistor. J. Electrochem. Soc. 158, H572–H577 (2011).

    Article  CAS  Google Scholar 

  149. Zirkl, M. et al. An all-printed ferroelectric active matrix sensor network based on only five functional materials forming a touchless control interface. Adv. Mater. 23, 2069–2074 (2011).

    Article  CAS  Google Scholar 

  150. Keshmiri, Forchheimer & Tu. in 7th International Conference on Computer Aided Design for Thin-Film Transistor Technologies (CAD-TFT) http://dx.doi.org/10.1109/CAD-TFT.2016.7785048 (Beijing, 2016).

  151. Rothlander, T. et al. Nanoimprint lithography-structured organic electrochemical transistors and logic circuits. IEEE Trans. Electron. Devices 61, 1515–1519 (2014).

    Article  CAS  Google Scholar 

  152. Brooke, R. et al. Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications. J. Mater. Chem. C 1, 3353–3358 (2013).

    Article  CAS  Google Scholar 

  153. Svensson, P. O., Nilsson, D., Forchheimer, R. & Berggren, M. A sensor circuit using reference-based conductance switching in organic electrochemical transistors. Appl. Phys. Lett. 93, 203301 (2008).

    Article  CAS  Google Scholar 

  154. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  155. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    Article  CAS  Google Scholar 

  156. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  CAS  Google Scholar 

  157. Erokhin, V., Berzina, T. & Fontana, M. P. Hybrid electronic device based on polyaniline-polyethyleneoxide junction. J. Appl. Phys. 97, 064501 (2005).

    Article  CAS  Google Scholar 

  158. Berzina, T. et al. Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys. 105, 124515 (2009).

    Article  CAS  Google Scholar 

  159. Emelyanov, A. V. et al. First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Adv. 6, 111301 (2016).

    Article  Google Scholar 

  160. Cifarelli, A., Berzina, T., Parisini, A., Erokhin, V. & Iannotta, S. Polysaccarides-based gels and solid-state electronic devices with memresistive properties: synergy between polyaniline electrochemistry and biology. AIP Adv. 6, 111302 (2016).

    Article  CAS  Google Scholar 

  161. Das, B. C., Pillai, R. G., Wu, Y. & McCreery, R. L. Redox-gated three-terminal organic memory devices: effect of composition and environment on performance. ACS Appl. Mater. Interfaces 5, 11052–11058 (2013).

    Article  CAS  Google Scholar 

  162. Das, B. C., Szeto, B., James, D. D., Wu, Y. & McCreery, R. L. Ion transport and switching speed in redox-gated 3-terminal organic memory devices. J. Electrochem. Soc. 161, H831–H838 (2014).

    Article  CAS  Google Scholar 

  163. Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016).

    Article  CAS  Google Scholar 

  164. Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A. & Malliaras, G. G. Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015).

    Article  CAS  Google Scholar 

  165. Gkoupidenis, P., Koutsouras, D. A., Lonjaret, T., Fairfield, J. A. & Malliaras, G. G. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016).

    Article  CAS  Google Scholar 

  166. Gkoupidenis, P., Koutsouras, D. A. & Malliaras, G. G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017).

    Article  CAS  Google Scholar 

  167. Xuan, Y., Sandberg, M., Berggren, M. & Crispin, X. An all-polymer-air PEDOT battery. Org. Electron. 13, 632–637 (2012).

    Article  CAS  Google Scholar 

  168. Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).

    Article  CAS  Google Scholar 

  169. Fabiano, S. et al. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers. Sci. Adv. 3, e1700345 (2017).

    Article  CAS  Google Scholar 

  170. Shen, Y. L., Hosseini, A. R., Wong, M. H. & Malliaras, G. G. How to make ohmic contacts to organic semiconductors. ChemPhysChem 5, 16–25 (2004).

    Article  CAS  Google Scholar 

  171. Koch, N. Organic electronic devices and their functional interfaces. ChemPhysChem 8, 1438–1455 (2007).

    Article  CAS  Google Scholar 

  172. Giridharagopal, R. et al. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 16, 737–742 (2017).

    Article  CAS  Google Scholar 

  173. Borsenberger, P. M. & Weiss, D. S. Organic Photoreceptors for Xerography (Marcel Dekker, 1998).

    Google Scholar 

  174. Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Article  CAS  Google Scholar 

  175. Friedlein, J. T., Donahue, M. J., Shaheen, S. E., Malliaras, G. G. & McLeod, R. R. Microsecond response in organic electrochemical transistors: exceeding the ionic speed limit. Adv. Mater. 28, 8398–8404 (2016).

    Article  CAS  Google Scholar 

  176. Sideris, P., Siskos, S. & Malliaras, G. in 6th International Conference on Modern Circuits and Systems Technologies (MOCAST) http://dx.doi.org/10.1109/MOCAST.2017.7937645 (Thessaloniki, 2016).

    Google Scholar 

  177. Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Article  CAS  Google Scholar 

  178. Stavrinidou, E. et al. Engineering hydrophilic conducting composites with enhanced ion mobility. Phys. Chem. Chem. Phys. 16, 2275–2279 (2014).

    Article  CAS  Google Scholar 

  179. Zeglio, E., Eriksson, J., Gabrielsson, R., Solin, N. & Inganäs, O. Highly stable conjugated polyelectrolytes for water-based hybrid mode electrochemical transistors. Adv. Mater. 29, 1605787 (2017).

    Article  CAS  Google Scholar 

  180. Pacheco-Moreno, C. M. et al. The importance of materials design to make ions flow: toward novel materials platforms for bioelectronics applications. Adv. Mater. 29, 1604446 (2017).

    Article  CAS  Google Scholar 

  181. Smela, E. Conjugated polymer actuators. MRS Bull. 33, 197–204 (2008).

    Article  CAS  Google Scholar 

  182. Isaksson, J. et al. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673–679 (2007).

    Article  CAS  Google Scholar 

  183. Inal, S. et al. Conducting polymer scaffolds for hosting and monitoring 3D cell culture. Adv. Biosyst. 1, 1700052 (2017).

    Article  CAS  Google Scholar 

  184. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    Article  CAS  Google Scholar 

  185. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation, DMR award 1507826 (A.S.); ERC CoG IMBIBE, action number 723951 (R.M.O.); the STIAS, Knut and Alice Wallenberg Foundation, SSF and Önnesjöstiftelsen (M.B.); the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 732032 (BrainCom) (G.G.M.) and King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award No. OSR-2016-CRG5-3003 (S.I., G.G.M.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Jonathan Rivnay or George G. Malliaras.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivnay, J., Inal, S., Salleo, A. et al. Organic electrochemical transistors. Nat Rev Mater 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.86

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing