Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials science and architecture


Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Material property (Ashby) plots for different classes of construction materials.
Figure 2: Properties of wood, as well as architectural and design insights from botanical
Figure 3: Ceramic characterization and production from the nanoscale to the macroscale.
Figure 4: Modern advances in metal structural characterization and architectural applications.
Figure 5: Recent advances in concrete characterization and fabrication.
Figure 6: Glass processing and architectural applications.
Figure 7: Scales of analysis and design in composites science.
Figure 8: Polymer research from the nanoscale to the macroscale.


  1. 1

    Addington, M. & Schodek, D. Smart Materials and Technologies: For the Architecture and Design Professions (Routledge, 2005).

    Google Scholar 

  2. 2

    Knippers, J., Nickel, K. & Speck, T. Biomimetic Research for Architecture and Building Construction (Springer, 2016).

    Book  Google Scholar 

  3. 3

    Picon, A. & Thom, M. French Architects and Engineers in the Age of Enlightenment (Cambridge Univ. Press, 1992).

    Google Scholar 

  4. 4

    Elliott, C. D. Technics and Architecture: the Development of Materials and Systems for Buildings (MIT Press, 1992).

    Google Scholar 

  5. 5

    Schodek, D. L., Bechthold, M., Kao, K., Griggs, K. & Steinberg, M. Digital Design and Manufacturing (Wiley, 2005).

    Google Scholar 

  6. 6

    Ashby, M. F., Ferreira, P. J. & Schodek, D. L. Nanomaterials, Nanotechnologies and Design (Elsevier, 2009).

    Google Scholar 

  7. 7

    Sabin, J. & Santangelo, C. in MRS Symposium Proceedings Vol. 1800 (Cambridge Univ. Press, 2015).

    Google Scholar 

  8. 8

    Gutierrez, M. P. & Lee, L. P. Multiscale design and integration of sustainable building functions. Science 341, 247 –248 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Sellers, T. Plywood and Adhesive Technology (CRC Press, 1985).

    Google Scholar 

  10. 10

    Marra, A. A. Technology of Wood Bonding (Springer, 1992).

    Google Scholar 

  11. 11

    van den Kuilen, J. G., Zhouyan, A. C. & Minjuan, H. Very tall wooden buildings with cross laminated timber. Procedia Eng. 14, 1621–1628 (2011).

    Article  Google Scholar 

  12. 12

    Harries, K. S. & Sharma, B. Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications (Woodhead Publishing, 2016).

    Google Scholar 

  13. 13

    Wang, Z., Li, Z., Gu, Z., Hong, Y. & Cheng, L. Preparation, characterization and properties of starch-based wood adhesive. Carbohydr. Polym. 88, 699–706 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Dorr, D. N., Frazier, S. D., Hess, K. M., Traeger, L. S. & Srubar, W. V. III. Bond strength of biodegradable gelatin-based wood adhesives. J. Renewable Mater. 3, 195–204 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Haag, A. P., Geesey, G. G. & Mittleman, M. W. Bacterially derived wood adhesive. Int. J. Adhes. Adhes. 26, 177–183 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Hahn, B., Vallée, T., Stamm, B. & Weinand, Y. Moment resisting connections composed of friction-welded spruce boards: experimental investigations and numerical strength prediction. Eur. J. Wood Prod. 72, 229–241 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Stamm, B., Natterer, J. & Navi, P. Joining wood by friction welding. Holz Roh- Werkst. 63, 313–320 (2005).

    Article  Google Scholar 

  18. 18

    Lee, S.-H. & Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A 37, 80–91 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Bao, L., Chen, Y., Zhou, W., Wu, Y. & Huang, Y. Bamboo fibers poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J. Appl. Polym. Sci. 122, 2456–2466 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Strode, W. & Dean, D. L. Experiments With a Single Layer Plywood Monkey Saddle Shell (Univ. Kansas Publications, 1961).

    Google Scholar 

  21. 21

    Krauss, F. Hyerbolische paraboloide Schalen aus Holz [German] (Krämer, 1969).

    Google Scholar 

  22. 22

    Bechthold, M. Wood-foam sandwich shells: computer-aided manufacturing of complex shapes. J. Int. Assoc. Shell Spatial Struct. 44, 679–690 (2002).

    Google Scholar 

  23. 23

    Dawson, C., Vincent, J. F. V. & Rocca, A.-M. How pine cones open. Nature 390, 668 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Harrington, M. J. et al. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat. Commun. 2, 337 (2011).

    Article  CAS  Google Scholar 

  26. 26

    Menges, A. & Reichert, S. Performative wood: physically programming the responsive architecture of the Hygroscope and Hygroskin projects. Architectural Design 85, 66–73 (2015).

    Article  Google Scholar 

  27. 27

    Wood, D. M., Correa, D., Krieg, O. D. & Menges, A. Material computation — 4D timber construction: towards building-scale hygroscopic actuated self-constructing timber surfaces. Int. J. Arch. Comput. 14, 49–62 (2016).

    Google Scholar 

  28. 28

    Tarkow, H. & Turner, H. The swelling pressure of wood. For. Prod. J. 8, 193–197 (1958).

    Google Scholar 

  29. 29

    Reichert, S., Menges, A. & Correa, D. Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Aided Design 60, 50–69 (2015).

    Article  Google Scholar 

  30. 30

    Correa, D. et al. 3D-printed wood: programming hygroscopic material transformations. 3D Print. Add. Manufactur. 2, 106–116 (2015).

    Article  Google Scholar 

  31. 31

    Bechthold, M., Kane, A. & King, N. Ceramic Material Systems (Birkhäuser, 2015).

    Book  Google Scholar 

  32. 32

    King, N., Bechthold, M., Kane, A. & Michalatos, P. Robotic tile placement: tools, techniques and feasibility. Auto. Constr. 39, 161–166 (2013).

    Article  Google Scholar 

  33. 33

    Van Aubel, M. Ceramic foam. US Patent 20150018195 (2015).

  34. 34

    Bernardo, E., De Lazzari, M., Colombo, P., Llaudis, A. S. & Garcia-Ten, F. J. Lightweight porcelain stoneware by engineered CeO2 addition. Adv. Eng. Mater. 12, 65–70 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Diegel, O., Withell, A., de Beer, D., Potgier, J. & Noble, F. Low-cost 3D printing of controlled porosity ceramic parts. Int. J. Auto. Technol. 6, 618–626 (2012).

    Article  Google Scholar 

  36. 36

    Bechthold, M., King, N., Kane, A. O., Niemasz, J. & Reinhart, C. in Proc. 28th ISARC, Seoul, Korea 70–75 (2011).

    Google Scholar 

  37. 37

    Bechthold, M. Prototipos cerámicos — diseño, computación y fabricación digital [Spanish]. Inf. Constr. 68, 91–102 (2016).

    Article  Google Scholar 

  38. 38

    Moon, J., Grau, J. E., Knezevic, V., Cima, M. J. & Sachs, E. M. Ink-jet printing of binders for ceramic components. J. Am. Ceram. Soc. 85, 755–762 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Grinham, J., Blabolil, R. & Haak, J. Harvest shade screens: programming material for optimal energy building skins. ACADIA (2014).

  40. 40

    Castellano, M. G., Indirli, M. & Martelli, A. Progress of application, research and development, and design guidelines for shape memory alloy devices for cultural heritage structures in Italy. Proc. SPIE (2001).

  41. 41

    Niehe, P. Construction steelwork makes its 3D printing premiere. Arup (2014).

  42. 42

    Baker, R. Method of making decorative articles. US Patent 1533300A (1925).

  43. 43

    Warton, J., Dwivedi, R. & Kovacevic, R. in Robotic Fabrication in Architecture, Art and Design 2014 (eds McGee, W. & de Leon, M. P. ) 147–161 (Springer, 2014).

    Book  Google Scholar 

  44. 44

    Skylar-Scott, M. A., Gunaesekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl Acad. Sci. USA 113, 6137–6142 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Ribeiro, F., Norrish, J. & McMaster, R. S. Practical case of rapid prototyping using gas metal arc welding. Repositorium (1994).

  46. 46

    Riberio, F. & Norrish, J. Making components with controlled metal deposition. Proc. IEEE Int. Symp. Ind. Electron. (1997).

  47. 47

    Kind-Barkauskas, F., Kauhsen, B., Polónyi, S. & Brandt, J. Beton Atlas [German] 2nd edn (Walter de Gruyter, 2002).

    Google Scholar 

  48. 48

    Jones, B. E. Cassell's Reinforced Concrete (Cassell and Co., 1913).

    Google Scholar 

  49. 49

    Plank, J. Applications of biopolymers and other biotechnological products in building materials. Appl. Microbiol. Biotechnol. 66, 1–9 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Raki, L., Beaudoin, J., Alizadeh, R., Makar, J. & Taijiro, S. Cement and concrete nanoscience and nanotechnology. Materials 3, 918–942 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Richard, P. in Proc. 4th Int. Symp. Utilization High-Strength/High-Performance Concrete (eds de Larrard, F. & Lacroix, R. ) 1343–1357 (1996).

    Google Scholar 

  52. 52

    Russel, H. G. & Graybeal, B. A. Ultra-high performance concrete: a state-of-the-art report for the bridge community U.S. Department of Transportation, Federal Highway Adminstration (2013).

  53. 53

    Forstlechner, F. X., Freytag, B. & Peters, S. Spannbett-vorspannung dünner Carbonbeton-Platten [German]. Beton-Stahlbetonbau 110, 419–428 (2015).

    Article  Google Scholar 

  54. 54

    Means, R. 2016 Building Construction Cost Data Book 74th edn (ed. Plotner, S. C. ) (RS Means, 2016).

    Google Scholar 

  55. 55

    Amtsberg, F., Parmann, G., Trummer, A. & Peters, S. in Robotic Fabrication in Architecture, Art and Design 2016 (eds Reinhardt, D., Saunders, R. & Burry, J. ) 304–315 (Springer, 2016).

    Book  Google Scholar 

  56. 56

    Bock, T. Construction robotics. Auto. Robots 22, 201–209 (2007).

    Article  Google Scholar 

  57. 57

    Wheen, R. J. & Bridge, R. Q. ORIHUNE-the World's first folded concrete canoe. J. Ferrocement 11, 311–318 (1981).

    Google Scholar 

  58. 58

    Bechthold, M. in Proc. IASS Symp. Shell and Spatial Structures: Structural Architecture 53–56 (IASS, 2007).

    Google Scholar 

  59. 59

    Redjvani, A. WO/1993/020990A1 (1993).

  60. 60

    Guerrini, G. L. & Roberta, A. EP1957245 (2014).

  61. 61

    Lloret, E. et al. Complex concrete structures: merging existing casting techniques with digital fabrication. Comput. Aided Design 60, 40–49 (2015).

    Article  Google Scholar 

  62. 62

    Penja, J. Exploratory investigation of solid freeform construction. Auto. Constr. 5, 427–437 (1997).

    Article  Google Scholar 

  63. 63

    Dini, E., Chiarugi, M. & Nannini, R. Method and device for building automatically conglomerate structures. US Patent 20080148683 A1 (2008).

  64. 64

    Cesaretti, G., Dini, E., De Kestelier, X., Colla, V. & Pambaguian, L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 93, 430–450 (2014).

    Article  Google Scholar 

  65. 65

    Koshnevis, B. & Dutton, R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials. Mater. Technol. 13, 52–56 (1998).

    Google Scholar 

  66. 66

    Khoshnevis, B. et al. Lunar contour crafting — a novel technique for ISRU-based habitat development. Aero. Sci. Meetings (2005).

  67. 67

    Koshnevis, B. Automated construction by contour crafting — related robotics and information technologies. Auto. Constr. 13, 5–19 (2004).

    Article  Google Scholar 

  68. 68

    Le, T. T. et al. Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 45, 1221–1232 (2012).

    CAS  Article  Google Scholar 

  69. 69

    Lim, S. et al. Developments in construction-scale additive manufacturing processes. Auto. Constr. 21, 262–268 (2012).

    Article  Google Scholar 

  70. 70

    Buswell, R. A., Thorpe, A., Soar, R. C. & Gibb, A. F. Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Auto. Constr. 17, 923–929 (2008).

    Article  Google Scholar 

  71. 71

    Le, T. T. et al. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 42, 558–566 (2012).

    CAS  Article  Google Scholar 

  72. 72

    Feng, P., Meng, X., Chen, J.-F. & Ye, L. Mechanical properties of structures 3D printed with cementitious powders. Constr. Build. Mater. 93, 486–497 (2015).

    Article  Google Scholar 

  73. 73

    Kim, T., Tae, S. & Roh, S. Assessment of the CO2 emission and cost reduction performance of low-carbon-emission concrete mix design using an optimal mix design system. Renewable Sustainable Energy Rev. 25, 729–741 (2013).

    CAS  Article  Google Scholar 

  74. 74

    Hub, A., Zimmermann, G. & Knippers, J. Leichtbeton mit Aerogelen als Konstruktionswerkstoff [German]. Beton Stahlbetonbau 108, 654–661 (2013).

    Article  Google Scholar 

  75. 75

    Schlaich, M. & Hückler, A. Infraleichtbeton 2.0 [German]. Beton Stahlbetonbau 107, 757–766 (2012).

    Article  Google Scholar 

  76. 76

    Herrman, M. & Sobek, W. Gradientenbeton — Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierer Bauteile [German]. Beton Stahlbetonbau 110, 673–686 (2015).

    Article  Google Scholar 

  77. 77

    Ge, D. et al. Robust smart window: reversible switching from high transparency to angle-independent structural color display. Adv. Mater. 27, 2489–2495 (2015).

    CAS  Article  Google Scholar 

  78. 78

    Kim, P. et al. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns. Adv. Opt. Mater. 1, 381–388 (2013).

    Article  Google Scholar 

  79. 79

    Marchelli, G., Prabhakar, R., Storti, D. & Ganter, M. The guide to glass 3D printing: developments, methods, diagnostics and results. Rapid Prototyp. J. 17, 187–194 (2011).

    Article  Google Scholar 

  80. 80

    Klein, J. et al. Additive manufacturing of optically transparent glass. 3D Print. Addit. Manufactur. 2, 92–105 (2015).

    Article  Google Scholar 

  81. 81

    Sheil, B., Menges, A., Glynn, R. & Skavara, M. Fabricate: rethinking design and construction. University College London (2017).

  82. 82

    Bakis, C. E. et al. Fiber-reinforced polymer composites for construction — state-of-the-art review. J. Compos. Constr. 6, 73–87 (2002).

    CAS  Article  Google Scholar 

  83. 83

    John, M. J. & Thomas, S. Biofibers and biocomposites. Carboydr. Polym. 71, 343–364 (2008).

    CAS  Article  Google Scholar 

  84. 84

    Faruk, O., Bledzki, A. K., Fink, H.-P. & Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37, 1552–1596 (2012).

    CAS  Article  Google Scholar 

  85. 85

    Lee, S.-H. & Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites 37, 80–91, (2006).

    CAS  Article  Google Scholar 

  86. 86

    Koch, K.-M. Membrane Structures: the Fifth Building Material (Prestel, 2004).

    Google Scholar 

  87. 87

    Koebel, M., Rigacci, A. & Achard, P. Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63, 315–339 (2012).

    CAS  Article  Google Scholar 

  88. 88

    Augustyniak, M. J. & McCoy, T. D. Architectural membrane and method of making same. USA Patent 8899000 B2 (2014).

  89. 89

    Park, Y., Gurierrez, M. P. & Lee, L. P. Reversible self-actuated thermo-responsive pore membrane. Sci. Rep. 6, 39402 (2016).

    Article  CAS  Google Scholar 

  90. 90

    Keire, F. A. Sail of woven material and method of manufacture. USA Patent 6257160 B1 (2001).

  91. 91

    Knippers, J., Jungjohann, H., Scheible, F. & Oppe, M. Bio-inspirierte kinetische Fassade fuer den Themenpavillion “one ocean” EXPO 2012 in Yeosu. Korea [German]. Bautechnik 90, 341–347 (2013).

    Article  Google Scholar 

  92. 92

    Waimer, F. et al. Bionisch-inspirierte Faserverbundstrukturen [German]. Bautechnik 90, 766–771 (2013).

    Article  Google Scholar 

  93. 93

    Masselter, T. et al. Biomimetic optimisation of branched fibre-reinforced composites in engineering by detailed analyses of biological concept generators. Bioinspir. Biomim. 11, 055005 (2016).

    CAS  Article  Google Scholar 

  94. 94

    Mark, G. T. Methods for fiber reinforced additive manufacturing. US Patent 20140361460 A1 (2014).

  95. 95

    Engelsmann, S., Spalding, V. & Peters, S. Kunststoffe in Architektur und Konstruktion [German] (Birkhäuser, 2010).

    Book  Google Scholar 

  96. 96

    Bell, M. & Buckley, C. Permanent Change: Plastics in Architecture and Engineering (Princeton Arch. Press, 2014).

    Google Scholar 

  97. 97

    Pacheco-Torgal, F., Jalali, S. & Fucic, A. Toxicity of Building Materials (Woodhead, 2012).

    Book  Google Scholar 

  98. 98

    Fan, J.-N. & Schodek, D. Personalized furniture within the conditions of mass production. Academia (2007).

  99. 99

    Oxman, N., Keating, S. & Tsai, E. in Innovative Developments in Virtual and Physical Prototyping (ed. da Silva Bartolo, P. J. ) 483–489 (2011).

    Book  Google Scholar 

  100. 100

    Tibbits, S. & Cheung, K. Programmable materials for architectural assembly and automation. Assembly Auto. 32, 216–225 (2012).

    Article  Google Scholar 

  101. 101

    Tibbits, S. 4D printing: multi-material shape change. Arch. Design 84, 116–121 (2014).

    Article  Google Scholar 

  102. 102

    Babaee, S. et al. 3D soft metamaterials with negative Poisson's ratio. Adv. Mater. 25, 5044–5049 (2013).

    CAS  Article  Google Scholar 

  103. 103

    Hatton, B. D. et al. An artificial vasculature for adaptive thermal control of windows. Sol. Energy Mater. Sol. Cells 117, 429–436 (2013).

    CAS  Article  Google Scholar 

  104. 104

    Park, D. et al. Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers. Build. Environ. 82, 87–96 (2014).

    Article  Google Scholar 

  105. 105

    Bechthold, M. & Sayegh, A. Hacking science: the ALivE group's material design methods for interdisciplinary environments. Arch. Design 85, 108–113 (2015).

    Article  Google Scholar 

  106. 106

    Gramazio, F. & Kohler, M. Digital Materiality in Architecture (Lars-Müller, 2008).

    Google Scholar 

  107. 107

    Ivanov, V. & Stabnikov, V. Construction Biotechnology (Springer, 2017).

    Book  Google Scholar 

  108. 108

    Bayer, E. & McIntyre, G. Method for making dehydrated mycelium elements and product made thereby. US Patent US20120270302A1 (2012).

  109. 109

    Dawood, S. Designer grows funiture from the ground. Design Week (2015).

  110. 110

    Dosier, G. K. Methods for making construction materials using enzyme producing bacteria. US Patent US9199880B2 (2014).

  111. 111

    Miserez, A. et al. Microstructural and biochemical characterization of the nanoporous sucker rings from Dosidicus gigas. Adv. Mater. 21, 401–406 (2009).

    CAS  Article  Google Scholar 

  112. 112

    Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13, 42–52 (2010).

    CAS  Article  Google Scholar 

  113. 113

    Frølich, S., Weaver, J. C., Dean, M. N. & Birkedal, H. Uncovering nature's design strategies through parametric modeling, multi-material 3D printing, and mechanical testing. Adv. Eng. Mater. 19, e201600848 (2017).

    Article  CAS  Google Scholar 

  114. 114

    Ashby, M. Materials and the Environment (Butterworth–Heinemann, 2009).

    Google Scholar 

  115. 115

    Gibson, L. J., Ashby, M. F. & Harley, B. A. Cellular Materials in Nature and Medicine (Cambridge Univ. Press, 2010).

    Google Scholar 

  116. 116

    Leban, J. M. et al. Wood welding: a challenging alternative to conventional wood gluing. Scand. J. For. Res. 20, 534–538 (2005).

    Article  Google Scholar 

  117. 117

    Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

    CAS  Article  Google Scholar 

  118. 118

    Brom, J. E. Growth and Characterization of Bismuth Selenide Thin Films by Chemical Vapour Deposition. Thesis, Penn. State Univ. (2014).

    Google Scholar 

  119. 119

    Saleh, A. A., Gazder, A. A. & Pereloma, E. V. EBSD observations of recrystallisation and tensile deformation in twinning induced plasticity steel. Trans. Indian Inst. Met. 66, 621–629 (2013).

    CAS  Article  Google Scholar 

  120. 120

    Dmitrieva, O. et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 59, 364–374 (2011).

    CAS  Article  Google Scholar 

  121. 121

    Ramazani, A., Mukherjee, K., Quade, H., Prahl, U. & Bleck, W. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Mater. Sci. Eng. A 560, 129–139 (2013).

    CAS  Article  Google Scholar 

  122. 122

    Lanzón, M., Cnudde, V., de Kock, T. & Dewanckele, J. X-Ray microtomography (μ-CT) to evaluate microstructure of mortars containing low density additions. Cem. Concr. Comp. 34, 993–1000 (2012).

    Article  CAS  Google Scholar 

  123. 123

    Cho, H. et al. Engineering the mechanics of heterogeneous soft crystals. Adv. Funct. Mater. 26, 6938–6949 (2016).

    CAS  Article  Google Scholar 

  124. 124

    Gurley, A., Beale, D., Broughton, R. & Branscomb, D. The design of optimal lattice structures manufactured by maypole braiding. J. Mech. Eng. 137, 101401 (2015).

    Google Scholar 

  125. 125

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    CAS  Article  Google Scholar 

  126. 126

    Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    CAS  Article  Google Scholar 

  127. 127

    Shim, J. et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials. Soft Matter 9, 8198–8202 (2013).

    CAS  Article  Google Scholar 

  128. 128

    Mesa, O. et al. Non-linear matters: auxetic surfaces. ACADIA (2017).

  129. 129

    Tucker, S. N. & Ambrose, M. D. Embodied energy of dwellings. CSIRO (2017).

Download references


The research presented here draws on collaborations between the Harvard Graduate School of Design, the Wyss Institute for Biologically Inspired Engineering, the Harvard Paulson School of Engineering and Applied Sciences, the Massachusetts Institute of Technology (MIT) Media Lab, the MIT Department of Civil and Environmental Engineering, the Max Planck Institute of Colloids and Interfaces, and the Nanyang Technological University School of Materials Science & Engineering. In particular, the authors thank Joanna Aizenberg, Katia Bertoldi, David Mooney, Allen Sayegh, Chuck Hoberman, Neri Oxman, Admir Masic, Peter Fratzl, Mason Dean, John Dunlop, Matt Harrington, Lorenzo Guiducci, Ali Miserez, Jack Mershon, Jonathan Grinham, Tiffany Cheng, Kelley Hess, Sarah Norman, Saurabh Mhatre, Malika Singh, Kevin Hinz, Daekwon Park, Olga Mesa, Philseok Kim, Johannes Overvelde, Jack Alvarenga, Onye Ahanotu, Kenneth Park, Benjamin Hatton and Luo Gu for their contributions to this work.

Author information




Both authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Martin Bechthold or James C. Weaver.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechthold, M., Weaver, J. Materials science and architecture. Nat Rev Mater 2, 17082 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing