Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanomaterials for in vivo imaging of mechanical forces and electrical fields

Abstract

Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanical forces and electric fields in biology.
Figure 2: Comparison of mechanical force probes.
Figure 3: Mechanical force sensors.
Figure 4: Measuring electrical fields.
Figure 5: Electrical field sensors.

Similar content being viewed by others

References

  1. Alexander, R. M. The Human Machine (Columbia Univ. Press, 1992).

    Google Scholar 

  2. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    Article  CAS  Google Scholar 

  3. Fisher, M. E. & Kolomeisky, A. B. The force exerted by a molecular motor. Proc. Natl Acad. Sci. USA 96, 6597–6602 (1999).

    Article  CAS  Google Scholar 

  4. Cigognini, D. et al. Engineering in vitro microenvironments for cell based therapies and drug discovery. Drug Discov. Today 18, 1099–1108 (2013).

    Article  CAS  Google Scholar 

  5. Moulia, B. Plant biomechanics and mechanobiology are convergent paths to flourishing interdisciplinary research. J. Exp. Bot. 64, 4617–4633 (2013).

    Article  CAS  Google Scholar 

  6. Xu, W. et al. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7, e46609 (2012).

    Article  CAS  Google Scholar 

  7. Reardon, S. A giant neuron found wrapped around entire mouse brain. Nature 543, 14–15 (2017).

    Article  CAS  Google Scholar 

  8. Sachdev, R. N., Ebner, F. F. & Wilson, C. J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol. 92, 3511–3521 (2004).

    Article  Google Scholar 

  9. Zhang, P. C., Keleshian, A. M. & Sachs, F. Voltage-induced membrane movement. Nature 413, 428–432 (2001).

    Article  CAS  Google Scholar 

  10. Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012).

    Article  CAS  Google Scholar 

  11. Korneyev, A. Y. Stress-induced tau phosphorylation in mouse strains with different brain Erk1 + 2 immunoreactivity. Neurochem. Res. 23, 1539–1543 (1998).

    Article  CAS  Google Scholar 

  12. Style, R. W. et al. Traction force microscopy in physics and biology. Soft Matter 10, 4047–4055 (2014).

    Article  CAS  Google Scholar 

  13. Dufrene, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    Article  CAS  Google Scholar 

  14. Alsteens, D. et al. Atomic force microscopy-based characterization and design of biointerfaces. Nat. Rev. Mater. 2, 17008 (2017).

    Article  CAS  Google Scholar 

  15. Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nat. Photonics 5, 318–321 (2011).

    Article  CAS  Google Scholar 

  16. Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology (John Wiley & Sons, 2002).

    Book  Google Scholar 

  17. Brugues, A. et al. Forces driving epithelial wound healing. Nat. Phys. 10, 683–690 (2014).

    Article  CAS  Google Scholar 

  18. Koch, T. M., Munster, S., Bonakdar, N., Butler, J. P. & Fabry, B. 3D traction forces in cancer cell invasion. PLoS ONE 7, e33476 (2012).

    Article  CAS  Google Scholar 

  19. Mularski, A. et al. Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir 31, 6164–6171 (2015).

    Article  CAS  Google Scholar 

  20. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317 (2000).

    Article  CAS  Google Scholar 

  21. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  CAS  Google Scholar 

  22. Perkins, T. T., Dalal, R. V., Mitsis, P. G. & Block, S. M. Sequence-dependent pausing of single lambda exonuclease molecules. Science 301, 1914–1918 (2003).

    Article  CAS  Google Scholar 

  23. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    Article  CAS  Google Scholar 

  24. Zhang, J., Mehta, S. & Schultz, C. Optical Probes in Biology (CRC Press, 2015).

    Google Scholar 

  25. Cost, A. L., Ringer, P., Chrostek-Grashoff, A. & Grashoff, C. How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell. Mol. Bioeng. 8, 96–105 (2015).

    Article  CAS  Google Scholar 

  26. Wegner, K. D. & Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015).

    Article  CAS  Google Scholar 

  27. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  Google Scholar 

  28. Smith, A. M., Mancini, M. C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  Google Scholar 

  29. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  Google Scholar 

  30. Russell, E. S. Form and Function: a Contribution to the History of Animal Morphology (J. Murray, 1916).

    Google Scholar 

  31. Roux, W. Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen [German] (Wilhelm Engelmann, 1985).

    Google Scholar 

  32. Fung, Y. C. Biomechanics Mechanical Properties of Living Tissues (Springer, 1981).

    Book  Google Scholar 

  33. Harris, A., Wild, P. & Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980).

    Article  CAS  Google Scholar 

  34. Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Helvet. Phys. Acta 55, 726–735 (1982).

    CAS  Google Scholar 

  35. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).

    Article  CAS  Google Scholar 

  36. Freikamp, A., Cost, A. L. & Grashoff, C. The piconewton force awakens: quantifying mechanics in cells. Trends Cell Biol. 26, 838–847 (2016).

    Article  Google Scholar 

  37. Nelson, C. M. From static to animated: measuring mechanical forces in tissues. J. Cell Biol. 216, 29–30 (2017).

    Article  CAS  Google Scholar 

  38. Campas, O. A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 55, 119–130 (2016).

    Article  CAS  Google Scholar 

  39. Jurchenko, C. & Salaita, K. S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol. 35, 2570–2582 (2015).

    Article  CAS  Google Scholar 

  40. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Article  CAS  Google Scholar 

  41. Stephens, R. E. Analysis of muscle contraction by ultraviolet microbeam disruption of sarcomere structure. J. Cell Biol. 25, 129–139 (1965).

    Article  CAS  Google Scholar 

  42. Soloperto, A. et al. Laser nano-neurosurgery from gentle manipulation to nano-incision of neuronal cells and scaffolds: an advanced neurotechnology tool. Front. Neurosci. 10, 101 (2016).

    Article  Google Scholar 

  43. Sun, Y., Kim, D.-H. & Simmons, C. A. Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  44. Sweeney, S. T., Hidalgo, A., de Belle, J. S. & Keshishian, H. Embryonic cell ablation in Drosophila using lasers. Cold Spring Harb. Protoc. 2012, 691–693 (2012).

    Google Scholar 

  45. Avery, L. & Horvitz, H. R. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51, 1071–1078 (1987).

    Article  CAS  Google Scholar 

  46. Behrndt, M. et al. Forces driving epithelial spreading in zebrafish gastrulation. Science 338, 257–260 (2012).

    Article  CAS  Google Scholar 

  47. Mondia, J. P., Adams, D. S., Orendorff, R. D., Levin, M. & Omenetto, F. G. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes. Biomed. Opt. Express 2, 2383–2391 (2011).

    Article  Google Scholar 

  48. Heller, E., Kumar, K. V., Grill, S. W. & Fuchs, E. Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis. Dev. Cell 28, 617–632 (2014).

    Article  CAS  Google Scholar 

  49. Yanik, M. F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822 (2004).

    Article  CAS  Google Scholar 

  50. Upadhyaya, A., Chabot, J. R., Andreeva, A., Samadani, A. & van Oudenaarden, A. Probing polymerization forces by using actin-propelled lipid vesicles. Proc. Natl Acad. Sci. USA 100, 4521–4526 (2003).

    Article  CAS  Google Scholar 

  51. Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).

    Article  CAS  Google Scholar 

  52. Boukellal, H., Campas, O., Joanny, J. F., Prost, J. & Sykes, C. Soft Listeria : actin-based propulsion of liquid drops. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 061906 (2004).

    Article  CAS  Google Scholar 

  53. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014). This paper demonstrates the technique of using fluorinated oil droplets to measure the anisotropic forces exerted by cells.

    Article  CAS  Google Scholar 

  54. McLure, I. A., Soares, V. A. M. & Edmonds, B. Surface tension of perfluoropropane, perfluoro-n-butane, perfluoro-n-hexane, perfluoro-octane, perfluorotributylamine and n-pentane. Application of the principle of corresponding states to the surface tension of perfluoroalkanes. J. Chem. Soc., Faraday Trans. 1 78, 2251–2257 (1982).

    Article  CAS  Google Scholar 

  55. Turansky, R., Konopka, M., Doltsinis, N. L., Stich, I. & Marx, D. Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges. ChemPhysChem 11, 345–348 (2010).

    Article  CAS  Google Scholar 

  56. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  Google Scholar 

  57. Yang, Q. Z. et al. A molecular force probe. Nat. Nanotechnol. 4, 302–306 (2009).

    Article  CAS  Google Scholar 

  58. Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  CAS  Google Scholar 

  59. Jameson, L. P., Balaz, M., Dzyuba, S. V. & Kamiya, N. Conformational preference of a porphyrin rotor in confined environments. RSC Adv. 4, 705–708 (2014).

    Article  CAS  Google Scholar 

  60. Kamat, N. P. et al. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl Acad. Sci. USA 108, 13984–13989 (2011).

    Article  CAS  Google Scholar 

  61. Lopez-Duarte, I., Vu, T. T., Izquierdo, M. A., Bull, J. A. & Kuimova, M. K. A molecular rotor for measuring viscosity in plasma membranes of live cells. Chem. Commun. 50, 5282–5284 (2014).

    Article  CAS  Google Scholar 

  62. Sherin, P. S. et al. Visualising the membrane viscosity of porcine eye lens cells using molecular rotors. Chem. Sci. 8, 3523–3528 (2017). This paper demonstrates the in vivo use of molecular rotors for studying the local viscosity within a tumour.

    Article  CAS  Google Scholar 

  63. Shimolina, L. E. et al. Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci. Rep. 7, 41097 (2017).

    Article  CAS  Google Scholar 

  64. Shao, J., Lei, Y., Wen, Z., Dou, Y. & Wang, Z. Nonadiabatic simulation study of photoisomerization of azobenzene: detailed mechanism and load-resisting capacity. J. Chem. Phys. 129, 164111 (2008).

    Article  CAS  Google Scholar 

  65. Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275, 3072–3087 (2008).

    Article  CAS  Google Scholar 

  66. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010). This paper is the first demonstration and calibration of a tethered FRET force sensor, TSmod.

    Article  CAS  Google Scholar 

  67. Scholl, J. A. et al. Evolution of plasmonic metamolecule modes in the quantum tunneling regime. ACS Nano 10, 1346–1354 (2016).

    Article  CAS  Google Scholar 

  68. Chen, T., Hong, Y. & Reinhard, B. M. Probing DNA stiffness through optical fluctuation analysis of plasmon rulers. Nano Lett. 15, 5349–5357 (2015).

    Article  CAS  Google Scholar 

  69. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005).

    Article  CAS  Google Scholar 

  70. Xiong, B. et al. Single plasmonic nanosprings for visualizing reactive-oxygen-species-activated localized mechanical force transduction in live cells. ACS Nano 11, 541–548 (2017).

    Article  CAS  Google Scholar 

  71. Freikamp, A., Mehlich, A., Klingner, C. & Grashoff, C. Investigating piconewton forces in cells by FRET-based molecular force microscopy. J. Struct. Biol. 197, 37–42 (2017).

    Article  CAS  Google Scholar 

  72. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article  Google Scholar 

  73. Kumar, A. et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J. Cell Biol. 213, 371–383 (2016).

    Article  CAS  Google Scholar 

  74. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article  CAS  Google Scholar 

  75. Paluch, E. K. et al. Mechanotransduction: use the force(s). BMC Biol. 13, 47 (2015).

    Article  CAS  Google Scholar 

  76. Fan, X., Zheng, W. & Singh, D. J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 3, e179 (2014).

    Article  CAS  Google Scholar 

  77. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    Article  CAS  Google Scholar 

  78. Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    Article  CAS  Google Scholar 

  79. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  CAS  Google Scholar 

  80. Liu, L. et al. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 131, 16423–16429 (2009).

    Article  CAS  Google Scholar 

  81. Choi, C. L., Koski, K. J., Sivasankar, S. & Alivisatos, A. P. Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies. Nano Lett. 9, 3544–3549 (2009).

    Article  CAS  Google Scholar 

  82. Fang, L. et al. Mechanical and electrical properties of CdTe tetrapods studied by atomic force microscopy. J. Chem. Phys. 127, 184704 (2007). This paper demonstrates the use of quantum dot tetrapods as optical sensors of uniaxial strain acting on polyester fibres in situ.

    Article  CAS  Google Scholar 

  83. Choi, C. L., Koski, K. J., Olson, A. C. & Alivisatos, A. P. Luminescent nanocrystal stress gauge. Proc. Natl Acad. Sci. USA 107, 21306–21310 (2010).

    Article  CAS  Google Scholar 

  84. Shen, J., Sun, L. D. & Yan, C. H. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 14, 5687–5697 (2008).

    Article  CAS  Google Scholar 

  85. Wisser, M. D. et al. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. Nano Lett. 15, 1891–1897 (2015).

    Article  CAS  Google Scholar 

  86. Wisser, M. D. et al. Enhancing quantum yield via local symmetry distortion in lanthanide-based upconverting nanoparticles. ACS Photonics 3, 1523–1530 (2016).

    Article  CAS  Google Scholar 

  87. Lay, A. et al. Upconverting nanoparticles as optical sensors of nano- to micro-newton forces. Nano Lett. 17, 4172–4177 (2017). This paper demonstrates the calibration and characterization of upconverting nanoparticles as optical sensors of nN to μN forces.

    Article  CAS  Google Scholar 

  88. Levy, E. S. et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano 10, 8423–8433 (2016).

    Article  CAS  Google Scholar 

  89. Nyk, M., Kumar, R., Ohulchanskyy, T. Y., Bergey, E. J. & Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834–3838 (2008).

    Article  CAS  Google Scholar 

  90. Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J. & Capobianco, J. A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584 (2015).

    Article  CAS  Google Scholar 

  91. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  92. Sakmann, B. & Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472 (1984).

    Article  CAS  Google Scholar 

  93. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  Google Scholar 

  94. Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

    Article  CAS  Google Scholar 

  95. Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    Article  CAS  Google Scholar 

  96. Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J. & BeMent, S. L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35, 719–732 (1988).

    Article  CAS  Google Scholar 

  97. Jones, K. E., Campbell, P. K. & Normann, R. A. A glass/silicon composite intracortical electrode array. Ann. Biomed. Engineer. 20, 423–437 (1992).

    Article  CAS  Google Scholar 

  98. Nordhausen, C. T., Rousche, P. J. & Normann, R. A. Optimizing recording capabilities of the Utah Intracortical Electrode Array. Brain Res. 637, 27–36 (1994).

    Article  CAS  Google Scholar 

  99. Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726, 129–140 (1996).

    Article  CAS  Google Scholar 

  100. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  CAS  Google Scholar 

  101. Rohatgi, P., Langhals, N. B., Kipke, D. R. & Patil, P. G. In vivo performance of a microelectrode neural probe with integrated drug delivery. Neurosurg. Focus 27, E8 (2009).

    Article  Google Scholar 

  102. Hamel, E. J., Grewe, B. F., Parker, J. G. & Schnitzer, M. J. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86, 140–159 (2015).

    Article  CAS  Google Scholar 

  103. Peterka, D. S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

    Article  CAS  Google Scholar 

  104. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activitymaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  Google Scholar 

  105. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  Google Scholar 

  106. Podor, B. et al. Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy. Neurophotonics 2, 021014 (2015).

    Article  CAS  Google Scholar 

  107. Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010).

    Article  CAS  Google Scholar 

  108. Lutcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4, 9 (2010).

    Google Scholar 

  109. Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L. & Helmchen, F. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499, 336–340 (2013).

    Article  CAS  Google Scholar 

  110. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  111. Helmchen, F., Borst, J. G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    Article  CAS  Google Scholar 

  112. Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. 529, 625–646 (2000).

    Article  CAS  Google Scholar 

  113. Theis, L. et al. Benchmarking spike rate inference in population calciumimaging. Neuron 90, 471–482 (2016).

    Article  CAS  Google Scholar 

  114. Tsytsarev, V. et al. Recent progress in voltage-sensitive dye imaging for neuroscience. J. Nanosci. Nanotechnol. 14, 4733–4744 (2014).

    Article  CAS  Google Scholar 

  115. Canepari, M. & Zecevic, D. Membrane Potential Imaging in the Nervous System: Methods and Applications (Springer, 2010).

    Google Scholar 

  116. Yan, P. et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc. Natl Acad. Sci. USA 109, 20443–20448 (2012).

    Article  CAS  Google Scholar 

  117. Cohen, L. B. et al. Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Membrane Biol. 19, 1–36 (1974).

    Article  CAS  Google Scholar 

  118. Palmer, L. M. & Stuart, G. J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854–1863 (2006).

    Article  CAS  Google Scholar 

  119. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    Article  CAS  Google Scholar 

  120. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).

    Article  CAS  Google Scholar 

  121. Brown, C. E., Aminoltejari, K., Erb, H., Winship, I. R. & Murphy, T. H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009).

    Article  CAS  Google Scholar 

  122. Ahmed, B. et al. Cortical dynamics subserving visual apparent motion. Cereb. Cortex 18, 2796–2810 (2008).

    Article  Google Scholar 

  123. Chemla, S. & Chavane, F. Voltage-sensitive dye imaging: technique review and models. J. Physiol. Paris 104, 40–50 (2010).

    Article  CAS  Google Scholar 

  124. Benucci, A., Frazor, R. A. & Carandini, M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–117 (2007).

    Article  CAS  Google Scholar 

  125. Slovin, H., Arieli, A., Hildesheim, R. & Grinvald, A. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J. Neurophysiol. 88, 3421–3438 (2002). This paper uses the voltage-sensitive dye RH-1691 to visualize neural activity in vivo in monkeys, providing functional maps of the sensory periphery in deep brain structures.

    Article  Google Scholar 

  126. Zhou, W. L., Yan, P., Wuskell, J. P., Loew, L. M. & Antic, S. D. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J. Neurosci. Methods 164, 225–239 (2007).

    Article  CAS  Google Scholar 

  127. Foust, A. J., Yu, Y., Popovic, M., Zecevic, D. & McCormick, D. A. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J. Neurosci. 31, 15490–15498 (2011).

    Article  CAS  Google Scholar 

  128. Treger, J. S., Priest, M. F., Iezzi, R. & Bezanilla, F. Real-time imaging of electrical signals with an infrared FDA-approved dye. Biophys. J. 107, L09–12 (2014).

    Article  CAS  Google Scholar 

  129. Mutoh, H., Mishina, Y., Gallero-Salas, Y. & Knopfel, T. Comparative performance of a genetically-encoded voltage indicator and a blue voltage sensitive dye for large scale cortical voltage imaging. Front. Cell Neurosci. 9, 147 (2015).

    Article  CAS  Google Scholar 

  130. González, J. E. & Tsien, R. Y. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272–1280 (1995).

    Article  Google Scholar 

  131. Lundby, A., Akemann, W. & Knopfel, T. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625–1635 (2010).

    Article  CAS  Google Scholar 

  132. Perron, A. et al. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front. Mol. Neurosci. 2, 5 (2009).

    Article  CAS  Google Scholar 

  133. Perron, A., Mutoh, H., Launey, T. & Knopfel, T. Red-shifted voltage-sensitive fluorescent proteins. Chem. Biol. 16, 1268–1277 (2009).

    Article  CAS  Google Scholar 

  134. Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108, 2323–2337 (2012).

    Article  CAS  Google Scholar 

  135. Barnett, L., Platisa, J., Popovic, M., Pieribone, V. A. & Hughes, T. A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLoS ONE 7, e43454 (2012).

    Article  CAS  Google Scholar 

  136. Jin, L. et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779–785 (2012).

    Article  CAS  Google Scholar 

  137. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    Article  CAS  Google Scholar 

  138. Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015). This paper presents a FRET-based GEVI that is sufficiently bright and fast to resolve fast spike trains with low detection error rates for in vivo imaging of sensory-evoked responses in mice and flies.

    Article  CAS  Google Scholar 

  139. Gong, Y., Wagner, M. J., Zhong Li, J. & Schnitzer, M. J. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat. Commun. 5, 3674 (2014).

    Article  Google Scholar 

  140. Miller, E. W. Small molecule fluorescent voltage indicators for studying membrane potential. Curr. Opin. Chem. Biol. 33, 74–80 (2016).

    Article  CAS  Google Scholar 

  141. Woodford, C. R. et al. Improved PeT molecules for optically sensing voltage in neurons. J. Am. Chem. Soc. 137, 1817–1824 (2015).

    Article  CAS  Google Scholar 

  142. Kulkarni, R. U. et al. A rationally designed, general strategy for membrane orientation of photoinduced electron transfer-based voltage-sensitive dyes. ACS Chem. Biol. 12, 407–413 (2017). This paper uses molecular dynamics simulations to guide the design of PeT-based voltage-sensitive dyes, demonstrating nine new dyes with an optimized alignment with respect to the cell membrane, which makes them the most sensitive PeT-based dyes to date.

    Article  CAS  Google Scholar 

  143. Yang, H. H. et al. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166, 245–257 (2016).

    Article  CAS  Google Scholar 

  144. Molokanova, E. B. et al. Quantum dots move beyond fluorescence imaging. Biophotonics Int. 6, 26–31 (2008).

    Google Scholar 

  145. Marshall, J. D. & Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7, 4601–4609 (2013).

    Article  CAS  Google Scholar 

  146. Rowland, C. E. et al. Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes. Nano Lett. 15, 6848–6854 (2015). This paper demonstrates the potential of quantum dots to track action potential firing with a millisecond time resolution.

    Article  CAS  Google Scholar 

  147. Nag, O. K. et al. Quantum dot-peptide-fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 11, 5598–5613 (2017).

    Article  CAS  Google Scholar 

  148. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  149. Zhu, Y., Hong, H., Xu, Z., Li, Z. & Cai, W. Quantum dot-based nanoprobes for in vivo targeted imaging. Curr. Mol. Med. 13, 1549–1567 (2013).

    Article  CAS  Google Scholar 

  150. Zhelev, Z., Ohba, H. & Bakalova, R. Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J. Am. Chem. Soc. 128, 6324–6325 (2006).

    Article  CAS  Google Scholar 

  151. Hall, L. T. et al. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci. Rep. 2, 401 (2012).

    Article  CAS  Google Scholar 

  152. Boretti, A. & Castelletto, S. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks. MethodsX 3, 297–306 (2016).

    Article  Google Scholar 

  153. Chen, E. H. et al. High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond. Phys. Rev. A 95, 053417 (2017).

    Article  Google Scholar 

  154. Barson, M. S. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).

    Article  CAS  Google Scholar 

  155. Montalti, M., Cantelli, A. & Battistelli, G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015).

    Article  CAS  Google Scholar 

  156. Mohan, N. & Chang, H.-C. in Optical Engineering of Diamond (eds Mildren, R. P. & Rabeau, J. R. ) 445–471 (Wiley, 2013).

    Book  Google Scholar 

  157. Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016). This paper demonstrates the ability of nitrogen vacancy centres to detect single action potentials in living worms with no adverse effects on the animal for measurements longer than 24 hours.

    Article  CAS  Google Scholar 

  158. Wee, T. L. et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. J. Phys. Chem. A 111, 9379–9386 (2007).

    Article  CAS  Google Scholar 

  159. Hui, Y. Y. et al. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express 18, 5896–5905 (2010).

    Article  CAS  Google Scholar 

  160. Neburkova, J., Vavra, J. & Cigler, P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr. Opin. Solid State Mater. Sci. 21, 43–53 (2017).

    Article  CAS  Google Scholar 

  161. Akerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  162. Frangioni, J. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  Google Scholar 

  163. Miyamoto, K., Refojo, M. F., Tolentino, F. I., Fournier, G. A. & Albert, D. M. Fluorinated oils as experimental vitreous substitutes. Arch. Ophthalmol. 104, 1053–1056 (1986).

    Article  CAS  Google Scholar 

  164. Browning, L. M., Huang, T. & Xu, X. H. Real-time in vivo imaging of size-dependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy. Interface Focus 3, 20120098 (2013).

    Article  Google Scholar 

  165. Yang, H. H. & St-Pierre, F. Genetically encoded voltage indicators: opportunities and challenges. J. Neurosci. 36, 9977–9989 (2016).

    Article  CAS  Google Scholar 

  166. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellularimaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  Google Scholar 

  167. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioengineer. Transl Med. 1, 10–29 (2016).

    Article  Google Scholar 

  168. Ashman, R. B., Rho, J. Y. & Turner, C. H. Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J. Biomechan. 22, 895–900 (1989).

    Article  CAS  Google Scholar 

  169. Gennisson, J. L. et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shearimaging. Ultrasound Med. Biol. 36, 789–801 (2010).

    Article  Google Scholar 

  170. Fink, J. et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 13, 771–778 (2011).

    Article  CAS  Google Scholar 

  171. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  Google Scholar 

  172. Yu, Y., Shu, Y. & McCormick, D. A. Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J. Neurosci. 28, 7260–7272 (2008).

    Article  CAS  Google Scholar 

  173. Holthoff, K., Zecevic, D. & Konnerth, A. Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons. J. Physiol. 588, 1085–1096 (2010).

    Article  CAS  Google Scholar 

  174. Liu, D. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 7, 10254 (2016).

    Article  CAS  Google Scholar 

  175. Raja, S. N. et al. Tetrapod nanocrystals as fluorescent stress probes of electrospun nanocomposites. Nano Lett. 13, 3915–3922 (2013).

    Article  CAS  Google Scholar 

  176. Medvedev, M. G., Bushmarinov, I. S., Sun, J., Perdew, J. P. & Lyssenko, K. A. Density functional theory is straying from the path toward the exact functional. Science 355, 49–52 (2017).

    Article  CAS  Google Scholar 

  177. Polking, M. J., Alivisatos, A. P. & Ramesh, R. Synthesis, physics, and applications of ferroelectric nanomaterials. MRS Commun. 5, 27–44 (2015).

    Article  CAS  Google Scholar 

  178. Yin, A. et al. Plasmonic/nonlinear optical material core/shell nanorods as nanoscale plasmon modulators and optical voltage sensors. Angew. Chem. Int. Ed Engl. 55, 583–587 (2016).

    Article  CAS  Google Scholar 

  179. Liu, S., Borys, N. J., Huang, J., Talapin, D. V. & Lupton, J. M. Exciton storage in CdSe/CdS tetrapod semiconductor nanocrystals: electric field effects on exciton and multiexciton states. Phys. Rev. B 86, 045303 (2012).

    Article  CAS  Google Scholar 

  180. Svechtarova, M. I. et al. Sensor devices inspired by the five senses: a review. Electroanalysis 28, 1201–1241 (2016).

    Article  CAS  Google Scholar 

  181. Valon, L., Marin-Llaurado, A., Wyatt, T., Charras, G. & Trepat, X. Optogenetic control of cellular forces and mechanotransduction. Nat. Commun. 8, 14396 (2017).

    Article  CAS  Google Scholar 

  182. Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13, 143–146 (2016).

    Article  CAS  Google Scholar 

  183. Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    Article  CAS  Google Scholar 

  184. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  CAS  Google Scholar 

  185. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  186. Brinks, D., Adam, Y., Kheifets, S. & Cohen, A. E. Painting with rainbows: patterning light in space, time, and wavelength for multiphoton optogenetic sensing and control. Acc. Chem. Res. 49, 2518–2526 (2016).

    Article  CAS  Google Scholar 

  187. Marino, A. et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9, 7678–7689 (2015).

    Article  CAS  Google Scholar 

  188. Guduru, R. et al. Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine 10, 2051–2061 (2015).

    Article  CAS  Google Scholar 

  189. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  CAS  Google Scholar 

  190. Kim, J. W. et al. Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles. Nat. Protoc. 12, 1871–1889 (2017).

    Article  CAS  Google Scholar 

  191. Lugo, K., Miao, X., Rieke, F. & Lin, L. Y. Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots. Biomed. Opt. Express 3, 447–454 (2012).

    Article  CAS  Google Scholar 

  192. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz [German]. Annalen Physik 437, 55–75 (1948).

    Article  Google Scholar 

  193. Beardsley, K. & Cantor, C. R. Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. Proc. Natl Acad. Sci. USA 65, 39–46 (1970).

    Article  CAS  Google Scholar 

  194. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  Google Scholar 

  195. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

  196. Lam, A. J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    Article  CAS  Google Scholar 

  197. Zhang, C., Wei, Z. H. & Ye, B. C. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors. Biotechnol. J. 8, 1280–1291 (2013).

    Article  CAS  Google Scholar 

  198. Gayrard, C. & Borghi, N. FRET-based molecular tension microscopy. Methods 94, 33–42 (2016).

    Article  CAS  Google Scholar 

  199. Miessler, G. L., Fischer, P. J. & Tarr, D. A. Inorganic Chemistry 5th edn (Pearson, 2013).

    Google Scholar 

  200. Werts, M. H. Making sense of lanthanide luminescence. Sci. Prog. 88, 101–131 (2005).

    Article  CAS  Google Scholar 

  201. Meng, F., Suchyna, T. M., Lazakovitch, E., Gronostajski, R. M. & Sachs, F. Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins. Cell. Mol. Bioeng. 4, 148–159 (2011).

    Article  Google Scholar 

  202. Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 6455–6464 (2008).

    Article  CAS  Google Scholar 

  203. Inagaki, S. et al. Genetically encoded bioluminescent voltage indicator for multi-purpose use in wide range of bioimaging. Sci. Rep. 7, 42398 (2017).

    Article  CAS  Google Scholar 

  204. Edwards, J. S., Chen, S. W. & Berns, M. W. Cercal sensory development following laser microlesions of embryonic apical cells in Acheta domesticus. J. Neurosci. 1, 250–258 (1981).

    Article  CAS  Google Scholar 

  205. Brugues, J., Nuzzo, V., Mazur, E. & Needleman, D. J. Nucleation and transport organize microtubules in metaphase spindles. Cell 149, 554–564 (2012).

    Article  CAS  Google Scholar 

  206. Lau, K. et al. Anisotropic stress orients remodelling of mammalian limb bud ectoderm. Nat. Cell Biol. 17, 569–579 (2015).

    Article  CAS  Google Scholar 

  207. Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    Article  CAS  Google Scholar 

  208. Kuriyama, S. et al. In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. J. Cell Biol. 206, 113–127 (2014).

    Article  CAS  Google Scholar 

  209. Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014).

    Article  CAS  Google Scholar 

  210. Krieg, M., Dunn, A. R. & Goodman, M. B. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16, 224–233 (2014).

    Article  CAS  Google Scholar 

  211. Yamashita, S., Tsuboi, T., Ishinabe, N., Kitaguchi, T. & Michiue, T. Wide and high resolution tension measurement using FRET in embryo. Sci. Rep. 6, 28535 (2016).

    Article  Google Scholar 

  212. Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985–3989 (2013).

    Article  CAS  Google Scholar 

  213. Fischer, T. et al. Single semiconductor nanocrystals under compressive stress: reversible tuning of the emission energy. Nano Lett. 17, 1559–1563 (2017).

    Article  CAS  Google Scholar 

  214. Bindocci, E. et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356, eaai8185 (2017).

    Article  CAS  Google Scholar 

  215. Sadakane, O. et al. Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates. Cell Rep. 13, 1989–1999 (2015).

    Article  CAS  Google Scholar 

  216. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    Article  CAS  Google Scholar 

  217. Gore, B. B., Soden, M. E. & Zweifel, L. S. Visualization of plasticity in fear-evoked calcium signals in midbrain dopamine neurons. Learn. Mem. 21, 575–579 (2014).

    Article  CAS  Google Scholar 

  218. Szalay, G. et al. Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals. Neuron 92, 723–738 (2016).

    Article  CAS  Google Scholar 

  219. Tang, Q. et al. In vivo voltage-sensitive dye imaging of subcortical brain function. Sci. Rep. 5, 17325 (2015).

    Article  CAS  Google Scholar 

  220. Kuhn, B., Denk, W. & Bruno, R. M. In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc. Natl Acad. Sci. USA 105, 7588–7593 (2008).

    Article  CAS  Google Scholar 

  221. Han, J. et al. In vivo voltage-sensitive dye imaging of the insular cortex in nerve-injured rats. Neurosci. Lett. 634, 146–152 (2016).

    Article  CAS  Google Scholar 

  222. Tsutsui, H. et al. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase. J. Physiol. 591, 4427–4437 (2013).

    Article  CAS  Google Scholar 

  223. Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5, 4625 (2014).

    Article  CAS  Google Scholar 

  224. Park, K., Deutsch, Z., Li, J. J., Oron, D. & Weiss, S. Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6, 10013–10023 (2012).

    Article  CAS  Google Scholar 

  225. Karaveli, S. et al. in 2015 Conference on Lasers and Electro-Optics (CLEO)http://dx.doi.org/10.1364/CLEO_QELS.2015.FTh3B.6 (San Jose, CA, 2015).

Download references

Acknowledgements

The authors acknowledge financial support from Stanford NeuroFab and Bio-X Interdisciplinary Initiatives Committee (IIP). R.K. was supported by an Eastman Kodak fellowship. A.L. was supported by the NSF GRFP (2013156180).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Randy D. Mehlenbacher or Jennifer A. Dionne.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehlenbacher, R., Kolbl, R., Lay, A. et al. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat Rev Mater 3, 17080 (2018). https://doi.org/10.1038/natrevmats.2017.80

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing