Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanomaterials derived from metal–organic frameworks

Abstract

The thermal transformation of metal–organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline of important breakthroughs in the morphologies, compositions and applications of MOF-derived nanostructures.
Figure 2: Synthetic strategies for the construction of 0D MOF-derived nanostructures.
Figure 3: Representative strategies for constructing 1D MOF-derived nanostructures.
Figure 4: Strategies for the construction of 2D MOF-derived nanostructures.
Figure 5: Strategies for the construction of 3D MOF-derived nanostructures.

References

  1. 1

    Fan, L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Liu, B., Shioyama, H., Akita, T. & Xu, Q. Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc 130, 5390–5391 (2008).The first paper reporting the use of MOFs as a template to generate porous carbons.

    CAS  Article  Google Scholar 

  3. 3

    Yang, Y. et al. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 8, 3563–3571 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Liu, B. et al. Converting cobalt oxide subunits in cobalt metal–organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J. Power Sources 195, 857–861 (2010).The pioneering study on MOF-templated metal oxides as electrode materials for lithium-ion batteries.

    CAS  Article  Google Scholar 

  5. 5

    Jiang, H.-L. et al. From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Gadipelli, S., Travis, W., Zhou, W. & Guo, Z. A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7, 2232–2238 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Li, Y.-J., Fan, J.-M., Zheng, M.-S. & Dong, Q.-F. A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ. Sci. 9, 1998–2004 (2016).

    CAS  Article  Google Scholar 

  8. 8

    Lai, Q., Zhao, Y., Liang, Y., He, J. & Chen, J. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 26, 8334–8344 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Chen, L. F. & Xu, Q. Converting MOFs into amination catalysts. Science 358, 304–305 (2017).

    CAS  Article  Google Scholar 

  10. 10

    Shen, K., Chen, X., Chen, J. & Li, Y. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887–5903 (2016).

    CAS  Article  Google Scholar 

  11. 11

    Kaneti, Y. et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017).

    Article  CAS  Google Scholar 

  12. 12

    Zhu, Q.-L. & Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 43, 5468–5512 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Xia, W., Mahmood, A., Zou, R. & Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Lin, Q. et al. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 27, 3431–3436 (2015).

    CAS  Article  Google Scholar 

  15. 15

    An, B., Cheng, K., Wang, C., Wang, Y. & Lin, W. Pyrolysis of metal–organic frameworks to Fe3O4@Fe5C2 core–shell nanoparticles for Fischer–Tropsch synthesis. ACS Catal. 6, 3610–3618 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Meng, J. S. et al. General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139, 8212–8221 (2017).

    CAS  Article  Google Scholar 

  17. 17

    Wang, H., Zhu, Q.-L., Zou, R. & Xu, Q. Metal–organic frameworks for energy applications. Chem 2, 52–80 (2017).

    CAS  Article  Google Scholar 

  18. 18

    Li, H., Su, Y., Sun, W. & Wang, Y. Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal–organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv. Funct. Mater. 26, 8345–8353 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Zhang, H. et al. Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10, 684–694 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Jagadeesh, R. V. et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 358, 326–332 (2017).

    CAS  Article  Google Scholar 

  21. 21

    Sun, J. W. et al. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017).

    Article  Google Scholar 

  22. 22

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Aijaz, A., Fujiwara, N. & Xu, Q. From metal–organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc 136, 6790–6793 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Zheng, F., Yang, Y. & Chen, Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal–organic framework. Nat. Commun. 5, 5261 (2014).

    CAS  Article  Google Scholar 

  25. 25

    You, B. et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem. Mater. 27, 7636–7642 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Hou, Y. et al. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25, 872–882 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).A work describing in situ-formed single atoms stabilized on nitrogen-doped porous carbon, which suggests the possibility of the tailorability of MOF-templated nanostructures at the atomic level.

    CAS  Article  Google Scholar 

  28. 28

    Wang, X. et al. Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139, 9419–9422 (2017).

    CAS  Article  Google Scholar 

  29. 29

    Chen, Y. Z. et al. From bimetallic metal–organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27, 5010–5016 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Yang, J. et al. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UiO-66 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 55, 12854–12858 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Li, X. et al. Topotactic transformation of metal–organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 10, 11532–11540 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Wang, S. et al. Metal–organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater. 28, 8379–8387 (2016).

    CAS  Article  Google Scholar 

  33. 33

    Shang, L. et al. Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 28, 1668–1674 (2016).

    CAS  Article  Google Scholar 

  34. 34

    Lin, Q. et al. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137, 2235–2238 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Wu, H. B., Xia, B. Y., Yu, L., Yu, X.-Y. & Lou, X. W. D. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 6, 6512 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Wu, R. et al. Porous spinel ZnxCo3–xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8, 6297–6303 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Hu, H., Guan, B. Y. & Lou, X. W. D. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1, 102–113 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Zou, F. et al. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26, 6622–6628 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Lee, H. J., Choi, S. & Oh, M. Well-dispersed hollow porous carbon spheres synthesized by direct pyrolysis of core–shell type metal–organic frameworks and their sorption properties. Chem. Commun. 50, 4492–4495 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Tan, Y. C. & Zeng, H. C. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures. Chem. Commun. 52, 11591–11594 (2016).

    Article  CAS  Google Scholar 

  41. 41

    Lee, H. J., Park, J. U., Choi, S., Son, J. & Oh, M. Synthesis and photoluminescence properties of Eu3+-doped silica@coordination polymer core–shell structures and their calcinated silica@ Gd2O3: Eu and hollow Gd2O3: Eu microsphere products. Small 9, 561–569 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Choi, S., Lee, H. J. & Oh, M. Facile synthesis of Au or Ag nanoparticles-embedded hollow carbon microspheres from metal–organic framework hybrids and their efficient catalytic activities. Small 12, 2425–2431 (2016).

    CAS  Article  Google Scholar 

  43. 43

    Zhang, L., Wu, H. B., Madhavi, S., Hng, H. H. & Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks & their lithium storage properties. J. Am. Chem. Soc. 134, 17388–17391 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Huang, Z.-F. et al. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138, 1359–1365 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Yang, H. et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal–organic framework composites. J. Am. Chem. Soc. 138, 11872–11881 (2016).

    CAS  Article  Google Scholar 

  46. 46

    Zhang, L., Wu, H. B. & Lou, X. W. Metal–organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 135, 10664–10672 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Yang, S. et al. Nitrogen, phosphorus, and sulfur Co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes. Angew. Chem. Int. Ed. 55, 4016–4020 (2016).

    CAS  Article  Google Scholar 

  48. 48

    Hu, H., Zhang, J., Guan, B. & Lou, X. W. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55, 9514–9518 (2016).

    CAS  Article  Google Scholar 

  49. 49

    Xia, W. et al. High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite. Nano Lett. 17, 2788–2795 (2017).

    CAS  Article  Google Scholar 

  50. 50

    Wu, R. et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 27, 3038–3044 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Zhang, L. et al. Rational design of high-performance deNOx catalysts based on MnxCo3–xO4 nanocages derived from metal–organic frameworks. ACS Catal. 4, 1753–1763 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Xia, B. Y. et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).A work demonstrating the importance of synthetic conditions for developing MOF-derived nanostructures with high electrocatalytic activities.

    CAS  Article  Google Scholar 

  53. 53

    Lu, J. et al. Core–shell nanocomposites based on gold nanoparticle@zinc–iron-embedded porous carbons derived from metal–organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal. 6, 1045–1053 (2016).

    CAS  Article  Google Scholar 

  54. 54

    Tang, J. et al. Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015).The synthesis of designed core–shell nanostructures with desired functionalities from MOF precursors.

    CAS  Article  Google Scholar 

  55. 55

    Chen, H. R. et al. Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 5, 9937–9945 (2017).

    CAS  Article  Google Scholar 

  56. 56

    Hou, Y. et al. Metal–organic framework-derived nitrogen-doped core–shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4, 1400337 (2014).

    Article  CAS  Google Scholar 

  57. 57

    Zhang, H. et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal–organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 28, 3703–3710 (2016).

    CAS  Article  Google Scholar 

  58. 58

    Zou, F. et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10, 377–386 (2016).

    CAS  Article  Google Scholar 

  59. 59

    Hu, H., Guan, B., Xia, B. & Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive & electrocatalytic properties. J. Am. Chem. Soc 137, 5590–5595 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Zhang, J., Hu, H., Li, Z. & Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem. Int. Ed. 55, 3982–3986 (2016).

    CAS  Article  Google Scholar 

  61. 61

    Hu, H., Han, L., Yu, M., Wang, Z. & Lou, X. W. D. Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 9, 107–111 (2016).

    CAS  Article  Google Scholar 

  62. 62

    Guo, W., Sun, W. & Wang, Y. Multilayer CuO@NiO hollow spheres: microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9, 11462–11471 (2015).

    CAS  Article  Google Scholar 

  63. 63

    Zhao, S. et al. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8, 12660–12668 (2014).

    CAS  Article  Google Scholar 

  64. 64

    Long, J., Shen, K. & Li, Y. Bifunctional N-doped Co@C catalysts for base-free transfer hydrogenations of nitriles: controllable selectivity to primary amines vs imines. ACS Catal. 7, 275–284 (2016).

    Article  CAS  Google Scholar 

  65. 65

    Bai, C., Yao, X. & Li, Y. Easy access to amides through aldehydic C–H bond functionalization catalyzed by heterogeneous Co-based catalysts. ACS Catal. 5, 884–891 (2015).

    CAS  Article  Google Scholar 

  66. 66

    Su, H. et al. Enriching Co nanoparticles inside carbon nanofibers via nanoscale assembly of metal–organic complexes for highly efficient hydrogen evolution. Nano Energy 22, 79–86 (2016).

    CAS  Article  Google Scholar 

  67. 67

    Hu, M. et al. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem. Commun. 47, 8124–8126 (2011).

    CAS  Article  Google Scholar 

  68. 68

    Zheng, F., Xia, G., Yang, Y. & Chen, Q. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 7, 9637–9645 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Lee, H. J., Cho, W., Lim, E. & Oh, M. One-pot synthesis of magnetic particle-embedded porous carbon composites from metal–organic frameworks and their sorption properties. Chem. Commun. 50, 5476–5479 (2014).

    CAS  Article  Google Scholar 

  70. 70

    Pachfule, P., Shinde, D., Majumder, M. & Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718–724 (2016).The synthesis of 1D and 2D nanostructures from 1D MOF nanorods.

    CAS  Article  Google Scholar 

  71. 71

    Li, J.-S. et al. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER. Chem. Commun. 51, 2710–2713 (2015).

    CAS  Article  Google Scholar 

  72. 72

    Radhakrishnan, L. et al. Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol. Chem. Mater. 23, 1225–1231 (2011).

    CAS  Article  Google Scholar 

  73. 73

    Yang, Y. et al. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. Green Chem. 18, 3558–3566 (2016).

    CAS  Article  Google Scholar 

  74. 74

    Li, H., Liang, M., Sun, W. & Wang, Y. Bimetal–organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26, 1098–1103 (2016).

    CAS  Article  Google Scholar 

  75. 75

    Hu, M. et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134, 2864–2867 (2012).

    CAS  Article  Google Scholar 

  76. 76

    Liu, H. et al. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from MOF composites and further application in catalysis. Small 11, 3130–3134 (2015).

    CAS  Article  Google Scholar 

  77. 77

    Koo, W.-T. et al. Heterogeneous sensitization of metal–organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138, 13431–13437 (2016).

    CAS  Article  Google Scholar 

  78. 78

    Malonzo, C. D. et al. Thermal stabilization of metal–organic framework-derived single-site catalytic clusters through nanocasting. J. Am. Chem. Soc. 138, 2739–2748 (2016).

    CAS  Article  Google Scholar 

  79. 79

    Chen, Y. M., Yu, L. & Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55, 5990–5993 (2016).

    CAS  Article  Google Scholar 

  80. 80

    Yu, L., Yang, J. F. & Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem. Int. Ed. 55, 13422–13426 (2016).

    CAS  Article  Google Scholar 

  81. 81

    Zhang, L., Wang, X., Wang, R. & Hong, M. Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27, 7610–7618 (2015).

    CAS  Article  Google Scholar 

  82. 82

    Zhang, W., Wu, Z.-Y., Jiang, H.-L. & Yu, S.-H. Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014).

    CAS  Article  Google Scholar 

  83. 83

    Chen, L. et al. One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes. Chem. Commun. 44, 1581–1583 (2008).The first work fabricating carbon nanotubes by pyrolysis of MOFs.

    Article  CAS  Google Scholar 

  84. 84

    Liu, T. et al. An Fe-N-C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. J. Mater. Chem. A 4, 11357–11364 (2016).

    CAS  Article  Google Scholar 

  85. 85

    Huang, G. et al. Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J. Mater. Chem. A 2, 8048–8053 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Barman, B. K. & Nanda, K. K. Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts. Green Chem. 18, 427–432 (2016).

    CAS  Article  Google Scholar 

  87. 87

    Su, P. et al. Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem. Sci. 4, 2941–2946 (2013).

    CAS  Article  Google Scholar 

  88. 88

    Li, Q. et al. Graphene/graphene-tube nanocomposites templated from cage-containing metal–organic frameworks for oxygen reduction in Li–O2 batteries. Adv. Mater. 26, 1378–1386 (2014).

    Article  CAS  Google Scholar 

  89. 89

    Li, Q. et al. Metal–organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts. Small 11, 1443–1452 (2015).

    CAS  Article  Google Scholar 

  90. 90

    Zhang, P. et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7, 442–450 (2014).

    CAS  Article  Google Scholar 

  91. 91

    Su, P. et al. Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. Chem. Commun. 48, 8769–8771 (2012).

    CAS  Article  Google Scholar 

  92. 92

    Xie, Z. et al. Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8, 10324–10333 (2016).

    CAS  Article  Google Scholar 

  93. 93

    Yang, S. J. et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012).

    CAS  Article  Google Scholar 

  94. 94

    Zakaria, M. B. et al. Controlled synthesis of nanoporous nickel oxide with two-dimensional shapes through thermal decomposition of metal–cyanide hybrid coordination polymers. Chem. Eur. J. 21, 3605–3612 (2015).

    CAS  Article  Google Scholar 

  95. 95

    Andrew Lin, K.-Y., Hsu, F.-K. & Lee, W.-D. Magnetic cobalt-graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J. Mater. Chem. A 3, 9480–9490 (2015).

    CAS  Article  Google Scholar 

  96. 96

    Qi, L. et al. Grape-like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage. ACS Appl. Mater. Interfaces 8, 17245–17252 (2016).

    CAS  Article  Google Scholar 

  97. 97

    Xu, G. et al. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 1, 4490–4496 (2013).

    CAS  Article  Google Scholar 

  98. 98

    Yu, X.-Y., Feng, Y., Guan, B., Lou, X. W. & Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 9, 1246–1250 (2016).

    CAS  Article  Google Scholar 

  99. 99

    Su, P. et al. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2, 17408–17414 (2014).

    CAS  Article  Google Scholar 

  100. 100

    Zhan, W.-W. et al. Synthesis of highly active sub-nanometer Pt@Rh core–shell nanocatalyst via a photochemical route: porous titania nanoplates as a superior photoactive support. Small 13, 1603879 (2017).

    Article  CAS  Google Scholar 

  101. 101

    Hu, M., Ishihara, S. & Yamauchi, Y. Bottom-up synthesis of monodispersed single-crystalline cyano-bridged coordination polymer nanoflakes. Angew. Chem. Int. Ed. 52, 1235–1239 (2013).

    CAS  Article  Google Scholar 

  102. 102

    Cao, F. et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal–organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 138, 6924–6927 (2016).A study showing the importance of 2D MOF precursors for preparing specific 2D nanostructures.

    CAS  Article  Google Scholar 

  103. 103

    Wei, J. et al. A graphene-directed assembly route to hierarchically porous Co-Nx/C catalysts for high-performance oxygen reduction. J. Mater. Chem. A 3, 16867–16873 (2015).

    CAS  Article  Google Scholar 

  104. 104

    Wu, Z. et al. Facile synthesis and excellent electrochemical performance of reduced graphene oxide-Co3O4 yolk-shell nanocages as a catalyst for oxygen evolution reaction. J. Mater. Chem. A 4, 13534–13542 (2016).

    CAS  Article  Google Scholar 

  105. 105

    Jiao, L., Zhou, Y.-X. & Jiang, H.-L. Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 7, 1690–1695 (2016).

    CAS  Article  Google Scholar 

  106. 106

    Tang, Y.-J. et al. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015).

    CAS  Article  Google Scholar 

  107. 107

    Wei, J. et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25, 5768–5777 (2015).

    CAS  Article  Google Scholar 

  108. 108

    Yin, D. et al. Coated/sandwiched rGO/CoSx composites derived from metal–organic frameworks/GO as advanced anode materials for lithium-ion batteries. Chem. Eur. J. 22, 1467–1474 (2016).

    CAS  Article  Google Scholar 

  109. 109

    Zhong, H.-X. et al. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed. 53, 14235–14239 (2014).

    CAS  Article  Google Scholar 

  110. 110

    Yu, D. et al. An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. J. Mater. Chem. A 4, 16953–16960 (2016).

    CAS  Article  Google Scholar 

  111. 111

    Li, Z. et al. Carbon-based electrocatalyst derived from bimetallic metal–organic framework arrays for high performance oxygen reduction. Nano Energy 25, 100–109 (2016).

    CAS  Article  Google Scholar 

  112. 112

    Li, Z. et al. Directed growth of metal–organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 28, 2337–2344 (2016).

    CAS  Article  Google Scholar 

  113. 113

    Guan, C. et al. Rational design of metal–organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7, 1602391 (2017).

    Article  CAS  Google Scholar 

  114. 114

    Zhu, Q.-L. et al. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal–organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2, 504–511 (2017).

    CAS  Article  Google Scholar 

  115. 115

    Xia, W., Zou, R., An, L., Xia, D. & Guo, S. A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 8, 568–576 (2015).

    CAS  Article  Google Scholar 

  116. 116

    Zhao, J. et al. Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy. J. Mater. Chem. 22, 13328–13333 (2012).

    CAS  Article  Google Scholar 

  117. 117

    Zhou, J. et al. MOF template-directed fabrication of hierarchically structured electrocatalysts for effcient oxygen evolution reaction. Adv. Energy Mater. 7, 1602643 (2017).

    Article  CAS  Google Scholar 

  118. 118

    Xu, X., Wang, M., Liu, Y., Lu, T. & Pan, L. Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J. Mater. Chem. A 4, 5467–5473 (2016).

    CAS  Article  Google Scholar 

  119. 119

    Ji, D. et al. Facile synthesis of a metal–organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 4, 8283–8290 (2016).

    CAS  Article  Google Scholar 

  120. 120

    Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014).The fabrication of MOF-derived nanoarrays on conductive supports.

    CAS  Article  Google Scholar 

  121. 121

    Lu, X.-F. et al. Bimetal–organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017).

    Article  CAS  Google Scholar 

  122. 122

    Zhang, C. et al. Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 4, 16516–16523 (2016).

    CAS  Article  Google Scholar 

  123. 123

    Zhang, G. et al. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405 (2015).

    CAS  Article  Google Scholar 

  124. 124

    Han, Y. et al. A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50, 8057–8060 (2014).

    CAS  Article  Google Scholar 

  125. 125

    Zeng, W. et al. Metal–organic-framework-derived ZnO@C@NiCo2O4 core–shell structures as an advanced electrode for high-performance supercapacitors. J. Mater. Chem. A 4, 8233–8241 (2016).

    CAS  Article  Google Scholar 

  126. 126

    Yang, F. et al. A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient water-splitting. J. Mater. Chem. A 4, 16057–16063 (2016).

    CAS  Article  Google Scholar 

  127. 127

    Huang, G. et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9, 1592–1599 (2015).

    CAS  Article  Google Scholar 

  128. 128

    Zhang, C. et al. Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells. Adv. Mater. 29, 1604556 (2016).

    Article  CAS  Google Scholar 

  129. 129

    Zhu, Q., Li, Y., Gao, Y., Wang, X. & Song, S. Reduced graphene-wrapped MnO2 nanowires self-inserted with Co3O4 nanocages: remarkable enhanced performances for lithium-ion anode applications. Chem. Eur. J. 22, 6876–6880 (2016).

    CAS  Article  Google Scholar 

  130. 130

    Wang, X. et al. CeO2 nanowires self-inserted into porous Co3O4 frameworks as high-performance “noble metal free” hetero-catalysts. Chem. Sci. 7, 1109–1114 (2016).

    CAS  Article  Google Scholar 

  131. 131

    Kong, B. et al. Ultralight mesoporous magnetic frameworks by interfacial assembly of prussian blue nanocubes. Angew. Chem. Int. Ed. 53, 2888–2892 (2014).

    CAS  Article  Google Scholar 

  132. 132

    Hu, X.-W., Liu, S., Qu, B.-T. & You, X.-Z. Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl. Mater. Interfaces 7, 9972–9981 (2015).

    CAS  Article  Google Scholar 

  133. 133

    Li, Z. & Yin, L. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 3, 21569–21577 (2015).

    CAS  Article  Google Scholar 

  134. 134

    Cao, X. et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew. Chem. Int. Ed. 53, 1404–1409 (2014).

    CAS  Article  Google Scholar 

  135. 135

    Andrew Lin, K.-Y., Chang, H.-A. & Chen, B.-J. Multi-functional MOF-derived magnetic carbon sponge. J. Mater. Chem. A 4, 13611–13625 (2016).

    CAS  Article  Google Scholar 

  136. 136

    Shui, J., Chen, C., Grabstanowicz, L., Zhao, D. & Liu, D.-J. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proc. Natl Acad. Sci. USA 112, 10629–10634 (2015).

    CAS  Article  Google Scholar 

  137. 137

    Fang, G. et al. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016).

    CAS  Article  Google Scholar 

  138. 138

    Meng, F., Zhong, H., Bao, D., Yan, J. & Zhang, X. In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138, 10226–10231 (2016).

    CAS  Article  Google Scholar 

  139. 139

    Yan, G. et al. N-Carbon coated P-W2C composite as efficient electrocatalyst for hydrogen evolution reactions over the whole pH range. J. Mater. Chem. A 5, 765–772 (2017).

    CAS  Article  Google Scholar 

  140. 140

    Guan, B. Y., Yu, L. & Lou, X. W. A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9, 3092–3096 (2016).

    CAS  Article  Google Scholar 

  141. 141

    Zhu, Q.-L., Xia, W., Akita, T., Zou, R. & Xu, Q. Metal–organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28, 6391–6398 (2016).The synthesis of MOF-derived nanostructures using a guest-induced morphology transformation process.

    CAS  Article  Google Scholar 

  142. 142

    Amali, A. J., Hoshino, H., Wu, C., Ando, M. & Xu, Q. From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem. Eur. J. 20, 8279–8282 (2014).

    CAS  Article  Google Scholar 

  143. 143

    Kang, N. et al. Microporous organic network hollow spheres: useful templates for nanoparticulate Co3O4 hollow oxidation catalysts. J. Am. Chem. Soc. 135, 19115–19118 (2013).

    CAS  Article  Google Scholar 

  144. 144

    Xiang, Z. H. et al. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem. Int. Ed. 53, 2433–2437 (2014).

    CAS  Article  Google Scholar 

  145. 145

    Chen, L. Y. et al. A covalent organic framework-based route to the in situ encapsulation of metal nanoparticles in N-rich hollow carbon spheres. Chem. Sci. 7, 6015–6020 (2016).

    CAS  Article  Google Scholar 

  146. 146

    Wang, J. et al. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 26, 7162–7169 (2014).

    CAS  Article  Google Scholar 

  147. 147

    Zhu, H. et al. When cubic cobalt sulfide meets layered molybdenum sisulfide: a core–shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 27, 4752–4759 (2015).

    CAS  Article  Google Scholar 

  148. 148

    Sa, Y. J. et al. Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew. Chem. Int. Ed. 53, 4102–4106 (2014).

    CAS  Article  Google Scholar 

  149. 149

    Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014).

    CAS  Article  Google Scholar 

  150. 150

    Zhu, J., Xu, Z. & Lu, B. G. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy 7, 114–123 (2014).

    CAS  Article  Google Scholar 

  151. 151

    Li, L. et al. Multifunctional carbon–silica nanocapsules with gold core for synergistic photothermal and chemo-cancer therapy under the guidance of bimodal imaging. Adv. Funct. Mater. 26, 4252–4261 (2016).

    CAS  Article  Google Scholar 

  152. 152

    Qi, G. & Yang, R. T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. J. Catal. 217, 434–441 (2003).

    CAS  Article  Google Scholar 

  153. 153

    Choi, S.-J., Kim, S.-J., Koo, W.-T., Cho, H. J. & Kim, I.-D. Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. Chem. Commun. 51, 2609–2612 (2015).

    CAS  Article  Google Scholar 

  154. 154

    Mori, K., Miyawaki, K. & Yamashita, H. Ru and Ru–Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia–borane. ACS Catal. 6, 3128–3135 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Q.X. thanks AIST and the Japan Society for the Promotion of Science (JSPS) for financial support (KAKENHI NO. 26289379). Q.-L.Z. and S.D. thank JSPS for postdoctoral and invitation fellowships, respectively.

Author information

Affiliations

Authors

Contributions

Q.X. proposed the topic of the Review. S.D. collected the research data and co-wrote the paper, S.D., Q.-L.Z. and Q.X. made substantial contributions to the discussion, and Q.X. edited the manuscript before submission. Q.-L.Z. and S.D. contributed equally to this work.

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dang, S., Zhu, QL. & Xu, Q. Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3, 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75

Download citation

Further reading

Search

Quick links