Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions


Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II–VI and III–V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bandgaps and lattice constants for typical semiconductors and their alloys.
Figure 2: Effect of lattice mismatch on epitaxial growth.
Figure 3: Spatial composition grading on a single substrate.
Figure 4: Growth and characterization of multisegment nanosheets for simultaneous lasing in red, green and blue.
Figure 5: Direct synthesis of halide perovskite alloy nanomaterials.
Figure 6: Halide perovskite alloys grown through ion exchange.


  1. 1

    Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2016).

    Article  CAS  Google Scholar 

  2. 2

    Martensson, T. et al. Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings. Adv. Mater. 19, 1801–1806 (2007).

    Article  CAS  Google Scholar 

  3. 3

    Tomioka, K. et al. Control of InAs nanowire growth directions on Si. Nano Lett. 8 3475–3480 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Bjork, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    Article  CAS  Google Scholar 

  5. 5

    Assali, S. et al. Direct band gap wurtzite gallium phosphide nanowires. Nano Lett. 13, 1559–1563 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Yuan, X. et al. Controlling the morphology, composition and crystal structure in gold-seeded GaAs1 − xSbx nanowires. Nanoscale 7, 4995–5003 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Martensson, A. T. et al. Epitaxial III-V nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Tomioka, K., Yoshimura, M. & Fukui, T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Borg, M. et al. Vertical III–V nanowire device integration on Si(100). Nano Lett. 14, 1914–1920 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Cohin, Y. et al. Growth of vertical GaAs nanowires on an amorphous substrate via a fiber-textured Si platform. Nano Lett. 13, 2743–2747 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Mayer, B. et al. Monolithically integrated high-β nanowire lasers on silicon. Nano Lett. 16, 152–156 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Schuster, F. et al. Site-controlled growth of monolithic InGaAs/InP quantum well nanopillar lasers on silicon. Nano Lett. 17, 2697–2702 (2017).

    CAS  Article  Google Scholar 

  13. 13

    Kim, H. et al. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett. 16, 1833–1839 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Nguyen, H. T. et al. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett. 11, 1919–1924 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Chen, R. et al. Nanolasers grown on silicon. Nat. Photonics 5, 170–175 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Ihn, S. G. et al. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett. 7, 39–44 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Hazari, A., Aiello, A., Ng, T. K., Ooi, B. S. & Bhattacharya, P. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001) silicon. Appl. Phys. Lett. 107, 191107 (2015).

    Article  CAS  Google Scholar 

  18. 18

    Deshpande, S. et al. Formation and nature of InGaN quantum dots in GaN nanowires. Nano Lett. 15, 1647–1653 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Qian, Y. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Bhattacharya, P., Hazari, A., Jahangir, S., Guo, W. & Frost, T. III-Nitride electrically pumped visible and near-infrared nanowire lasers on (001) silicon. Semicond. Semimetals 96, 385–409 (2017).

    Article  Google Scholar 

  21. 21

    Gwo, S. et al. Nitride semiconductor nanorod heterostructures for full-color and white-light applications. Semicond. Semimetals 96, 341–384 (2017).

    Article  Google Scholar 

  22. 22

    Zhao, S. & Mi, Z. Al(Ga)N nanowire deep ultraviolet optoelectronics. Semicond. Semimetals 96, 167–199 (2017).

    Article  Google Scholar 

  23. 23

    Berg, A. et al. Growth and optical properties of InxGa1−xP nanowires synthesized by selective-area epitaxy. Nano Res. 10, 672–682 (2017).

    CAS  Article  Google Scholar 

  24. 24

    Tomioka, K. & Fukui, T. in Semiconductor Nanostructures for Optoelectronic Devices (ed. Yi, G.-C. ) 67–101 (Springer, 2012).

    Book  Google Scholar 

  25. 25

    Jacobsson, D. et al. Particle-assisted GaxIn1−xP nanowire growth for designed bandgap structures. Nanotechnology 23, 245601–245607 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Gagliano, L. et al. Pseudodirect to direct compositional crossover in wurtzite GaP/InxGa1−xP core-shell nanowires. Nano Lett. 16, 7930–7936 (2016).

    CAS  Article  Google Scholar 

  27. 27

    Kornienko, N. et al. Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9, 3951–3960 (2015).

    CAS  Google Scholar 

  28. 28

    Amiri, S. E. H., Ranga, P., Li, D. Y., Fan, F. & Ning, C. -Z. Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates. CLEO Sci. Innov. (2017).

  29. 29

    Zhuang, X. Ning, C. Z. & Pan, A. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 24, 13–33 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Nichols, P. L. et al. CdxPb1−xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett. 15, 909–916 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 637–642 (2015).

    Google Scholar 

  32. 32

    Pan, A., Liu, R., Sun, M. & Ning, C. Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Kuykendall, T. et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 6, 951–956 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Liu, Y. et al. Wavelength-controlled lasing in ZnxCd1−xS single crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Pan, A. et al. Color-tunable photoluminescence of alloyed CdSxSe1−x nanobelts. J. Am. Chem. Soc. 127, 15692–15693 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Pan, A., Liu, R., Sun, M. & Ning, C. Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4, 671–680 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Yang, Z. Y. et al. On-nanowire spatial band gap design for white light emission. Nano Lett. 11, 5085–5089 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Yang, Z. et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. Nano Lett. 14, 3153–3159 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Liu, Z. et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Fan, F. et al. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semicond. Sci. Technol. 28, 065005 (2013).

    Article  CAS  Google Scholar 

  42. 42

    Fan, F. et al. A monolithic white laser. Nat. Nanotechnol. 10, 796–803 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Turkdogan, S., Fan, F. & Ning, C. Z. Color-temperature tuning and control of trichromatic white light emission from a multisegment ZnCdSSe heterostructure nanosheet. Adv. Funct. Mater. 26, 8521–8526 (2016).

    CAS  Article  Google Scholar 

  44. 44

    Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111–012114 (2013).

    Article  CAS  Google Scholar 

  45. 45

    Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Feng, Q. et al. Growth of large-area 2D MoS2[1−x]Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Feng, Q. et al. Growth of MoS2[1−x]Se2x (x = 0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Su, S. et al. Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 10, 2589–2594 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Zhang, M. et al. Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014).

    CAS  Article  Google Scholar 

  50. 50

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  Article  Google Scholar 

  51. 51

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Li, M. Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141(2015).

    CAS  Article  Google Scholar 

  54. 54

    Huang, C. et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS  Article  Google Scholar 

  55. 55

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS  Article  Google Scholar 

  56. 56

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    CAS  Article  Google Scholar 

  57. 57

    Peña, M. A. & Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001).

    Article  CAS  Google Scholar 

  58. 58

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    CAS  Article  Google Scholar 

  59. 59

    Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    CAS  Article  Google Scholar 

  60. 60

    Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

  61. 61

    Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    CAS  Article  Google Scholar 

  62. 62

    Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    CAS  Article  Google Scholar 

  63. 63

    Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

  64. 64

    Ha, S.-T., Su, R., Xing, J., Zhang, Q. & Xiong, Q. Metal halide perovskite nanomaterials: synthesis and applications. Chem. Sci. 8, 2522–2536 (2017).

    CAS  Article  Google Scholar 

  65. 65

    Protesescu, L. et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium−cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    CAS  Article  Google Scholar 

  66. 66

    Fu, Y. et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

    CAS  Article  Google Scholar 

  67. 67

    Piatkowski, P. et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film. J. Phys. Chem. Lett. 7, 204–210 (2016).

    CAS  Article  Google Scholar 

  68. 68

    Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

    CAS  Article  Google Scholar 

  69. 69

    Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Article  Google Scholar 

  70. 70

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Article  Google Scholar 

  71. 71

    Zhang, D. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 238, 7236–7239 (2016).

    Article  CAS  Google Scholar 

  72. 72

    Bekenstein, Y. Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide & their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    CAS  Article  Google Scholar 

  73. 73

    Shamsi, J. et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016).

    CAS  Article  Google Scholar 

  74. 74

    Pan, A. et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016).

    CAS  Article  Google Scholar 

  75. 75

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    CAS  Article  Google Scholar 

  76. 76

    Zhao, Y., Xu, X. & You, X. Colloidal organometal halide perovskite (MAPbBrxI3−x, 0 ≤ x ≤ 3) quantum dots: controllable synthesis and tunable photoluminescence. Sci. Rep. 6, 35931 (2016).

    CAS  Article  Google Scholar 

  77. 77

    Jellicoe, T. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016).

    CAS  Article  Google Scholar 

  78. 78

    Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016).

    CAS  Article  Google Scholar 

  79. 79

    Fu, Y. et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 10, 7963–7972 (2016).

    CAS  Article  Google Scholar 

  80. 80

    Wang, Y. et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett. 16, 7974–7981 (2016).

    CAS  Article  Google Scholar 

  81. 81

    Ha, S. T. et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838–844 (2014).

    CAS  Article  Google Scholar 

  82. 82

    Wang, G. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015).

    Article  CAS  Google Scholar 

  83. 83

    Chen, J. et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017).

    CAS  Article  Google Scholar 

  84. 84

    Zhou, H. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 11, 1189–1195 (2017).

    CAS  Article  Google Scholar 

  85. 85

    Liang, D. et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

    CAS  Article  Google Scholar 

  86. 86

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Article  Google Scholar 

  87. 87

    Chen, J. et al. A ternary solvent method for large-sized two-dimensional perovskites. Angew. Chem. Int. Ed. 129, 2430–2434 (2017).

    Article  Google Scholar 

  88. 88

    Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    CAS  Article  Google Scholar 

  89. 89

    Koscher, B. A. et al. Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 138, 12065–12068 (2016).

    CAS  Article  Google Scholar 

  90. 90

    van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

    CAS  Article  Google Scholar 

  91. 91

    Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    CAS  Article  Google Scholar 

  92. 92

    Dou, L. et al. Spatially resolved multi-color CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl Acad. Sci. USA 114, 7216–7221 (2017).

    CAS  Article  Google Scholar 

  93. 93

    Caselli, D. A. & Ning, C. Z. High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1−xS nanowires on a single substrate: a design study. Opt. Express 19, A686–A694 (2011).

    CAS  Article  Google Scholar 

  94. 94

    Caselli, D. A., Liu, Z. C., Shelhammer, D. & Ning, C. Z. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems. Nano Lett. 14, 5772–5779 (2014).

    CAS  Article  Google Scholar 

  95. 95

    Caselli, D. A. & Ning, C. Z. Monolithically-integrated laterally-arrayed multiple bandgap solar cells for spectrum-splitting photovoltaic systems. Prog. Quantum Electron. 39, 24–70 (2015).

    Article  Google Scholar 

  96. 96

    Ning, C. Z. in Semiconductors and Semimetals Ch. 12 (eds Coleman, J. J., Bryce, A. C. & Jagadish, C. ) (Academic Press, 2012).

    Google Scholar 

  97. 97

    Ma, Y., Guo, X., Wu, X., Dai, L. & Tong, L. Semiconductor nanowire lasers. Adv. Opt. Photonics 5, 216–273 (2013).

    CAS  Article  Google Scholar 

  98. 98

    Couteau, C., Larrue, A., Wilhelm, C. & Soci, C. Nanowire lasers. Nanophotonics 4, 90–107 (2015).

    Article  Google Scholar 

  99. 99

    Eaton, S. W., Fu, A., Wong, A. B., Ning, C. Z. & Yang, P. D. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).

    CAS  Article  Google Scholar 

  100. 100

    Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A. Fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    CAS  Article  Google Scholar 

  101. 101

    Liu, C., Dasgupta, N. P. & Yang, P. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26, 415–422 (2014).

    CAS  Article  Google Scholar 

  102. 102

    Li, D. & Ning, C. Z. Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation. Nano Lett. 8, 4234–4237 (2008).

    CAS  Article  Google Scholar 

  103. 103

    Zhang, G., Tateno, K., Sogawa, T. & Nakano, H. Vertically aligned GaP/GaAs core-multishell nanowires epitaxially grown on Si substrate. Appl. Phys. Express 1, 064003 (2008).

    Article  CAS  Google Scholar 

  104. 104

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    CAS  Article  Google Scholar 

  105. 105

    Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009).

    CAS  Article  Google Scholar 

Download references


C.-Z.N. acknowledges support from the 985 University Project of China, the Tsinghua University Initiative Scientific Research Program (No. 20141081296), and the ARPA-E MOSAIC Program (DE-AR001255-1527). C.-Z.N. thanks his students and postdocs over the past 10 years who have contributed to the study of semiconductor alloy nanomaterials, especially S. Amiri, D. Caselli, F. Fan, R. Liu, Z. Liu, P. Nichols, A. Pan, M. Sun, S. Turkdogan and L. Yin. L.D. and P.Y. are thankful for the support of the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (Physical Chemistry of Inorganic Nanostructures KC3103).

Author information




All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Cun-Zheng Ning or Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ning, CZ., Dou, L. & Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat Rev Mater 2, 17070 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing