Review Article

Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

  • Nature Reviews Materials 2, Article number: 17070 (2017)
  • doi:10.1038/natrevmats.2017.70
  • Download Citation
Published online:

Abstract

Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II–VI and III–V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2016).

  2. 2.

    et al. Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings. Adv. Mater. 19, 1801–1806 (2007).

  3. 3.

    et al. Control of InAs nanowire growth directions on Si. Nano Lett. 8 3475–3480 (2008).

  4. 4.

    et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

  5. 5.

    et al. Direct band gap wurtzite gallium phosphide nanowires. Nano Lett. 13, 1559–1563 (2013).

  6. 6.

    et al. Controlling the morphology, composition and crystal structure in gold-seeded GaAs1 − xSbx nanowires. Nanoscale 7, 4995–5003 (2015).

  7. 7.

    et al. Epitaxial III-V nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

  8. 8.

    , & III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012).

  9. 9.

    et al. Vertical III–V nanowire device integration on Si(100). Nano Lett. 14, 1914–1920 (2014).

  10. 10.

    et al. Growth of vertical GaAs nanowires on an amorphous substrate via a fiber-textured Si platform. Nano Lett. 13, 2743–2747 (2013).

  11. 11.

    et al. Monolithically integrated high-β nanowire lasers on silicon. Nano Lett. 16, 152–156 (2016).

  12. 12.

    et al. Site-controlled growth of monolithic InGaAs/InP quantum well nanopillar lasers on silicon. Nano Lett. 17, 2697–2702 (2017).

  13. 13.

    et al. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett. 16, 1833–1839 (2016).

  14. 14.

    et al. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett. 11, 1919–1924 (2011).

  15. 15.

    et al. Nanolasers grown on silicon. Nat. Photonics 5, 170–175 (2011).

  16. 16.

    et al. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett. 7, 39–44 (2007).

  17. 17.

    , , , & III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001) silicon. Appl. Phys. Lett. 107, 191107 (2015).

  18. 18.

    et al. Formation and nature of InGaN quantum dots in GaN nanowires. Nano Lett. 15, 1647–1653 (2015).

  19. 19.

    et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).

  20. 20.

    , , , & III-Nitride electrically pumped visible and near-infrared nanowire lasers on (001) silicon. Semicond. Semimetals 96, 385–409 (2017).

  21. 21.

    et al. Nitride semiconductor nanorod heterostructures for full-color and white-light applications. Semicond. Semimetals 96, 341–384 (2017).

  22. 22.

    & Al(Ga)N nanowire deep ultraviolet optoelectronics. Semicond. Semimetals 96, 167–199 (2017).

  23. 23.

    et al. Growth and optical properties of InxGa1−xP nanowires synthesized by selective-area epitaxy. Nano Res. 10, 672–682 (2017).

  24. 24.

    & in Semiconductor Nanostructures for Optoelectronic Devices (ed. Yi, G.-C.) 67–101 (Springer, 2012).

  25. 25.

    et al. Particle-assisted GaxIn1−xP nanowire growth for designed bandgap structures. Nanotechnology 23, 245601–245607 (2012).

  26. 26.

    et al. Pseudodirect to direct compositional crossover in wurtzite GaP/InxGa1−xP core-shell nanowires. Nano Lett. 16, 7930–7936 (2016).

  27. 27.

    et al. Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9, 3951–3960 (2015).

  28. 28.

    , , , & Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates. CLEO Sci. Innov. (2017).

  29. 29.

    & Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 24, 13–33 (2012).

  30. 30.

    et al. CdxPb1−xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett. 15, 909–916 (2015).

  31. 31.

    et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 637–642 (2015).

  32. 32.

    , , & Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).

  33. 33.

    et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 6, 951–956 (2007).

  34. 34.

    et al. Wavelength-controlled lasing in ZnxCd1−xS single crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005).

  35. 35.

    et al. Color-tunable photoluminescence of alloyed CdSxSe1−x nanobelts. J. Am. Chem. Soc. 127, 15692–15693 (2005).

  36. 36.

    et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

  37. 37.

    , , & Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4, 671–680 (2010).

  38. 38.

    et al. On-nanowire spatial band gap design for white light emission. Nano Lett. 11, 5085–5089 (2011).

  39. 39.

    et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. Nano Lett. 14, 3153–3159 (2014).

  40. 40.

    et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013).

  41. 41.

    et al. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semicond. Sci. Technol. 28, 065005 (2013).

  42. 42.

    et al. A monolithic white laser. Nat. Nanotechnol. 10, 796–803 (2015).

  43. 43.

    , & Color-temperature tuning and control of trichromatic white light emission from a multisegment ZnCdSSe heterostructure nanosheet. Adv. Funct. Mater. 26, 8521–8526 (2016).

  44. 44.

    , , , & Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111–012114 (2013).

  45. 45.

    Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015).

  46. 46.

    et al. Growth of large-area 2D MoS2[1−x]Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014).

  47. 47.

    et al. Growth of MoS2[1−x]Se2x (x = 0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015).

  48. 48.

    et al. Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 10, 2589–2594 (2014).

  49. 49.

    et al. Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014).

  50. 50.

    et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  51. 51.

    et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

  52. 52.

    et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

  53. 53.

    et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141(2015).

  54. 54.

    et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

  55. 55.

    et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

  56. 56.

    et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

  57. 57.

    & Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001).

  58. 58.

    , & The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

  59. 59.

    , & Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

  60. 60.

    et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

  61. 61.

    et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

  62. 62.

    et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

  63. 63.

    et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

  64. 64.

    , , , & Metal halide perovskite nanomaterials: synthesis and applications. Chem. Sci. 8, 2522–2536 (2017).

  65. 65.

    et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium−cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

  66. 66.

    et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

  67. 67.

    et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film. J. Phys. Chem. Lett. 7, 204–210 (2016).

  68. 68.

    & Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

  69. 69.

    et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

  70. 70.

    et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

  71. 71.

    et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 238, 7236–7239 (2016).

  72. 72.

    , , & Highly luminescent colloidal nanoplates of perovskite cesium lead halide & their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

  73. 73.

    et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016).

  74. 74.

    et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016).

  75. 75.

    et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

  76. 76.

    , & Colloidal organometal halide perovskite (MAPbBrxI3−x, 0 ≤ x ≤ 3) quantum dots: controllable synthesis and tunable photoluminescence. Sci. Rep. 6, 35931 (2016).

  77. 77.

    et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016).

  78. 78.

    et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016).

  79. 79.

    et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 10, 7963–7972 (2016).

  80. 80.

    et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett. 16, 7974–7981 (2016).

  81. 81.

    et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838–844 (2014).

  82. 82.

    et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015).

  83. 83.

    et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017).

  84. 84.

    et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 11, 1189–1195 (2017).

  85. 85.

    et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

  86. 86.

    et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

  87. 87.

    et al. A ternary solvent method for large-sized two-dimensional perovskites. Angew. Chem. Int. Ed. 129, 2430–2434 (2017).

  88. 88.

    et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

  89. 89.

    et al. Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 138, 12065–12068 (2016).

  90. 90.

    et al. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

  91. 91.

    et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

  92. 92.

    et al. Spatially resolved multi-color CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl Acad. Sci. USA 114, 7216–7221 (2017).

  93. 93.

    & High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1−xS nanowires on a single substrate: a design study. Opt. Express 19, A686–A694 (2011).

  94. 94.

    , , & Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems. Nano Lett. 14, 5772–5779 (2014).

  95. 95.

    & Monolithically-integrated laterally-arrayed multiple bandgap solar cells for spectrum-splitting photovoltaic systems. Prog. Quantum Electron. 39, 24–70 (2015).

  96. 96.

    in Semiconductors and Semimetals Ch. 12 (eds Coleman, J. J., Bryce, A. C. & Jagadish, C.) (Academic Press, 2012).

  97. 97.

    , , , & Semiconductor nanowire lasers. Adv. Opt. Photonics 5, 216–273 (2013).

  98. 98.

    , , & Nanowire lasers. Nanophotonics 4, 90–107 (2015).

  99. 99.

    , , , & Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).

  100. 100.

    , , , & Fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

  101. 101.

    , & Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26, 415–422 (2014).

  102. 102.

    & Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation. Nano Lett. 8, 4234–4237 (2008).

  103. 103.

    , , & Vertically aligned GaP/GaAs core-multishell nanowires epitaxially grown on Si substrate. Appl. Phys. Express 1, 064003 (2008).

  104. 104.

    , , & Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

  105. 105.

    et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009).

Download references

Acknowledgements

C.-Z.N. acknowledges support from the 985 University Project of China, the Tsinghua University Initiative Scientific Research Program (No. 20141081296), and the ARPA-E MOSAIC Program (DE-AR001255-1527). C.-Z.N. thanks his students and postdocs over the past 10 years who have contributed to the study of semiconductor alloy nanomaterials, especially S. Amiri, D. Caselli, F. Fan, R. Liu, Z. Liu, P. Nichols, A. Pan, M. Sun, S. Turkdogan and L. Yin. L.D. and P.Y. are thankful for the support of the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (Physical Chemistry of Inorganic Nanostructures KC3103).

Author information

Affiliations

  1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

    • Cun-Zheng Ning
  2. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.

    • Cun-Zheng Ning
  3. Department of Chemistry, University of California, Berkeley, California 94720, USA.

    • Letian Dou
    •  & Peidong Yang
  4. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

    • Letian Dou
    •  & Peidong Yang
  5. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

    • Letian Dou
  6. Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.

    • Peidong Yang

Authors

  1. Search for Cun-Zheng Ning in:

  2. Search for Letian Dou in:

  3. Search for Peidong Yang in:

Contributions

All authors contributed equally to the preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Cun-Zheng Ning or Peidong Yang.