DNA nanotechnology

Abstract

DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A timeline of the field of DNA nanotechnology.
Figure 2: The beginning of DNA nanotechnology.
Figure 3: DNA origami and single-stranded tile assembly.
Figure 4: Three-dimensional structures from DNA.
Figure 5: Dynamic DNA nanostructures.
Figure 6: Supramolecular DNA assembly.
Figure 7: Interaction of DNA structures with polymers and lipids.
Figure 8: Nanoparticle assembly with DNA.
Figure 9: Protein assembly with DNA.
Figure 10: Biological applications of DNA nanotechnology.

References

  1. 1

    Seeman, N. C. & Belcher, A. M. Emulating biology: building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99, 6451–6455 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Kallenbach, N. R., Ma, R. I. & Seeman, N. C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    CAS  Article  Google Scholar 

  4. 4

    Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Mao, C. D., Sun, W. Q., Shen, Z. Y. & Seeman, N. C. A nanomechanical device based on the B–Z transition of DNA. Nature 397, 144–146 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

    CAS  Article  Google Scholar 

  10. 10

    McBride, L. J. & Caruthers, M. H. An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett. 24, 245–248 (1983).

    CAS  Article  Google Scholar 

  11. 11

    Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Hughes, R. A. & Ellington, A. D. DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, a023812 (2017).

    Article  Google Scholar 

  13. 13

    Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS  Article  Google Scholar 

  14. 14

    He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays J. Am. Chem. Soc. 127, 12202–12203 (2005).

    CAS  Article  Google Scholar 

  15. 15

    He, Y. Tian, Y., Ribbe, A. E. & Mao, C. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 128, 15978–15979 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Wang, X. An organic semiconductor organized into 3D DNA arrays via ‘bottom-up’ rational design Angew. Chem. Int. Ed. 56, 6445–6448 (2017).

    CAS  Article  Google Scholar 

  17. 17

    Liu, D. Wang, M., Deng, Z., Walulu, R. & Mao, C. Tensegrity: construction of rigid DNA triangles from flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Hamada, S. & Murata, S. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew. Chem. Int. Ed. 48, 6820–6823 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Yan, H., LaBean, T. H., Feng, L. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl Acad. Sci. USA 100, 8103–8108 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Hamblin, G. D., Rahbani, J. F. & Sleiman, H. F. Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds. Nat. Commun. 6, 7065 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Lau, K. L. & Sleiman, H. F. Minimalist approach to complexity: templating the assembly of DNA tile structures with sequentially grown input strands. ACS Nano 10, 6542–6551 (2016).

    CAS  Article  Google Scholar 

  22. 22

    He, Y. et al. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem. Int. Ed. 44, 6694–6696 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Rothemund, P. W., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Article  Google Scholar 

  24. 24

    Evans, C. G. & Winfree, E. Physical principles for DNA tile self-assembly. Chem. Soc. Rev. 46, 3808–3829 (2017).

    CAS  Article  Google Scholar 

  25. 25

    Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Wei, B., Dai, M. J. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Marchi, A. N., Saaem, I., Tian, J. D. & LaBean, T. H. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold. ACS Nano 7, 903–910 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Li, W., Yang, Y., Jiang, S. X., Yan, H. & Liu, Y. Controlled nucleation and growth of DNA tile arrays within prescribed DNA origami frames and their dynamics. J. Am. Chem. Soc. 136, 3724–3727 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Geary, C., Rothemund, P. W. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Hao, C. H. et al. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat. Commun. 5, 3890 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Zhang, Y. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. (Camb.) 1372–1373 (2004).

  39. 39

    Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    CAS  Article  Google Scholar 

  40. 40

    He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Tian, C. et al. Directed self-assembly of DNA tiles into complex nanocages. Angew. Chem. Int. Ed. 53, 8041–8044 (2014).

    CAS  Article  Google Scholar 

  42. 42

    Yang, H. et al. Metal-nucleic acid cages. Nat. Chem. 1, 390–396 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Shih, W. M. & Lin, C. Knitting complex weaves with DNA origami. Curr. Opin. Struct. Biol. 20, 276–282 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Dietz, H. et al. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–75 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Ke, Y. et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9, 2445–2447 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Han, D. R. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Endo, M., Hidaka, K., Kato, T., Namba, K. & Sugiyama, H. DNA prism structures constructed by folding of multiple rectangular arms. J. Am. Chem. Soc. 131, 15570–15571 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    CAS  Article  Google Scholar 

  52. 52

    Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  Article  Google Scholar 

  54. 54

    Liu, H. P., Chen, Y., He, Y., Ribbe, A. E. & Mao, C. D. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew. Chem. Int. Ed. 45, 1942–1945 (2006).

    CAS  Article  Google Scholar 

  55. 55

    Rothemund, P. W. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    CAS  Article  Google Scholar 

  56. 56

    Mitchell, J. C., Harris, J. R., Malo, J., Bath, J. & Turberfield, A. J. Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004).

    CAS  Article  Google Scholar 

  57. 57

    Lin, C. et al. Functional DNA nanotube arrays: bottom-up meets top-down. Angew. Chem. Int. Ed. 46, 6089–6092 (2007).

    CAS  Article  Google Scholar 

  58. 58

    Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    CAS  Article  Google Scholar 

  59. 59

    Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    CAS  Article  Google Scholar 

  60. 60

    Yin, P. et al. Programming DNA tube circumferences. Science 321, 824–826 (2008).

    CAS  Article  Google Scholar 

  61. 61

    Lo, P. K., Aldaye, F. A. & Sleiman, H. F. Modular construction of DNA nanotubes of tunable geometry, alternating size, and single- or double-stranded character. J. Biomol. Struct. Dyn. 26, 801 (2009).

    Google Scholar 

  62. 62

    Wilner, O. I., Henning, A., Shlyahovsky, B. & Willner, I. Covalently linked DNA nanotubes. Nano Lett. 10, 1458–1465 (2010).

    CAS  Article  Google Scholar 

  63. 63

    Paukstelis, P. J., Nowakowski, J., Birktoft, J. J. & Seeman, N. C. Crystal structure of a continuous three-dimensional DNA lattice. Chem. Biol. 11, 1119–1126 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  Article  Google Scholar 

  65. 65

    Zhao, J. et al. Post-assembly stabilization of rationally designed DNA crystals. Angew. Chem. Int. Ed. 54, 9936–9939 (2015).

    CAS  Article  Google Scholar 

  66. 66

    Stahl, E., Praetorius, F., de Oliveira Mann, C. C., Hopfner, K.-P. & Dietz, H. Impact of heterogeneity and lattice bond strength on DNA triangle crystal growth. ACS Nano 10, 9156–9164 (2016).

    CAS  Article  Google Scholar 

  67. 67

    Simmons, C. R. et al. Construction and structure determination of a three-dimensional DNA crystal. J. Am. Chem. Soc. 138, 10047–10054 (2016).

    CAS  Article  Google Scholar 

  68. 68

    Brady, R. A., Brooks, N. J., Cicuta, P. & Di Michele, L. Crystallization of amphiphilic DNA C-stars. Nano Lett. 17, 3276–3281 (2017).

    CAS  Article  Google Scholar 

  69. 69

    Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Article  Google Scholar 

  70. 70

    Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  Article  Google Scholar 

  71. 71

    Feng, L., Park, S. H., Reif, J. H. & Yan, H. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003).

    CAS  Article  Google Scholar 

  72. 72

    Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    CAS  Article  Google Scholar 

  73. 73

    Yin, P., Choi, H. M., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    CAS  Article  Google Scholar 

  74. 74

    Sherman, W. B. & Seeman, N. C. A precisely controlled DNA bipedal walking device. Nano Lett. 4, 1203–1207 (2004).

    CAS  Article  Google Scholar 

  75. 75

    Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Tian, Y. & Mao, C. D. Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

    CAS  Article  Google Scholar 

  77. 77

    Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  Article  Google Scholar 

  78. 78

    Gu, H. Z., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  Article  Google Scholar 

  79. 79

    Liao, S. & Seeman, N. C. Translation of DNA signals into polymer assembly instructions. Science 306, 2072–2074 (2004).

    CAS  Article  Google Scholar 

  80. 80

    He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5, 778–782 (2010).

    CAS  Article  Google Scholar 

  81. 81

    Padilla, J. E. et al. A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. 54, 5939–5942 (2015).

    CAS  Article  Google Scholar 

  82. 82

    Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 4, 245–248 (2009).

    CAS  Article  Google Scholar 

  83. 83

    Liber, M., Tomov, T. E., Tsukanov, R., Berger, Y. & Nir, E. A bipedal DNA motor that travels back and forth between two DNA origami tiles. Small 11, 568–575 (2015).

    CAS  Article  Google Scholar 

  84. 84

    Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

    CAS  Article  Google Scholar 

  85. 85

    Lo, P. K., Altvater, F. & Sleiman, H. F. Templated synthesis of DNA nanotubes with controlled, predetermined lengths. J. Am. Chem. Soc. 132, 10212–10214 (2010).

    CAS  Article  Google Scholar 

  86. 86

    Li, Y., Tian, C., Liu, Z., Jiang, W. & Mao, C. Structural transformation: assembly of an otherwise inaccessible DNA nanocage. Angew. Chem. Int. Ed. 54, 5990–5993 (2015).

    CAS  Article  Google Scholar 

  87. 87

    Han, D. R., Pal, S., Liu, Y. & Yan, H. Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol. 5, 712–717 (2010).

    CAS  Article  Google Scholar 

  88. 88

    Yang, Y., Endo, M., Hidaka, K. & Sugiyama, H. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012).

    CAS  Article  Google Scholar 

  89. 89

    Asanuma, H. et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007).

    CAS  Article  Google Scholar 

  90. 90

    Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116–120 (2010).

    CAS  Article  Google Scholar 

  91. 91

    Shi, J. F. & Bergstrom, D. E. Assembly of novel DNA cycles with rigid tetrahedral linkers. Angew. Chem. Int. Ed. Engl. 36, 111–113 (1997).

    CAS  Article  Google Scholar 

  92. 92

    Aldaye, F. A. & Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 118, 2262–2267 (2006).

    Article  Google Scholar 

  93. 93

    Eryazici, I., Yildirim, I., Schatz, G. C. & Nguyen, S. T. Enhancing the melting properties of small molecule-DNA hybrids through designed hydrophobic interactions: an experimental-computational study. J. Am. Chem. Soc. 134, 7450–7458 (2012).

    CAS  Article  Google Scholar 

  94. 94

    Greschner, A. A., Toader, V. & Sleiman, H. F. The role of organic linkers in directing DNA self-assembly and significantly stabilizing DNA duplexes. J. Am. Chem. Soc. 134, 14382–14389 (2012).

    CAS  Article  Google Scholar 

  95. 95

    Thaner, R. V., Eryazici, I., Farha, O. K., Mirkin, C. A. & Nguyen, S. T. Facile one-step solid-phase synthesis of multitopic organic–DNA hybrids via “click” chemistry. Chem. Sci. 5, 1091–1096 (2014).

    CAS  Article  Google Scholar 

  96. 96

    Chaput, J. C. & Switzer, C. A DNA pentaplex incorporating nucleobase quintets. Proc. Natl Acad. Sci. USA 96, 10614–10619 (1999).

    CAS  Article  Google Scholar 

  97. 97

    Avakyan, N. et al. Reprogramming the assembly of unmodified DNA with a small molecule. Nat. Chem. 8, 368–376 (2016).

    CAS  Article  Google Scholar 

  98. 98

    Leal, N. A. et al. Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. ACS Synth. Biol. 4, 407–413(2015).

    CAS  Article  Google Scholar 

  99. 99

    Winnacker, M. & Kool, E. T. Artificial genetic sets composed of size-expanded base pairs. Angew. Chem. Int. Ed. 52, 12498–12508 (2013).

    CAS  Article  Google Scholar 

  100. 100

    Malyshev, D. A. & Romesberg, F. E. The expanded genetic alphabet. Angew. Chem. Int. Ed. 54, 11930–11944 (2015).

    CAS  Article  Google Scholar 

  101. 101

    Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    CAS  Article  Google Scholar 

  102. 102

    Zhang, Y. et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc. Natl Acad. Sci. USA 114, 1317–1322 (2017).

    CAS  Article  Google Scholar 

  103. 103

    Nielsen, P., Egholm, M., Berg, R. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    CAS  Article  Google Scholar 

  104. 104

    Wengel, J. Synthesis of 3′-C- and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res. 32, 301–310 (1999).

    CAS  Article  Google Scholar 

  105. 105

    Urata, H., Ogura, E., Shinohara, K., Ueda, Y. & Akagi, M. Synthesis and properties of mirror-image DNA. Nucleic Acids Res. 20, 3325–3332 (1992).

    CAS  Article  Google Scholar 

  106. 106

    Damha, M. J. et al. Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120, 12976–12977 (1998).

    CAS  Article  Google Scholar 

  107. 107

    Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    CAS  Article  Google Scholar 

  108. 108

    Vargas-Baca, I., Mitra, D., Zulyniak, H. J., Banerjee, J. & Sleiman, H. F. Solid-phase synthesis of transition metal linked, branched oligonucleotides. Angew. Chem. Int. Ed. 40, 4629–4632 (2001).

    CAS  Article  Google Scholar 

  109. 109

    Mitra, D., Di Cesare, N. & Sleiman, H. F. Self-assembly of cyclic metal-DNA nanostuctures using ruthenium tris(bipyridine)-branched oligonucleotides. Angew. Chem. Int. Ed. 43, 5804–5808 (2004).

    CAS  Article  Google Scholar 

  110. 110

    McLaughlin, C. K., Hamblin, G. D. & Sleiman, H. F. Supramolecular DNA assembly. Chem. Soc. Rev. 40, 5647–5656 (2011).

    CAS  Article  Google Scholar 

  111. 111

    Yang, H., Rys, A. Z., McLaughlin, C. K. & Sleiman, H. F. Templated ligand environments for the selective incorporation of different metals into DNA. Angew. Chem. Int. Ed. 48, 9919–9923 (2009).

    CAS  Article  Google Scholar 

  112. 112

    Yang, H. & Sleiman, H. F. Templated synthesis of highly stable, electroactive, and dynamic metal–DNA branched junctions. Angew. Chem. Int. Ed. 47, 2443–2446 (2008).

    CAS  Article  Google Scholar 

  113. 113

    Yang, H. et al. Chiral metal–DNA four-arm junctions and metalated nanotubular structures. Angew. Chem. Int. Ed. 50, 4620–4623 (2011).

    CAS  Article  Google Scholar 

  114. 114

    Kaul, C., Muller, M., Wagner, M., Schneider, S. & Carell, T. Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. Nat. Chem. 3, 794–800 (2011).

    CAS  Article  Google Scholar 

  115. 115

    Gothelf, K. V., Thomsen, A., Nielsen, M., Clo, E. & Brown, R. S. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc. 126, 1044–1046 (2004).

    CAS  Article  Google Scholar 

  116. 116

    Tanaka, K., Tengeiji, A., Kato, T., Toyama, N. & Shionoya, M. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    CAS  Article  Google Scholar 

  117. 117

    Meggers, E., Holland, P. L., Tolman, W. B., Romesberg, F. E. & Schultz, P. G. A novel copper-mediated DNA base pair. J. Am. Chem. Soc. 122, 10714–10715 (2000).

    CAS  Article  Google Scholar 

  118. 118

    Clever, G. H., Kaul, C. & Carell, T. DNA–metal base pairs. Angew. Chem. Int. Ed. 46, 6226–6236 (2007).

    CAS  Article  Google Scholar 

  119. 119

    Liu, S. et al. Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. Angew. Chem. Int. Ed. 50, 8886–8890 (2011).

    CAS  Article  Google Scholar 

  120. 120

    Tanaka, K. et al. Programmable self-assembly of metal ions inside artificial DNA duplexes. Nat. Nanotechnol. 1, 190–194 (2006).

    CAS  Article  Google Scholar 

  121. 121

    Endo, M., Seeman, N. C. & Majima, T. DNA tube structures controlled by a four-way-branched DNA connector. Angew. Chem. Int. Ed. 44, 6074–6077 (2005).

    CAS  Article  Google Scholar 

  122. 122

    Endo, M., Shiroyama, T., Fujitsuka, M. & Majima, T. Four-way-branched DNA-porphyrin conjugates for construction of four double-helix-DNA assembled structures. J. Org. Chem. 70, 7468–7472 (2005).

    CAS  Article  Google Scholar 

  123. 123

    Mai, Y. Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    CAS  Article  Google Scholar 

  124. 124

    Chien, M.-P., Rush, A. M., Thompson, M. P. & Gianneschi, N. C. Programmable shape-shifting micelles. Angew. Chem. Int. Ed. 49, 5076–5080 (2010).

    CAS  Article  Google Scholar 

  125. 125

    Ding, K., Alemdaroglu, F. E., Borsch, M., Berger, R. & Herrmann, A. Engineering the structural properties of DNA block copolymer micelles by molecular recognition. Angew. Chem. Int. Ed. 46, 1172–1175 (2007).

    CAS  Article  Google Scholar 

  126. 126

    Edwardson, T. G., Carneiro, K. M., Serpell, C. J. & Sleiman, H. F. An efficient and modular route to sequence-defined polymers appended to DNA. Angew. Chem. Int. Ed. 53, 4567–4571 (2014).

    CAS  Article  Google Scholar 

  127. 127

    Serpell, C. J., Edwardson, T. G., Chidchob, P., Carneiro, K. M. & Sleiman, H. F. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space. J. Am. Chem. Soc. 136, 15767–15774 (2014).

    CAS  Article  Google Scholar 

  128. 128

    Chidchob, P., Edwardson, T. G., Serpell, C. J. & Sleiman, H. F. Synergy of two assembly languages in DNA nanostructures: self-assembly of sequence-defined polymers on DNA cages. J. Am. Chem. Soc. 138, 4416–4425 (2016).

    CAS  Article  Google Scholar 

  129. 129

    Edwardson, T. G., Carneiro, K. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).

    CAS  Article  Google Scholar 

  130. 130

    List, J., Weber, M. & Simmel, F. C. Hydrophobic actuation of a DNA origami bilayer structure. Angew. Chem. Int. Ed. 53, 4236–4239 (2014).

    CAS  Article  Google Scholar 

  131. 131

    Conway, J. W. et al. Dynamic behavior of DNA cages anchored on spherically supported lipid bilayers. J. Am. Chem. Soc. 136, 12987–12997 (2014).

    CAS  Article  Google Scholar 

  132. 132

    Suzuki, Y., Endo, M. & Sugiyama, H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 6, 8052 (2015).

    CAS  Article  Google Scholar 

  133. 133

    Suzuki, Y., Endo, M., Yang, Y. & Sugiyama, H. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J. Am. Chem. Soc. 136, 1714–1717 (2014).

    CAS  Article  Google Scholar 

  134. 134

    Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    CAS  Article  Google Scholar 

  135. 135

    Bell, N. A. & Keyser, U. F. Nanopores formed by DNA origami: a review. FEBS Lett. 588, 3564–3570 (2014).

    CAS  Article  Google Scholar 

  136. 136

    Burns, J. R., Al-Juffali, N., Janes, S. M. & Howorka, S. Membrane-spanning DNA nanopores with cytotoxic effect. Angew. Chem. Int. Ed. 53, 12466–12470 (2014).

    CAS  Article  Google Scholar 

  137. 137

    Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    CAS  Article  Google Scholar 

  138. 138

    Knudsen, J. B. et al. Routing of individual polymers in designed patterns. Nat. Nanotechnol. 10, 892–898 (2015).

    CAS  Article  Google Scholar 

  139. 139

    Lohse, S. E. & Murphy, C. J. Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 15607–15620 (2012).

    CAS  Article  Google Scholar 

  140. 140

    Klinkova, A., Choueiri, R. M. & Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).

    CAS  Article  Google Scholar 

  141. 141

    Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    CAS  Article  Google Scholar 

  142. 142

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  143. 143

    Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    CAS  Article  Google Scholar 

  144. 144

    Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    CAS  Article  Google Scholar 

  145. 145

    Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009).

    CAS  Article  Google Scholar 

  146. 146

    Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    CAS  Article  Google Scholar 

  147. 147

    Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    CAS  Article  Google Scholar 

  148. 148

    Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    CAS  Article  Google Scholar 

  149. 149

    Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    CAS  Article  Google Scholar 

  150. 150

    Wang, D. B. et al. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates. ACS Nano 8, 7896–7904 (2014).

    CAS  Article  Google Scholar 

  151. 151

    Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    CAS  Article  Google Scholar 

  152. 152

    Helmi, S., Ziegler, C., Kauert, D. J. & Seidel, R. Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett. 14, 6693–6698 (2014).

    CAS  Article  Google Scholar 

  153. 153

    Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Article  CAS  Google Scholar 

  154. 154

    Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Article  Google Scholar 

  155. 155

    Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Article  Google Scholar 

  156. 156

    Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    CAS  Article  Google Scholar 

  157. 157

    Udomprasert, A. et al. Amyloid fibrils nucleated and organized by DNA origami constructions. Nat. Nanotechnol. 9, 537–541 (2014).

    CAS  Article  Google Scholar 

  158. 158

    Selmi, D. N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).

    CAS  Article  Google Scholar 

  159. 159

    Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 45, 7414–7417 (2006).

    CAS  Article  Google Scholar 

  160. 160

    Raschle, T., Lin, C., Jungmann, R., Shih, W. M. & Wagner, G. Controlled co-reconstitution of multiple membrane proteins in lipid bilayer nanodiscs using DNA as a scaffold. ACS Chem. Biol. 10, 2448–2454 (2015).

    CAS  Article  Google Scholar 

  161. 161

    Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA–streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 22, 5530–5539 (1994).

    CAS  Article  Google Scholar 

  162. 162

    Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009).

    CAS  Article  Google Scholar 

  163. 163

    Fu, J. et al. Assembly of multienzyme complexes on DNA nanostructures. Nat. Protoc. 11, 2243–2273 (2016).

    CAS  Article  Google Scholar 

  164. 164

    Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).

    CAS  Article  Google Scholar 

  165. 165

    Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    CAS  Article  Google Scholar 

  166. 166

    Dutta, P. K. et al. A DNA-directed light-harvesting/reaction center system. J. Am. Chem. Soc. 136, 16618–16625 (2014).

    CAS  Article  Google Scholar 

  167. 167

    Rosenzweig, B. A. et al. Multivalent protein binding and precipitation by self-assembling molecules on a DNA pentaplex scaffold. J. Am. Chem. Soc. 131, 5020–5021 (2009).

    CAS  Article  Google Scholar 

  168. 168

    Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nat. Nanotechnol. 3, 418–422 (2008).

    CAS  Article  Google Scholar 

  169. 169

    Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355, eaam5488 (2017).

    Article  CAS  Google Scholar 

  170. 170

    Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    CAS  Article  Google Scholar 

  171. 171

    Lin, C. X. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4, 832–839 (2012).

    CAS  Article  Google Scholar 

  172. 172

    Suzuki, Y. et al. DNA origami based visualization system for studying site-specific recombination events. J. Am. Chem. Soc. 136, 211–218 (2014).

    CAS  Article  Google Scholar 

  173. 173

    Endo, M. et al. Single-molecule manipulation of the duplex formation and dissociation at the G-quadruplex/i-motif site in the DNA nanostructure. ACS Nano 9, 9922–9929 (2015).

    CAS  Article  Google Scholar 

  174. 174

    Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    CAS  Article  Google Scholar 

  175. 175

    Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016).

    CAS  Article  Google Scholar 

  176. 176

    Williford, J. M., Santos, J. L., Shyam, R. & Mao, H. Q. Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomater. Sci. 3, 894–907 (2015).

    CAS  Article  Google Scholar 

  177. 177

    Walsh, A. S., Yin, H. F., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

    CAS  Article  Google Scholar 

  178. 178

    Hamblin, G. D., Carneiro, K. M., Fakhoury, J. F., Bujold, K. E. & Sleiman, H. F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J. Am. Chem. Soc. 134, 2888–2891 (2012).

    CAS  Article  Google Scholar 

  179. 179

    Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl Med. 5, 209ra152 (2013).

    Article  CAS  Google Scholar 

  180. 180

    Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. 53, 7745–7750 (2014).

    CAS  Article  Google Scholar 

  181. 181

    Vindigni, G. et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 10, 5971–5979 (2016).

    CAS  Article  Google Scholar 

  182. 182

    Fakhoury, J. J., McLaughlin, C. K., Edwardson, T. W., Conway, J. W. & Sleiman, H. F. Development and characterization of gene silencing DNA cages. Biomacromolecules 15, 276–282 (2014).

    CAS  Article  Google Scholar 

  183. 183

    Fakhoury, J. J. et al. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown. Nanoscale 7, 20625–20634 (2015).

    CAS  Article  Google Scholar 

  184. 184

    Conway, J. W., McLaughlin, C. K., Castor, K. J. & Sleiman, H. DNA nanostructure serum stability: greater than the sum of its parts. Chem. Commun. (Camb) 49, 1172–1174 (2013).

    CAS  Article  Google Scholar 

  185. 185

    Mei, Q. A. et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 11, 1477–1482 (2011).

    CAS  Article  Google Scholar 

  186. 186

    Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    CAS  Article  Google Scholar 

  187. 187

    Martin, T. G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun. 3, 1103 (2012).

    Article  CAS  Google Scholar 

  188. 188

    Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    CAS  Article  Google Scholar 

  189. 189

    Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    CAS  Article  Google Scholar 

  190. 190

    Zhao, Y.-X. et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012).

    CAS  Article  Google Scholar 

  191. 191

    Orava, E. W., Cicmil, N. & Gariepy, J. Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim. Biophys. Acta 1798, 2190–2200 (2010).

    CAS  Article  Google Scholar 

  192. 192

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS  Article  Google Scholar 

  193. 193

    Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS  Article  Google Scholar 

  194. 194

    Bujold, K. E. et al. Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles. Chem. Sci. 5, 2449–2455 (2014).

    CAS  Article  Google Scholar 

  195. 195

    Bujold, K. E., Hsu, J. C. & Sleiman, H. F. Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 138, 14030–14038 (2016).

    CAS  Article  Google Scholar 

  196. 196

    Lacroix, A., Edwardson, T. G. W., Hancock, M. A., Dore, M. D. & Sleiman, H. F. Development of DNA nanostructures for high-affinity binding to human serum albumin. J. Am. Chem. Soc. 139, 7355–7362 (2017).

    CAS  Article  Google Scholar 

  197. 197

    Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 132, 171–183 (2008).

    CAS  Article  Google Scholar 

  198. 198

    Boekhoven, J. & Stupp, S. I. 25th Anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26, 1642–1659 (2014).

    CAS  Article  Google Scholar 

  199. 199

    Aldaye, F. A., Senapedis, W. T., Silver, P. A. & Way, J. C. A structurally tunable DNA-based extracellular matrix. J. Am. Chem. Soc. 132, 14727–14729 (2010).

    CAS  Article  Google Scholar 

  200. 200

    Stephanopoulos, N. et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 15, 603–609 (2014).

    Article  CAS  Google Scholar 

  201. 201

    Wang, T., Schiffels, D., Cuesta, S. M., Fygenson, D. K. & Seeman, N. C. Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134, 1606–1616 (2012).

    CAS  Article  Google Scholar 

  202. 202

    Howes, P. D., Rana, S. & Stevens, M. M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev, 43, 3835–3853 (2014).

    CAS  Article  Google Scholar 

  203. 203

    Austin, L. A., Kang, B. & El-Sayed, M. A. Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review. Nano Today 10, 542–558 (2015).

    CAS  Article  Google Scholar 

  204. 204

    Ayala-Orozco, C. et al. Sub-100 nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J. Control. Release 191, 90–97 (2014).

    CAS  Article  Google Scholar 

  205. 205

    Rosen, C. B. et al. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nat. Chem. 6, 804–809 (2014).

    CAS  Article  Google Scholar 

  206. 206

    Flory, J. D. et al. Low temperature assembly of functional 3D DNA-PNA-protein complexes. J. Am. Chem. Soc. 136, 8283–8295 (2014).

    CAS  Article  Google Scholar 

  207. 207

    Trads, J. B., Tørring, T. & Gothelf, K. V. Site-selective conjugation of native proteins with DNA. Acc. Chem. Res. 50, 1367–1374 (2017).

    CAS  Article  Google Scholar 

  208. 208

    Seeman, N. Structural DNA Nanotechnology (Cambridge Univ. Press, 2016).

    Google Scholar 

  209. 209

    Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Hogberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 10, 647–652 (2013).

    CAS  Article  Google Scholar 

  210. 210

    Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    CAS  Article  Google Scholar 

  211. 211

    Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    CAS  Article  Google Scholar 

  212. 212

    Mao, C., Sun, W. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997).

    CAS  Article  Google Scholar 

  213. 213

    Mao, C., LaBean, T., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407, 493–496 (2000).

    CAS  Article  Google Scholar 

  214. 214

    Wang, T. et al. Self-replication of information-bearing nanoscale patterns. Nature 478, 225–228 (2011).

    CAS  Article  Google Scholar 

  215. 215

    Park, S. H. Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett. 5, 693–696 (2005).

    CAS  Article  Google Scholar 

  216. 216

    Hao, Y. et al. A device that operates within a self-assembled 3D DNA crystal. Nat. Chem. 9, 824–827 (2017).

    CAS  Article  Google Scholar 

  217. 217

    Seeman, N. C. Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry 42, 7259–7269 (2003).

    CAS  Article  Google Scholar 

  218. 218

    Goodman, R. P. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    CAS  Article  Google Scholar 

  219. 219

    Wang, T. et al. A DNA crystal designed to contain two molecules per asymmetric unit. J. Am. Chem. Soc. 132, 15471–15473 (2010).

    CAS  Article  Google Scholar 

  220. 220

    Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions Nat. Chem. 3, 103–113 (2011).

    CAS  Article  Google Scholar 

  221. 221

    Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

    CAS  Article  Google Scholar 

  222. 222

    Yang, H. Metera, K. L. & Sleiman, H. F. DNA modified with metal complexes: applications in the construction of higher-order metal–DNA nanostructures. Coord. Chem. Rev. 254, 2403–2415 (2010).

    CAS  Article  Google Scholar 

  223. 223

    Mueller, J. E. Du, S. M. & Seeman, N. C. The design and synthesis of a knot from single-stranded DNA. J. Am. Chem. Soc. 113, 6306–6308 (1991).

    CAS  Article  Google Scholar 

  224. 224

    Kahn, J. S., Hu, Y. & Willner, I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc. Chem. Res. 50, 680–690 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the following grants to H.F.S.: Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs Program, the Canadian Institutes of Health Research (CIHR), Fonds de recherche du Québec — Nature et technologies (FRQNT) and Prostate Cancer Canada. The following grants were provided to N.C.S.: EFRI-1332411 and CCF-1526650 from the National Science Foundation (NSF), MURI W911NF-11-1-0024 from the US Army Research Office (ARO), N000141110729 from the US Office of Naval Research (ONR), DE-SC0007991 from the US Department of Energy (DOE) for DNA synthesis, and partial salary support and grant GBMF3849 from the Gordon and Betty Moore Foundation. The authors thank P. Chidchob, A. Lacroix, N. Avakyan, J. Hsu, D. Bousmail, T. Trinh, D. de Rochambeau, H. Fakih, E. Vengut Climent and M. Dore for help proofreading the manuscript.

Author information

Affiliations

Authors

Contributions

H.F.S. researched the data for the article. H.F.S. and N.C.S. wrote the article and edited it before submission.

Corresponding authors

Correspondence to Nadrian C. Seeman or Hanadi F. Sleiman.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seeman, N., Sleiman, H. DNA nanotechnology. Nat Rev Mater 3, 17068 (2018). https://doi.org/10.1038/natrevmats.2017.68

Download citation

Further reading