Flexible mechanical metamaterials

Article metrics

Abstract

Mechanical metamaterials exhibit properties and functionalities that cannot be realized in conventional materials. Originally, the field focused on achieving unusual (zero or negative) values for familiar mechanical parameters, such as density, Poisson's ratio or compressibility, but more recently, new classes of metamaterials — including shape-morphing, topological and nonlinear metamaterials — have emerged. These materials exhibit exotic functionalities, such as pattern and shape transformations in response to mechanical forces, unidirectional guiding of motion and waves, and reprogrammable stiffness or dissipation. In this Review, we identify the design principles leading to these properties and discuss, in particular, linear and mechanism-based metamaterials (such as origami-based and kirigami-based metamaterials), metamaterials harnessing instabilities and frustration, and topological metamaterials. We conclude by outlining future challenges for the design, creation and conceptualization of advanced mechanical metamaterials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Building blocks of mechanical metamaterials.
Figure 2: Mechanism-based metamaterials.
Figure 3: Origami-inspired metamaterials.
Figure 4: Mechanism-based, shape-morphing metamaterials.
Figure 5: Instability-based metamaterials.
Figure 6: Frustration and tunable metamaterials.
Figure 7: Prototypes of topological mechanical metamaterials.

References

  1. 1

    Soukoulis, C. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011).

  2. 2

    Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

  3. 3

    Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013).

  4. 4

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

  5. 5

    Kadic, M., Bückmann, T., Schittny, R. & Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013).

  6. 6

    Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. MRS Commun. 5, 453–462 (2015).

  7. 7

    Lakes, R. Foam structures with a negative Poisson's ratio. Science 235, 1038–1040 (1987).

  8. 8

    Lakes, R. Deformation mechanisms of negative Poisson's ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991).

  9. 9

    Milton, G. Composite materials with poisson's ratios close to — 1. J. Mech. Phys. Solids 40, 1105–1137 (1992).

  10. 10

    Milton, G. W. & Cherkaev, A. V. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483–493 (1995).

  11. 11

    Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).

  12. 12

    Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012).

  13. 13

    Bückmann, T., Thiel, M., Kadic, M., Schittny, R. & Wegener, M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

  14. 14

    Schenk, M. & Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).

  15. 15

    Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative Poisson's ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).

  16. 16

    Gatt, R. et al. Hierarchical auxetic mechanical metamaterials. Sci. Rep. 5, 8395 (2015).

  17. 17

    Babaee, S. et al. 3D soft metamaterials with negative Poisson's ratio. Adv. Mater. 25, 5044–5049 (2013).

  18. 18

    Liu, J. et al. Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater. 28, 6619–6624 (2016).

  19. 19

    Miura, K. Method of packaging and deployment of large membranes in space. Inst. Space Astronaut. Sci. Rep. 618, 1–9 (1985).

  20. 20

    Hawkes, E. et al. Programmable matter by folding. Proc. Natl Acad. Sci. USA 107, 12441–12445 (2010).

  21. 21

    Tachi, T. & Miura, K. Rigid-foldable cylinders and cells. J. Int. Shell Spat. Struct. 53, 217–226 (2012).

  22. 22

    Wei, Z. Y., Guo, Z. V., Dudte, L., Liang, H. Y. & Mahadevan, L. Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501 (2013).

  23. 23

    Lv, C., Krishnaraju, D., Konjevod, G., Yu, H. & Jiang, H. Origami based mechanical metamaterials. Sci. Rep. 4, 5979 (2014).

  24. 24

    Lechenault, F., Thiria, B. & Adda-Bedia, M. Mechanical response of a creased sheet. Phys. Rev. Lett. 112, 244301 (2014).

  25. 25

    Cheung, K. C., Tachi, T., Calisch, S. & Miura, K. Origami interleaved tube cellular materials. Smart Mater. Struct. 23, 094012 (2014).

  26. 26

    Cho, Y. et al. Engineering the shape and structure of materials by fractal cut. Proc. Natl Acad. Sci. USA 111, 17390 (2014).

  27. 27

    Waitukaitis, S., Menaut, R., Chen, B. G. & van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).

  28. 28

    Shyu, T. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).

  29. 29

    Filipov, E. T., Tachi, T. & Paulino, G. H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. USA 112, 12321–12326 (2015).

  30. 30

    Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529–532 (2016).

  31. 31

    Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).

  32. 32

    Dudte, L., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).

  33. 33

    Haghpanah, B. et al. Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915–7920 (2016).

  34. 34

    Overvelde, J. T. et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat. Commun. 7, 10929 (2016).

  35. 35

    Overvelde, J. T., Weaver, J., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

  36. 36

    Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).

  37. 37

    Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

  38. 38

    Chen, B. G., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111, 13004–13009 (2014).

  39. 39

    Vitelli, V., Upadhyaya, N. & Chen, B. G. Topological mechanisms as classical spinor fields. Preprint at http://arxiv.org/abs/1407.2890v2 (2014).

  40. 40

    Paulose, J., Chen, B. G. & Vitelli, V. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015).

  41. 41

    Paulose, J., Meeussen, A. S. & Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl Acad. Sci. USA 112, 7639–7644 (2015).

  42. 42

    Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

  43. 43

    Khanikaev, A. B., Fleury, R. & Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

  44. 44

    Susstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

  45. 45

    Meeussen, A. S., Paulose, J. & Vitelli, V. Geared topological metamaterials with tunable mechanical stability. Phys. Rev. X 6, 041029 (2016).

  46. 46

    Rocklin, D. Z., Chen, B. G., Falk, M., Vitelli, V. & Lubensky, T. C. Mechanical Weyl modes in topological Maxwell lattices. Phys. Rev. Lett. 116, 135503 (2016).

  47. 47

    Kariyado, T. & Hatsugai, Y. Manipulation of Dirac cones in mechanical graphene. Sci. Rep. 5, 18107 (2015).

  48. 48

    Chen, B. G. et al. Topological mechanics of origami and kirigami. Phys. Rev. Lett. 116, 135501 (2016).

  49. 49

    Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).

  50. 50

    Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

  51. 51

    Rocklin, D. Z., Zhou, S., Sun, K. & Mao, X. Transformable topological mechanical metamaterials. Nat. Commun. 8, 14201 (2017).

  52. 52

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 1–4 (2015).

  53. 53

    Süsstrunk, R. & Huber, S. D. Classification of topological phonons in linear mechanical metamaterials. Proc. Natl Acad. Sci. USA 113, E4767–E4775 (2016).

  54. 54

    Deymier, P. A., Runge, K., Swinteck, N. & Muralidharan, K. Torsional topology and fermion-like behavior of elastic waves in phononic structures. Comptes Rendus Mécanique 343, 700–711 (2015).

  55. 55

    Bi, R. & Wang, Z. Unidirectional transport in electronic and photonic Weyl materials by dirac mass engineering. Phys. Rev. B 92, 241109 (2015).

  56. 56

    Berg, N., Joel, K., Koolyk, M. & Prodan, E. Topological phonon modes in filamentary structures. Phys. Rev. E 83, 021913 (2011).

  57. 57

    Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

  58. 58

    Wang, Y.-T., Luan, P.-G. & Zhang, S. Coriolis force induced topological order for classical mechanical vibrations. New J. Phys. 17, 073031 (2015).

  59. 59

    Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

  60. 60

    Po, H. C., Bahri, Y. & Vishwanath, A. Phonon analog of topological nodal semimetals. Phys. Rev. B 93, 205158 (2016).

  61. 61

    Coulais, C., Sounas, D. & Alù, A. Static non-reciprocity in mechanical metamaterials. Nature 542, 461–464 (2017).

  62. 62

    Mullin, T., Deschanel, S., Bertoldi, K. & Boyce, M. C. Pattern transformation triggered by deformation. Phys. Rev. Lett. 99, 084301 (2007).

  63. 63

    Bertoldi, K., Reis, P. M., Willshaw, S. & Mullin, T. Negative Poisson's ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010).

  64. 64

    Shim, J., Perdigou, C., Chen, E., Bertoldi, K. & Reis, P. Buckling-induced encapsulation of structured elastic shells under pressure. Proc. Natl Acad. Sci. USA 109, 5978–5983 (2012).

  65. 65

    Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

  66. 66

    Coulais, C., Overvelde, J. T., Lubbers, L. A., Bertoldi, K. & van Hecke, M. Discontinuous buckling of wide beams and metabeams. Phys. Rev. Lett. 115, 044301 (2015).

  67. 67

    Fargette, A., Neukirch, S. & Antkowiak, A. Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett. 112, 137802 (2014).

  68. 68

    Silverberg, J. L. et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).

  69. 69

    Kang, S. H. et al. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112, 098701 (2014).

  70. 70

    Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296 (2015).

  71. 71

    Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

  72. 72

    Zhang, Y. et al. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).

  73. 73

    Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016).

  74. 74

    Rafsanjani, A., Akbarzadeh, A. & Pasini, D. Snapping mechanical metamaterials under tension. Adv. Mater. 55, 5931–5935 (2007).

  75. 75

    Alexander, S. Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998).

  76. 76

    van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010).

  77. 77

    Katgert, G., Tighe, B. P. & van Hecke, M. The jamming perspective on wet foams. Soft Matter 9, 9739–9746 (2013).

  78. 78

    Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (2012).

  79. 79

    Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995 (2014).

  80. 80

    Jacobs, D. J. & Thorpe, M. F. Generic rigidity percolation: the pebble game. Phys. Rev. Lett. 75, 4051–4054 (1995).

  81. 81

    Wyart, M., Liang, H., Kabla, A. & Mahadevan, L. Elasticity of floppy and stiff random networks. Phys. Rev. Lett. 101, 215501 (2008).

  82. 82

    Ellenbroek, W. G., Zeravcic, Z., van Saarloos, W. & van Hecke, M. Non-affine response: jammed packings versus spring networks. EPL 87, 34004 (2009).

  83. 83

    Ellenbroek, W. G., Hagh, V. F., Kumar, A., Thorpe, M. F. & van Hecke, M. Rigidity loss in disordered systems: three scenarios. Phys. Rev. Lett. 114, 135501 (2015).

  84. 84

    Goodrich, C. P., Liu, A. J. & Nagel, S. R. The principle of independent bond-level response: tuning by pruning to exploit disorder for global behavior. Phys. Rev. Lett. 114, 225501 (2015).

  85. 85

    O’Rourke, J. How to Fold It: The Mathematics of Linkages, Origami and Polyhedra (Cambridge Univ. Press, 2011).

  86. 86

    Grima, J. N. & Evans, K. E. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19, 1563–1565(2000).

  87. 87

    Overvelde, J. T., Shan, S. & Bertoldi, K. Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Adv. Mater. 24, 2337–2342 (2012).

  88. 88

    Overvelde, J. T. & Bertoldi, K. Relating pore shape to the non-linear response of periodic elastomeric structures. J. Mech. Phys. Solids 64, 351–366 (2014).

  89. 89

    Kuribayashi, K. et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006).

  90. 90

    Song, Z. et al. Origami lithium-ion batteries. Nat. Commun. 5, 3140 (2014).

  91. 91

    Goldman, F. in Origami5: Fifth International Meeting of Origami Science, Mathematics, and Education (eds Wang-Iverson, P., Lang, R. J . & Yim, M. ) 99–110 (CRC Press, 2011).

  92. 92

    Blees, K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

  93. 93

    Song, Z. et al. Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 5, 10988 (2015).

  94. 94

    Xu, L. et al. Kirigami nanocomposites as wide-angle diffraction gratings. ACS Nano 10, 6156–6162 (2016).

  95. 95

    Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).

  96. 96

    Lamoureux, A. et al. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

  97. 97

    Eidini, M. & Paulino, G. H. Unraveling metamaterial properties in zigzag-base folded sheets. Sci. Adv. 1, e1500224 (2015).

  98. 98

    Sussman, D. et al. Algorithmic lattice kirigami: a route to pluripotent materials. Proc. Natl Acad. Sci. USA 112, 7449–7453 (2015).

  99. 99

    Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012).

  100. 100

    Gibson, L. & Ashby, M. Cellular Solids: Structure and Properties 2 nd edn (Cambridge Univ. Press, 1999).

  101. 101

    Wierzbicki, T. & Abramowicz, W. On the crushing mechanics of thin-walled structures. J. Appl. Mech. 50, 727–734 (1983).

  102. 102

    Papka, S. & Kyriakides, S. Biaxial crushing of honeycombs: — part1: experiments. Int. J. Solids Struct. 36, 4367–4396 (1999).

  103. 103

    Papka, S. & Kyriakides, S. In-plane biaxial crushing of honeycombs:— part II: analysis. Int. J. Solids Struct. 36, 4397–4423 (1999).

  104. 104

    Wu, E. & Jiang, W. Axial crush of metallic honeycombs. Int. J. Impact Eng. 19, 439–456 (1997).

  105. 105

    Hayes, A. M., Wang, A., Dempsey, B. M. & McDowell, D. L. Mechanics of linear cellular alloys. Mech. Mater. 36, 691–713 (2004).

  106. 106

    Zhang, Y. et al. One-step nanoscale assembly of complex structures via harnessing of an elastic instability. Nano Lett. 8, 1192–1196 (2008).

  107. 107

    Babaee, S., Shim, J., Weaver, J., Patel, N. & Bertoldi, K. 3D soft metamaterials with negative Poisson's ratio. Adv. Mater. 25, 5044–5049 (2013).

  108. 108

    Bertoldi, K. & Boyce, M. C. Mechanically-triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 77, 052105 (2008).

  109. 109

    Wang, P., Casadei, F., Shan, S., Weaver, J. & Bertoldi, K. Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 113, 014301 (2014).

  110. 110

    Shan, S. et al. Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 4935–4942 (2014).

  111. 111

    Krishnan, D. & Johnson, H. Optical properties of two dimensional polymer photonic crystals after deformation induced pattern transformations. J. Mech. Phys. Solids 57, 1500–1513 (2009).

  112. 112

    Li, J. et al. Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8, 10322–10328 (2012).

  113. 113

    Kang, S. et al. Buckling-induced reversible symmetry breaking and amplification of chirality using supported cellular structures. Adv. Mater. 25, 3380–3385 (2013).

  114. 114

    Bazant, Z. P. & Cedolin, L. Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories (Oxford Univ. Press, 1991).

  115. 115

    Pandey, A., Moulton, D., Vella, D. & Holmes, D. Dynamics of snapping beams and jumping poppers. EPL 105, 24001 (2014).

  116. 116

    Restrepo, D., Mankame, N. D. & Zavattieri, P. D. Phase transforming cellular materials. EML 4, 52–60 (2015).

  117. 117

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  118. 118

    Lubensky, T. C., Kane, C. L., Mao, X., Souslov, A. & Sun, K. Phonons and elasticity in critically coordinated lattices. Rep. Prog. Phys. 78, 073901 (2015).

  119. 119

    Zhou, Y., Chen, B. G., Upadhyaya, N. & Vitelli, V. Kink-antikink asymmetry and impurity interactions in topological mechanical chains. Phys. Rev. E 95, 022202 (2017).

  120. 120

    Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. & Irvine, W. T. M. Amorphous gyroscopic topological metamaterials. Preprint at https://arxiv.org/abs/1612.09267 (2016).

  121. 121

    Souslov, A., van Zuiden, B. C., Bartolo, D. & Vitelli, V. Topological sound in active-liquid metamaterials. Nat. Phys.http://dx.doi.org/10.1038/nphys4193 (2017).

  122. 122

    Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys.http://dx.doi.org/10.1038/nphys4269 (2017).

  123. 123

    Lang, R. J. in Proc. 12 th Ann. Symp. Comp. Geo. (eds Whitesides, S. H. ) 98–105 (ACM, 1996).

  124. 124

    Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014).

  125. 125

    Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Size limits of self-assembled colloidal structures made using specific interactions. Proc. Natl Acad. Sci. USA 111, 15918–15923 (2014).

  126. 126

    Miskin, M. Z. & Jaeger, H. M. Adapting granular materials through artificial evolution. Nat. Mater. 12, 326–331 (2013).

Download references

Acknowledgements

J.C. acknowledges support from the European Research Council (ERC) through the Starting Grant No. 714577 PHONOMETA and from the Ministerio de Economía, Industria y Competitividad (MINECO) through a Ramon y Cajal grant (Grant No. RYC-2015-17156). M.vH. acknowledges funding from the Netherlands Organisation for Scientific Research through Grant VICI No. NWO-680-47-609. V.V. acknowledges support from the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation through Grant No. DMR-1420709.

Author information

All authors contributed equally to the preparation of this manuscript.

Correspondence to Johan Christensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertoldi, K., Vitelli, V., Christensen, J. et al. Flexible mechanical metamaterials. Nat Rev Mater 2, 17066 (2017) doi:10.1038/natrevmats.2017.66

Download citation

Further reading