Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coherent perfect absorbers: linear control of light with light

Abstract

The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual basis of coherent perfect absorption.
Figure 2: Realization of coherent perfect absorbers in planar structures.
Figure 3: Coherent perfect absorption in PT-symmetric structures.
Figure 4: Coherent perfect absorption in guided-mode structures.
Figure 5: Coherent perfect absorption in the quantum regime.
Figure 6: Applications of coherent perfect absorbers.

Similar content being viewed by others

References

  1. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, 2013).

    Google Scholar 

  2. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

    Google Scholar 

  3. Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1990).

    Google Scholar 

  4. Salisbury, W. Absorbent body for electromagnetic waves. US Patent 2599944 (1952).

  5. Fante, R. L. & McCormack, M. T. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 36, 1443–1454 (1988).

    Article  Google Scholar 

  6. Gorodetsky, M. & Ilchenko, V. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    Article  CAS  Google Scholar 

  7. Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    Article  CAS  Google Scholar 

  8. Ra’di, Y., Simovski, C. R. & Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).

    Article  CAS  Google Scholar 

  9. Kats, M. A. & Capasso, F. Optical absorbers based on strong interference in ultra-thin films. Laser Photonics Rev. 749, 735–749 (2016).

    Article  CAS  Google Scholar 

  10. Vinoy, K. & Jha, R. Radar Absorbing Materials — From Theory to Design and Characterization. (Kluwer Academic Publishers, 1996).

    Book  Google Scholar 

  11. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    Article  CAS  Google Scholar 

  12. Kravets, V. G. et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304–309 (2013).

    Article  CAS  Google Scholar 

  13. Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering (Wiley, 2008).

    Google Scholar 

  14. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    Article  CAS  Google Scholar 

  15. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  16. Cai, M., Painter, O. & Vahala, K. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    Article  CAS  Google Scholar 

  17. Tischler, J., Bradley, M. & Bulovic, V. Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31, 2045–2047 (2006).

    Article  Google Scholar 

  18. Nefedov, I. S., Valagiannopoulos, C. A., Hashemi, S. M. & Nefedov, E. I. Total absorption in asymmetric hyperbolic media. Sci. Rep. 3, 2662 (2013).

    Article  Google Scholar 

  19. Baranov, D. G., Edgar, J. H., Hoffman, T., Bassim, N. & Caldwell, J. D. Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Phys. Rev. B 92, 201405(R) (2015).

    Article  CAS  Google Scholar 

  20. Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    Article  CAS  Google Scholar 

  21. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

    Article  CAS  Google Scholar 

  22. Fang, X., MacDonald, K. F. & Zheludev, N. I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015).

    Article  Google Scholar 

  23. Papaioannou, M., Plum, E., Valente, J., Rogers, E. T. & Zheludev, N. I. Two-dimensional control of light with light on metasurfaces. Light Sci. Appl. 5, e16070 (2016).

    Article  CAS  Google Scholar 

  24. Wei, P., Croënne, C., Tak Chu, S. & Li, J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104, 102–106 (2014).

    Google Scholar 

  25. Song, J. Z., Bai, P., Hang, Z. H. & Lai, Y. Acoustic coherent perfect absorbers. New J. Phys. 16, 033026 (2014).

    Article  Google Scholar 

  26. Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).

    Article  CAS  Google Scholar 

  27. Duan, Y. et al. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci. Rep. 5, 12139 (2015).

    Article  CAS  Google Scholar 

  28. Zanotto, S. et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat. Phys. 10, 830–834 (2014).

    Article  CAS  Google Scholar 

  29. Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).

    Article  Google Scholar 

  30. Lee, P. & Fisher, D. Anderson localization in two dimensions. Phys. Rev. Lett. 47, 882–885 (1981).

    Article  CAS  Google Scholar 

  31. Sentenac, A., Chaumet, P. C. & Leuchs, G. Total absorption of light by a nanoparticle: an electromagnetic sink in the optical regime. Opt. Lett. 38, 818–820 (2013).

    Article  CAS  Google Scholar 

  32. Jin, J.-M. The Finite Element Method in Electromagnetics, 3rd ed. (Wiley–IEEE Press, 2014).

    Google Scholar 

  33. Poladian, L. Resonance mode expansions and exact solutions for nonuniform gratings. Phys. Rev. E 54, 2963–2975 (1996).

    Article  CAS  Google Scholar 

  34. Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non- orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    Article  CAS  Google Scholar 

  35. Kang, M. et al. Polarization-independent coherent perfect absorption by a dipole-like meta-surface. Opt. Lett. 38, 3086–3088 (2013).

    Article  Google Scholar 

  36. Kang, M., Chong, Y. D., Wang, H. T., Zhu, W. & Premaratne, M. Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Appl. Phys. Lett. 105, 131103 (2014).

    Article  CAS  Google Scholar 

  37. Zhu, W., Xiao, F., Kang, M. & Premaratne, M. Coherent perfect absorption in an all-dielectric metasurface. Appl. Phys. Lett. 108, 121901 (2016).

    Article  CAS  Google Scholar 

  38. Weinstein, L. A. Open Resonators and Open Waveguides (Golem Press, 1969).

    Google Scholar 

  39. Haken, H. Light: Laser Dynamics Vol. 2, (North-Holland Phys. Publishing, 1985).

    Google Scholar 

  40. Ge, L., Chong, Y. D. & Stone, A. D. Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A 82, 063824 (2010).

    Article  CAS  Google Scholar 

  41. Nireekshan Reddy, K. & Dutta Gupta, S. Light-controlled perfect absorption of light. Opt. Lett. 38 5252–5255 (2013).

    Article  CAS  Google Scholar 

  42. Reddy, K. N., Gopal, A. V. & Gupta, S. D. Nonlinearity induced critical coupling. Opt. Lett. 38, 2517–2520 (2013).

    Article  Google Scholar 

  43. Mungan, C. & Gosnell, T. Laser cooling of solids. Adv. At. Mol. Opt. Phys. 40, 161–228 (1981).

    Article  Google Scholar 

  44. Baldacci, L., Zanotto, S., Biasiol, G., Sorba, L. & Tredicucci, A. Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation. Opt. Express 23, 9202–9210 (2015).

    Article  CAS  Google Scholar 

  45. Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).

    Article  CAS  Google Scholar 

  46. Piper, J. R. & Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1, 347–353 (2014).

    Article  CAS  Google Scholar 

  47. Zanotto, S. et al. Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations. APL Photonics 2, 016101 (2017).

    Article  CAS  Google Scholar 

  48. Luo, J., Li, S., Hou, B. & Lai, Y. Unified theory for perfect absorption in ultra-thin absorptive films with reflectors. Phys. Rev. B 90, 165128 (2014).

    Article  CAS  Google Scholar 

  49. Liu, F., Chong, Y. D., Adam, S. & Polini, M. Gate-tunable coherent perfect absorption of terahertz radiation in graphene. 2D Mater. 1, 031001 (2014).

    Article  CAS  Google Scholar 

  50. Li, S. et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015).

    Article  CAS  Google Scholar 

  51. Li, S. et al. An equivalent realization of coherent perfect absorption under single beam illumination. Sci. Rep. 4, 7369 (2014).

    Article  CAS  Google Scholar 

  52. Longhi, S. Backward lasing yields a perfect absorber. Physics 3, 61 (2010).

    Article  Google Scholar 

  53. Gmachl, C. F. Laser science: suckers for light. Nature 467, 37–39 (2010).

    Article  CAS  Google Scholar 

  54. Dutta-Gupta, S., Martin, O. J. F., Gupta, S. D. & Agarwal, G. S. Controllable coherent perfect absorption in a composite film. Opt. Express 20, 1330–1336 (2012).

    Article  Google Scholar 

  55. Pu, M. et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).

    Article  CAS  Google Scholar 

  56. Villinger, M. L., Bayat, M., Pye, L. N. & Abouraddy, A. F. Analytical model for coherent perfect absorption in one-dimensional photonic structures. Opt. Lett. 40, 5550–5553 (2015).

    Article  CAS  Google Scholar 

  57. Yoon, J. W., Koh, G. M., Song, S. H. & Magnusson, R. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating. Phys. Rev. Lett. 109, 257402 (2012).

    Article  CAS  Google Scholar 

  58. Dutta-Gupta, S., Deshmukh, R., Venu Gopal, A., Martin, O. J. F. & Gupta, S. D. Coherent perfect absorption mediated anomalous reflection and refraction. Opt. Lett. 37, 4452–4454 (2012).

    Article  Google Scholar 

  59. Jung, M. J., Han, C., Yoon, J. W. & Song, S. H. Temperature and gain tuning of plasmonic coherent perfect absorbers. Opt. Express 23, 19837–19845 (2015).

    Article  CAS  Google Scholar 

  60. Bergman, D. & Stockman, M. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  CAS  Google Scholar 

  61. Giese, J. A. et al. Guided-mode resonant coherent light absorbers. Opt. Lett. 39, 486–488 (2014).

    Article  CAS  Google Scholar 

  62. Yoon, J. W., Jung, M. J. & Song, S. H. Gain-assisted critical coupling for high-performance coherent perfect absorbers. Opt. Lett. 40, 2309–2312 (2015).

    Article  CAS  Google Scholar 

  63. Fang, X. et al. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104, 141102 (2014).

    Article  CAS  Google Scholar 

  64. Nie, G., Shi, Q., Zhu, Z. & Shi, J. Selective coherent perfect absorption in metamaterials. Appl. Phys. Lett. 105, 201909 (2014).

    Article  CAS  Google Scholar 

  65. Fang, X., MacDonald, K. F., Plum, E. & Zheludev, N. I. Coherent control of light–matter interactions in polarization standing waves. Sci. Rep. 6, 31141 (2016).

    Article  CAS  Google Scholar 

  66. Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014).

    Article  CAS  Google Scholar 

  67. Urade, Y., Nakata, Y., Nakanishi, T. & Kitano, M. Broadband and energy-concentrating terahertz coherent perfect absorber based on a selfcomplementary metasurface. Opt. Lett. 41, 4472–4475 (2016).

    Article  CAS  Google Scholar 

  68. Mousavi, S. A., Plum, E., Shi, J. & Zheludev, N. I. Coherent control of optical polarization effects in metamaterials. Sci. Rep. 5, 8977 (2015).

    Article  CAS  Google Scholar 

  69. Mousavi, S. A., Plum, E., Shi, J. & Zheludev, N. I. Coherent control of birefringence and optical activity. Appl. Phys. Lett. 105, 011906 (2014).

    Article  CAS  Google Scholar 

  70. Shi, J. et al. Coherent control of Snell's law at metasurfaces. Opt. Express 22, 21051–21060 (2014).

    Article  Google Scholar 

  71. Fang, X., Tseng, M. L., Tsai, D. P. & Zheludev, N. I. Coherent excitation-selective spectroscopy of multipole resonances. Phys. Rev. Appl. 5, 014010 (2016).

    Article  CAS  Google Scholar 

  72. Tseng, M. L. et al. Coherent selection of invisible high-order electromagnetic excitations. Sci. Rep. 7, 44488 (2017).

    Article  Google Scholar 

  73. Fan, Y., Zhang, F., Zhao, Q., Wei, Z. & Li, H. Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett. 39, 6269–6272 (2014).

    Article  CAS  Google Scholar 

  74. Rao, S. M., Heitz, J. J. F., Roger, T., Westerberg, N. & Faccio, D. Coherent control of light interaction with graphene. Opt. Lett. 39, 5345–5347 (2014).

    Article  CAS  Google Scholar 

  75. Fan, Y. et al. Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci. Rep. 5, 13956 (2015).

    Article  CAS  Google Scholar 

  76. Wang, J. & Hu, X. Recent advances in graphene-assisted nonlinear optical signal processing. J. Nanotechnol. 2016, 7031913 (2016).

    Google Scholar 

  77. Rao, S. M. et al. Geometries for the coherent control of four-wave mixing in graphene multilayers. Sci. Rep. 5, 15399 (2015).

    Article  CAS  Google Scholar 

  78. Koppens, F. H., Chang, D. E. & de Abajo, F. J. G. Graphene plasmonics: a plaftform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  79. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  CAS  Google Scholar 

  80. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  Google Scholar 

  81. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  82. Zhang, J. et al. Coherent perfect absorption and transparency in a nanostructured graphene film. Opt. Express 22, 12524–12532 (2014).

    Article  CAS  Google Scholar 

  83. Chong, Y. D., Cao, H. & Stone, A. D. Noise properties of coherent perfect absorbers and critically coupled resonators. Phys. Rev. A 87, 013843 (2013).

    Article  CAS  Google Scholar 

  84. Wu, H. & Xiao, M. White-light cavity with competing linear and nonlinear dispersions. Phys. Rev. A 77, 031801(R) (2008).

    Article  CAS  Google Scholar 

  85. Kotlicki, O. & Scheuer, J. Wideband coherent perfect absorber based on white-light cavity. Opt. Lett. 39, 6624–6627 (2014).

    Article  Google Scholar 

  86. Kim, T. Y. et al. General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films. Sci. Rep. 6, 22941 (2016).

    Article  CAS  Google Scholar 

  87. Pye, L. N. et al. Octave-spanning coherent perfect absorption in a thin silicon film. Opt. Lett. 42, 151–154 (2016).

    Article  Google Scholar 

  88. Vasic, B. & Gajic, R. Enhanced phase sensitivity of metamaterial absorbers near the point of darkness. J. Appl. Phys. 116, 023102 (2014).

    Article  CAS  Google Scholar 

  89. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  CAS  Google Scholar 

  90. Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  CAS  Google Scholar 

  91. Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption: a Fano antilaser. Phys. Rev. A 92, 011802(R) (2015).

    Article  CAS  Google Scholar 

  92. Klimov, V., Sun, S. & Guo, G. Y. Coherent perfect nanoabsorbers based on negative refraction. Opt. Express 20, 13071 (2012).

    Article  Google Scholar 

  93. Monticone, F., Valagiannopoulos, C. A. & Alu, A. Parity-time symmetric nonlocal meta-surfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6, 041018 (2016).

    Google Scholar 

  94. Ye, Y., Hay, D. & Shi, Z. Coherent perfect absorption in chiral metamaterials. Opt. Lett. 41, 3359 (2016).

    Article  CAS  Google Scholar 

  95. Kang, M. & Chong, Y. Coherent optical control of polarization with a critical metasurface. Phys. Rev. A 92, 043826 (2015).

    Article  CAS  Google Scholar 

  96. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article  CAS  Google Scholar 

  97. Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    Article  CAS  Google Scholar 

  98. Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    Article  CAS  Google Scholar 

  99. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article  CAS  Google Scholar 

  100. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  CAS  Google Scholar 

  101. Zyablovsky, A. A., Vinogradov, A. P., Pukhov, A. A., Dorofeenko, A. V. & Lisyansky, A. A. PT-symmetry in optics. Phys.-Usp. 57, 1063–1082 (2014).

    Article  Google Scholar 

  102. Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).

    Article  CAS  Google Scholar 

  103. Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    Article  CAS  Google Scholar 

  104. Longhi, S. & Feng, L. PT-symmetric microring laser-absorber. Opt. Lett. 39, 5026–5029 (2014).

    Article  Google Scholar 

  105. Sun, Y., Tan, W., Li, H. Q., Li, J. & Chen, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).

    Article  CAS  Google Scholar 

  106. Gu, Z. et al. Experimental demonstration of PT-symmetric stripe lasers. Laser Photonics Rev. 10, 588–594 (2016).

    Article  CAS  Google Scholar 

  107. Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photonics 10, 796–801 (2016).

    Article  CAS  Google Scholar 

  108. Hang, C., Huang, G. & Konotop, V. V. Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium. New. J. Phys. 18, 085003 (2016).

    Article  Google Scholar 

  109. Baum, B., Alaeian, H. & Dionne, J. A parity–time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 117, 063106 (2015).

    Article  CAS  Google Scholar 

  110. Bai, P. et al. Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys. Rev. A 94, 063841 (2016).

    Article  Google Scholar 

  111. Gutman, N., Sukhorukov, A. A., Chong, Y. D. & de Sterke, C. M. Coherent perfect absorption and reflection in slow-light waveguides. Opt. Lett. 38, 4970–4973 (2013).

    Article  Google Scholar 

  112. Bruck, R. & Muskens, O. L. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21, 27652–27661 (2013).

    Article  Google Scholar 

  113. Park, H., Lee, S. Y., Kim, J., Lee, B. & Kim, H. Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. Opt. Express 23, 24464–24474 (2015).

    Article  CAS  Google Scholar 

  114. Grote, R. R., Driscoll, J. B. & Osgood, R. M. Integrated optical modulators and switches using coherent perfect loss. Opt. Lett. 38, 3001–3004 (2013).

    Article  Google Scholar 

  115. Zanotto, S. & Melloni, A. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption. J. Appl. Phys. 119, 163103 (2016).

    Article  CAS  Google Scholar 

  116. Stegeman, G. I., Maradudin, A. A. & Rahman, T. S. Refraction of a surface polariton by an interface. Phys. Rev. B 23, 2576–2585 (1981).

    Article  Google Scholar 

  117. Ignatov, A. I., Nechepurenko, I. A. & Baranov, D. G. Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons. Ann. Phys. (Berlin) 528, 537–542 (2016).

    Article  CAS  Google Scholar 

  118. Elser, J. & Podolskiy, V. A. Scattering-free plasmonic optics with anisotropic metamaterials. Phys. Rev. Lett. 100, 066402 (2008).

    Article  CAS  Google Scholar 

  119. Rothenberg, J. M. et al. Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator. Opt. Lett. 41, 2537–2540 (2016).

    Article  CAS  Google Scholar 

  120. Malara, P. et al. Super-resonant intracavity coherent absorption. Sci. Rep. 6, 28947 (2016).

    Article  CAS  Google Scholar 

  121. Noh, H., Chong, Y., Stone, A. D. & Cao, H. Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012).

    Article  CAS  Google Scholar 

  122. Noh, H., Popoff, S. M. & Cao, H. Broadband subwavelength focusing of light using a passive sink. Opt. Express 21, 17435–17446 (2013).

    Article  Google Scholar 

  123. Mostafazadeh, A. & Sarisaman, M. Optical spectral singularities and coherent perfect absorption in a two-layer spherical medium. Proc. R. Soc. A 468, 3224–3246 (2012).

    Article  Google Scholar 

  124. Bai, P., Wu, Y. & Lai, Y. Multi-channel coherent perfect absorbers. Europhys. Lett. 114, 28003 (2016).

    Article  CAS  Google Scholar 

  125. Li, H., Suwunnarat, S., Fleischmann, R., Schanz, H. & Kottos, T. Random matrix theory approach to chaotic coherent perfect absorbers. Phys. Rev. Lett. 118, 044101 (2017).

    Article  Google Scholar 

  126. Chong, Y. D. & Stone, A. D. Hidden black: coherent enhancement of absorption in strongly scattering media. Phys. Rev. Lett. 107, 163901 (2011).

    Article  CAS  Google Scholar 

  127. Goetschy, A. & Stone, A. D. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

    Article  CAS  Google Scholar 

  128. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  129. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  Google Scholar 

  130. Caves, C. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  Google Scholar 

  131. Barnett, S., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

    Article  CAS  Google Scholar 

  132. Jeffers, J. Interference and the lossless lossy beam splitter. J. Mod. Opt. 47, 1819–1824 (2009).

    Article  Google Scholar 

  133. Huang, S. & Agarwal, G. S. Coherent perfect absorption of path entangled single photons. Opt. Express 17, 20936–20947 (2014).

    Article  Google Scholar 

  134. Vest, B. et al. Anti-coalescence of bosons on a lossy beam splitter. Science 356, 1373–1376 (2017).

    Article  CAS  Google Scholar 

  135. Roger, T. et al. Coherent absorption of N00N states. Phys. Rev. Lett. 117, 023601 (2016).

    Article  CAS  Google Scholar 

  136. Altuzarra, C. et al. Coherent perfect absorption in metamaterials with entangled photons. ACS Photonicshttp://dx.doi.org/10.1021/acsphotonics.7b00514 (2017).

  137. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  Google Scholar 

  138. Longhi, S. Coherent perfect absorption in a homogeneously broadened two-level medium. Phys. Rev. A 83, 055804 (2011).

    Article  CAS  Google Scholar 

  139. Agarwal, G. S., Di, K., Wang, L. & Zhu, Y. Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics. Phys. Rev. A 93, 063805 (2016).

    Article  CAS  Google Scholar 

  140. Papaioannou, M., Plum, E., Valente, J., Rogers, E. T. F. & Zheludev, N. I. All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics 1, 090801 (2016).

    Article  Google Scholar 

  141. Papaioannou, M., Plum, E. & Zheludev, N. I. All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photonics 4, 217–222 (2017).

    Article  CAS  Google Scholar 

  142. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    Article  CAS  Google Scholar 

  143. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2012).

    Article  CAS  Google Scholar 

  144. Wu, J. H., Artoni, M. & La Rocca, G. C. Coherent perfect absorption in one-sided reflectionless media. Sci. Rep. 6, 35356 (2016).

    Article  CAS  Google Scholar 

  145. Zhao, H. et al. Metawaveguide for asymmetric interferometric light-light switching. Phys. Rev. Lett. 117, 193901 (2016).

    Article  Google Scholar 

  146. Liew, S. F. et al. Coherent control of photocurrent in a strongly scattering photoelectrochemical system. ACS Photonics 3, 449–455 (2016).

    Article  CAS  Google Scholar 

  147. Pirruccio, G., Ramezani, M., Rodriguez, S. R. K. & Rivas, J. G. Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer. Phys. Rev. Lett. 116, 103002 (2016).

    Article  CAS  Google Scholar 

  148. Cummer, S. A., Christensen, J. & Alu, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mat. 1, 16001 (2016).

    Article  Google Scholar 

  149. Meng, C., Zhang, X., Tang, S. T., Yang, M. & Yang, Z. Acoustic coherent perfect absorbers as sensitive null detectors. Sci. Rep. 7, 43574 (2017).

    Article  Google Scholar 

  150. Chu, S. & Townes, C. H. Biographical Memoirs, Vol. 83 (National Academy of Sciences, 2003).

    Google Scholar 

  151. Reddy, K. N. & Gupta, S. D. Gap solitons with null-scattering. Opt. Lett. 39, 2254–2257 (2014).

    Article  Google Scholar 

  152. Longhi, S. Time-reversed optical parametric oscillation. Phys. Rev. Lett. 107, 033901 (2011).

    Article  CAS  Google Scholar 

  153. Schackert, F., Roy, A., Hatridge, M., Devoret, M. H. & Stone, A. D. Three-wave mixing with three incoming waves: signal-idler coherent attenuation and gain enhancement in a parametric amplifier. Phys. Rev. Lett. 111, 073903 (2013).

    Article  CAS  Google Scholar 

  154. Zheng, Y., Ren, H., Wan, W. & Chen, X. Time-reversed wave mixing in nonlinear optics. Sci. Rep. 3, 3245 (2013).

    Article  Google Scholar 

  155. Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

D.G.B. and T.S. acknowledge support from the Knut and Alice Wallenberg Foundation. D.G.B. acknowledges support from the Ministry of Education and Science of the Russian Federation (3.1668.2017/4.6). T.S. acknowledges financial support from the Swedish Research Council (Vetenskapsområdet, grant no. 2012–0414). A.A. and A.K. acknowledge support from the Air Force Office of Scientific Research (grant no. FA9550-17-1-0002) and the Welch Foundation (grant no. F-1802). Y.D.C. is grateful to A.D. Stone, H. Cao, L. Ge and A. Cerjan for numerous stimulating and deep discussions, and acknowledges support from the Singapore MOE Academic Research Fund Tier 2 (grant no. MOE2015-T2-2-008) and the Singapore MOE Academic Research Fund Tier 3 (grant no. MOE2011-T3-1-005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Denis G. Baranov or Yidong Chong.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, D., Krasnok, A., Shegai, T. et al. Coherent perfect absorbers: linear control of light with light. Nat Rev Mater 2, 17064 (2017). https://doi.org/10.1038/natrevmats.2017.64

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing