Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Picoscale materials engineering

Abstract

The way in which atoms bond to form a material — in particular the pattern of bond lengths and angles — is the fundamental determinant of the properties of the resulting material. Functional materials often derive their properties from alterable or reversible bond distortions at the picometre length scale that modify the electronic configuration. By considering several examples, we discuss how picoscale bond perturbations can be used to achieve specific materials properties. In particular, we examine the orbital engineering demonstrated in nickelates, the functional properties obtained in perovskite superlattices and the influence of interfacial effects on the high superconductive transition temperature of iron selenide. Moreover, we emphasize the relation between band topology and picoscale distortions in transition metal dichalcogenides and the effect of the excitation of lattice modes on materials properties. We use these examples to highlight how the combination of first-principles methods, materials growth techniques that allow control of the composition of individual atomic layers and state-of-the-art methods to characterize or dynamically excite picoscale bond distortions provides a powerful approach for discovering rules and concepts for picoscale materials engineering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Manipulation of materials properties at interfaces by static and dynamic picoscale structural distortions.
Figure 2: Rich phase behaviour in nickelates.
Figure 3: Picoscale distortions in LaNiO3.
Figure 4: Ferroelectricity in a BaTiO3/CaTiO3 superlattice.
Figure 5: Functional response to picoscale distortions at interfaces.
Figure 6: Picoscale distortions and superconductivity.
Figure 7: Topological states due to picoscale distortions.
Figure 8: Interface-induced melting of structural, magnetic and charge order.

References

  1. 1

    Rabe, K. M., Ahn, C. H. & Triscone, J.-M. Physics of Ferroelectrics: A Modern Perspective (Springer, 2007).

    Google Scholar 

  2. 2

    Spaldin, N. A., Cheong, S.-W. & Ramesh, R. Multiferroics: past, present, and future. Phys. Today 63, 38–43 (2010).

    Article  Google Scholar 

  3. 3

    Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Wełnic, W. et al. Unravelling the interplay of local structure and physical properties in phase-change materials. Nat. Mater. 5, 56–62 (2005).

    Article  CAS  Google Scholar 

  5. 5

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Singh, S. et al. Induced magnetization in La0.7Sr0.3MnO3/BiFeO3 superlattices. Phys. Rev. Lett. 113, 047204 (2014).

    Article  CAS  Google Scholar 

  7. 7

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Bristowe, N. C., Varignon, J., Fontaine, D., Bousquet, E. & Ghosez, P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat. Commun. 6, 6677 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  10. 10

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  11. 11

    Cohen, M. L. Electronic structure of solids. Phys. Rep. 110, 293–309 (1984).

    CAS  Article  Google Scholar 

  12. 12

    Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).

    Article  CAS  Google Scholar 

  13. 13

    Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).

    Article  Google Scholar 

  14. 14

    Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    CAS  Article  Google Scholar 

  15. 15

    Goedecker, S. Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Bowler, D. R., Fattebert, J. L., Gillan, M. J., Haynes, P. D. & Skylaris, C. K. Introductory remarks: linear scaling methods. J. Phys. Condens. Matter 20, 290301 (2008).

    Article  CAS  Google Scholar 

  17. 17

    Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  18. 18

    de Pablo, J. J., Jones, B., Kovacs, C. L., Ozolins, V. & Ramirez, A. P. The Materials Genome Initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid State Mater. Sci. 18, 99–117 (2014).

    Article  Google Scholar 

  19. 19

    Rondinelli, J. M., Poeppelmeier, K. R. & Zunger, A. Research update: towards designed functionalities in oxide-based electronic materials. APL Mater. 3, 080702 (2015).

    Article  CAS  Google Scholar 

  20. 20

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    CAS  Article  Google Scholar 

  21. 21

    Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237–312 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  27. 27

    Gonze, X. et al. ABINIT: first-principles approach to material and nanosystem properties. Computer Phys. Commun. 180, 2582–2615 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr.Cryst. Mater. 220, 567–570 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Paisley, E. A. et al. Surfactant-enabled epitaxy through control of growth mode with chemical boundary conditions. Nat. Commun. 2, 461 (2011).

    Article  CAS  Google Scholar 

  31. 31

    Walker, F. J. & McKee, R. A. High-temperature stability of molecular beam epitaxy-grown multilayer ceramic composites: TiO/Ti2O3 . J. Cryst. Growth 116,235–239 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2− xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Jalan, B., Moetakef, P. & Stemmer, S. Molecular beam epitaxy of SrTiO3 with a growth window. Appl. Phys. Lett. 95, 032906 (2009).

    Article  CAS  Google Scholar 

  34. 34

    Prakash, A. et al. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3 . J. Vac. Sci. Technol. 33, 060608 (2015).

    Google Scholar 

  35. 35

    Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nat. Mater. 13, 879–883 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Christen, H. M. & Eres, G. Recent advances in pulsed-laser deposition of complex oxides. J. Phys. Condens. Matter 20, 264005 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Dijkkamp, D. et al. Preparation of Y–Ba–Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51, 619–621 (1987).

    CAS  Article  Google Scholar 

  38. 38

    Eres, G. et al. Dynamic scaling and island growth kinetics in pulsed laser deposition of SrTiO3 . Phys. Rev. Lett. 117 206102 (2016).

    Article  CAS  Google Scholar 

  39. 39

    Ferguson, J. D., Arikan, G., Dale, D. S., Woll, A. R. & Brock, J. D. Measurements of surface diffusivity and coarsening during pulsed laser deposition. Phys. Rev. Lett. 103, 256103 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Koster, G., Huijben, M. & Rijnders, G. Epitaxial Growth of Complex Metal Oxides (Elsevier, 2015).

    Google Scholar 

  41. 41

    Koller, E. et al. Growth of SrCuO2 epitaxial thin-films. J. Alloys Compd. 195, 303–306 (1993).

    CAS  Article  Google Scholar 

  42. 42

    Bein, B. et al. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices. Nat. Commun. 6, 10136 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Lou, X et al. Epitaxial growth of MgxCa1− xO on GaN by atomic layer deposition. Nano Lett. 16, 7650–7654 (2016).

    CAS  Article  Google Scholar 

  44. 44

    Ulbrandt, J. G. et al. Direct measurement of the propagation velocity of defects using coherent X-rays. Nat. Phys. 12, 794–799 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Nellist, P. D. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Chen, H. et al. Reversible modulation of orbital occupations via an interface-induced polar state in metallic manganites. Nano Lett. 14, 4965–4970 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Kumah, D. P. et al. The atomic structure and polarization of strained SrTiO3/Si. Appl. Phys. Lett. 97, 251902 (2010).

    Article  CAS  Google Scholar 

  48. 48

    Zhou, H. et al. Anomalous expansion of the copper–apical-oxygen distance in superconducting cuprate bilayers. Proc. Natl Acad. Sci. USA 107, 8103–8107 (2010).

    CAS  Article  Google Scholar 

  49. 49

    May, S. J. et al. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 014110 (2010).

    Article  CAS  Google Scholar 

  50. 50

    Kumah, D. P. et al. Engineered unique elastic modes at a BaTiO3/(2 × 1)–Ge(001) interface. Phys. Rev. Lett. 116, 106101 (2016).

    CAS  Article  Google Scholar 

  51. 51

    Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    CAS  Article  Google Scholar 

  52. 52

    Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    CAS  Article  Google Scholar 

  53. 53

    Kimoto, K. et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263–270 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Bonnell, D. A. et al. Imaging physical phenomena with local probes: from electrons to photons. Rev. Mod. Phys. 84, 1343–1381 (2012).

    CAS  Article  Google Scholar 

  56. 56

    Zhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

    CAS  Article  Google Scholar 

  57. 57

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7, 680 (2013).

    CAS  Article  Google Scholar 

  58. 58

    Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

    CAS  Article  Google Scholar 

  59. 59

    Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006).

    CAS  Article  Google Scholar 

  60. 60

    Hu, W., Catalano, S., Gibert, M., Triscone, J. M. & Cavalleri, A. Broadband terahertz spectroscopy of the insulator-metal transition driven by coherent lattice deformation at the SmNiO3/LaAlO3 interface. Phys. Rev. B 93, 161107 (2016).

    Article  CAS  Google Scholar 

  61. 61

    Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    CAS  Article  Google Scholar 

  62. 62

    Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    CAS  Article  Google Scholar 

  63. 63

    Bhattacharya, A. & May, S. J. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).

    CAS  Article  Google Scholar 

  64. 64

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  65. 65

    Dingle, R., Störmer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665–667 (1978).

    CAS  Article  Google Scholar 

  66. 66

    Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    CAS  Article  Google Scholar 

  67. 67

    Higuchi, T., Hotta, Y., Susaki, T., Fujimori, A. & Hwang, H. Y. Modulation doping of a Mott quantum well by a proximate polar discontinuity. Phys. Rev. B 79, 075415 (2009).

    Article  CAS  Google Scholar 

  68. 68

    Kajdos, A. P., Ouellette, D. G., Cain, T. A. & Stemmer, S. Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti,Zr)O3 heterostructure. Appl. Phys. Lett. 103, 082120 (2013).

    Article  CAS  Google Scholar 

  69. 69

    Ahn, C. H., Triscone, J. M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    CAS  Article  Google Scholar 

  70. 70

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    CAS  Article  Google Scholar 

  71. 71

    Wolfram, T. & Ellialtıoglu, S. Electronic and Optical Properties of d-Band Perovskites (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  72. 72

    Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    CAS  Article  Google Scholar 

  73. 73

    Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988).

    CAS  Article  Google Scholar 

  74. 74

    Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

    Article  CAS  Google Scholar 

  75. 75

    Hansmann, P. et al. Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Han, M. J., Wang, X., Marianetti, C. A. & Millis, A. J. Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107, 206804 (2011).

    CAS  Article  Google Scholar 

  77. 77

    Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011).

    CAS  Article  Google Scholar 

  78. 78

    Freeland, J. W. et al. Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices. EPL (Europhys. Lett.) 96, 57004 (2011).

    Article  CAS  Google Scholar 

  79. 79

    Liu, J. et al. Metal–insulator transition and orbital reconstruction in Mott-type quantum wells made of NdNiO3 . Phys. Rev. Lett. 109, 107402 (2012).

    Article  CAS  Google Scholar 

  80. 80

    Hwang, J., Zhang, J. Y., Son, J. & Stemmer, S. Nanoscale quantification of octahedral tilts in perovskite films. Appl. Phys. Lett. 100, 191909 (2012).

    Article  CAS  Google Scholar 

  81. 81

    Mikheev, E. et al. Tuning bad metal and non-Fermi liquid behavior in a Mott material: rare-earth nickelate thin films. Sci. Adv. 1, e1500797 (2015).

    Article  CAS  Google Scholar 

  82. 82

    May, S. J. et al. Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices. Phys. Rev. B 83, 153411 (2011).

    Article  CAS  Google Scholar 

  83. 83

    Middey, S. et al. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).

    CAS  Article  Google Scholar 

  84. 84

    Kumah, D. P. et al. Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv. Mater. 26, 1935–1940 (2014).

    CAS  Article  Google Scholar 

  85. 85

    Kumah, D. P. et al. Effect of surface termination on the electronic properties of LaNiO3 films. Phys. Rev. Appl. 2, 054004 (2014).

    Article  CAS  Google Scholar 

  86. 86

    Chen, H. et al. Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys. Rev. Lett. 110, 186402 (2013).

    Article  CAS  Google Scholar 

  87. 87

    Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).

    Article  CAS  Google Scholar 

  88. 88

    Nelson-Cheeseman, B. B. et al. Polar cation ordering: a route to introducing >10% bond strain into layered oxide films. Adv. Funct. Mater. 24, 6884–6891 (2014).

    CAS  Article  Google Scholar 

  89. 89

    Balachandran, P. V., Cammarata, A., Nelson-Cheeseman, B. B., Bhattacharya, A. & Rondinelli, J. M. Inductive crystal field control in layered metal oxides with correlated electrons. APL Mater. 2, 076110 (2014).

    Article  CAS  Google Scholar 

  90. 90

    Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586 (2003).

    CAS  Article  Google Scholar 

  91. 91

    Wen, J. et al. Amplitude contrast imaging in high-resolution transmission electron microscopy of ferroelectric superlattice film. Preprint at https://arxiv.org/abs/1409.0240 (2014).

  92. 92

    Wang, H. et al. Stabilization of highly polar BiFeO3-like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattices. Phys. Rev. X 6, 011027 (2016).

    Google Scholar 

  93. 93

    Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    CAS  Article  Google Scholar 

  94. 94

    Rondinelli, J. M. & Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 24, 1961 (2012).

    CAS  Article  Google Scholar 

  95. 95

    Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden–Popper compounds. Adv. Funct. Mater. 23, 4810 (2013).

    CAS  Google Scholar 

  96. 96

    Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    CAS  Article  Google Scholar 

  97. 97

    Park, S. Y., Kumar, A. & Rabe, K. M. Charge-order-induced ferroelectricity in LaVO3/SrVO3 superlattices. Phys. Rev. Lett. 118, 087602 (2017).

    Article  Google Scholar 

  98. 98

    Baykara, M. Z. et al. Simultaneous measurement of multiple independent atomic-scale interactions using scanning probe microscopy: data interpretation and the effect of cross-talk. J. Phys. Chem. C 119, 6670 (2015).

    CAS  Article  Google Scholar 

  99. 99

    Balachandran, P. V. & Rondinelli, J. M. Massive band gap variation in layered oxides through cation ordering. Nat. Commun. 6, 6191 (2015).

    CAS  Article  Google Scholar 

  100. 100

    Rondinelli, J. M. & Spaldin, N. A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO3/SrTiO3 superlattices. Phys. Rev. B 81, 085109 (2010).

    Article  CAS  Google Scholar 

  101. 101

    Zhou, Y. & Rabe, K. M. Coupled nonpolar–polar metal–insulator transition in 1:1 SrCrO3/SrTiO3 superlattices: a first-principles study. Phys. Rev. Lett. 115, 106401 (2015).

    Article  CAS  Google Scholar 

  102. 102

    Kamihara, Y. et al. Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006).

    CAS  Article  Google Scholar 

  103. 103

    Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1− xFx]FeAs(x = 0.05–00.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    CAS  Article  Google Scholar 

  104. 104

    Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1− xFx . Nature 453, 761–762 (2008).

    CAS  Article  Google Scholar 

  105. 105

    Takahashi, H. et al. Superconductivity at 43 K in an iron-based layered compound LaO1− xFxFeAs. Nature 453, 376–378 (2008).

    CAS  Article  Google Scholar 

  106. 106

    Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the Iron Arsenide (Ba1− xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  CAS  Google Scholar 

  107. 107

    Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262 (2008).

    CAS  Article  Google Scholar 

  108. 108

    Ren, Z.-A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1− xFx]FeAs. Chin. Phys. Lett. 25, 2215 (2008).

    CAS  Article  Google Scholar 

  109. 109

    Wu, G. et al. Superconductivity at 56 K in samarium-doped SrFeAsF. J. Phys. Condens. Matter 21, 142203 (2009).

    CAS  Google Scholar 

  110. 110

    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T. & Akimitsu, J. Pressure-induced high-Tc superconducting phase in FeSe: correlation between anion height and Tc . Phys. Rev. B 81, 205119 (2010).

    Article  CAS  Google Scholar 

  111. 111

    Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  CAS  Google Scholar 

  112. 112

    He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610, (2013).

    CAS  Article  Google Scholar 

  113. 113

    Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

    CAS  Article  Google Scholar 

  114. 114

    Zhang, Z. C. et al. Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 60, 1301–1304 (2015).

    CAS  Article  Google Scholar 

  115. 115

    Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nat. Mater. 14, 285–289 (2015).

    CAS  Article  Google Scholar 

  116. 116

    Zhi, L. et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: a scanning tunneling microscopy study. J. Phys. Condens. Matter 26, 265002 (2014).

    Article  CAS  Google Scholar 

  117. 117

    Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    CAS  Article  Google Scholar 

  118. 118

    Rebec, S. N. et al. Coexistence of replica bands and superconductivity in FeSe monolayer films. Phys. Rev. Lett. 118, 067002 (2017).

    CAS  Article  Google Scholar 

  119. 119

    Zhang, S. Y. et al. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity. Phys. Rev. B 94, 081116 (2016).

    Article  CAS  Google Scholar 

  120. 120

    Cui, Y. T. et al. Interface ferroelectric transition near the gap-opening temperature in a single-unit-cell FeSe film grown on Nb-doped SrTiO3 substrate. Phys. Rev. Lett. 114, 037002 (2015).

    Article  CAS  Google Scholar 

  121. 121

    Sinisa, C., Marvin, L. C. & Steven, G. L. Large electron–phonon interactions from FeSe phonons in a monolayer. New J. Phys. 17, 073027 (2015).

    Article  Google Scholar 

  122. 122

    Li, F. et al. Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Mater. 3, 024002 (2016).

    Article  CAS  Google Scholar 

  123. 123

    Zou, K. et al. Role of double TiO2 layers at the interface of FeSe/SrTiO3 superconductors. Phys. Rev. B 93, 180506 (2016).

    Article  CAS  Google Scholar 

  124. 124

    Bansil, A., Lin, H. & Das, T. Colloquium: topological band theory. Rev. Mod. Phys. 88 021004 (2016).

    Article  Google Scholar 

  125. 125

    Shi, Y., Zhang, H., Chang, W.-H., Shin, H. S. & Li, L.-J. Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bull. 40, 566–576 (2015).

    CAS  Article  Google Scholar 

  126. 126

    Dolcetto, G., Sassetti, M. & Schmidt, T. L. Edge physics in two-dimensional topological insulators. Riv. Nuovo Cimentohttp://dx.doi.org/10.1393/ncr/i2016-10121-7 (2016).

  127. 127

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Article  Google Scholar 

  128. 128

    Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 125109 (2016).

    Article  CAS  Google Scholar 

  129. 129

    Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    CAS  Article  Google Scholar 

  130. 130

    Li, W. & Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 7, 10843 (2016).

    CAS  Article  Google Scholar 

  131. 131

    Kolobov, A. V., Fons, P. & Tominaga, J. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2 . Phys. Rev. B 94, 094114 (2016).

    Article  CAS  Google Scholar 

  132. 132

    Ma, Y., Kou, L., Li, X., Dai, Y. & Heine, T. Two-dimensional transition metal dichalcogenides with a hexagonal lattice: room-temperature quantum spin Hall insulators. Phys. Rev. B 93, 035442 (2016).

    Article  CAS  Google Scholar 

  133. 133

    Ma, F. et al. Predicting a new phase (T″) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition. Nanoscale 8, 4969–4975 (2016).

    CAS  Article  Google Scholar 

  134. 134

    Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2 . Nat. Phys. 11, 482–486 (2015).

    CAS  Article  Google Scholar 

  135. 135

    Naylor, C. H. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

    CAS  Article  Google Scholar 

  136. 136

    Nicoletti, D. & Cavalleri, A. Nonlinear light–matter interaction at terahertz frequencies. Adv. Opt. Photonics 8, 401–464 (2016).

    Article  Google Scholar 

  137. 137

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    CAS  Article  Google Scholar 

  138. 138

    Sheu, Y. M. et al. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat. Commun. 5, 5832 (2014).

    CAS  Article  Google Scholar 

  139. 139

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    CAS  Article  Google Scholar 

  140. 140

    Först, M. et al. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nat. Mater. 14, 883–888 (2015).

    Article  CAS  Google Scholar 

  141. 141

    Först, M. et al. Multiple supersonic phase fronts launched at a complex-oxide heterointerface. Phys. Rev. Lett. 118, 027401 (2017).

    Article  Google Scholar 

  142. 142

    Casandruc, E. et al. Wavelength-dependent optical enhancement of superconducting interlayer coupling in La1.885Ba0.115CuO4 . Phys. Rev. B 91, 174502 (2015).

    Article  CAS  Google Scholar 

  143. 143

    Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photonics 5, 485–488 (2011).

    CAS  Article  Google Scholar 

  144. 144

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Article  Google Scholar 

  145. 145

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

    CAS  Article  Google Scholar 

  146. 146

    Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4 . Nat. Mater. 15, 601–605 (2016).

    CAS  Article  Google Scholar 

  147. 147

    Pickett, W. E. Electronic-structure of the high-temperature oxide superconductors. Rev. Mod. Phys. 61, 433–512 (1989).

    CAS  Article  Google Scholar 

  148. 148

    Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    CAS  Article  Google Scholar 

  149. 149

    Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    CAS  Article  Google Scholar 

  150. 150

    Wu, J. D., Si, Q. M. & Abrahams, E. Magnetic and Ising quantum phase transitions in a model for isoelectronically tuned iron pnictides. Phys. Rev. B 93, 104515 (2016).

    Article  CAS  Google Scholar 

  151. 151

    Pavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-structure trend in hole-doped cuprates and correlation with Tcmax . Phys. Rev. Lett. 87, 047003 (2001).

    CAS  Article  Google Scholar 

  152. 152

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5 . Nature 516, 71–73 (2016).

    Article  CAS  Google Scholar 

  153. 153

    Sowwan, M. et al. Direct atomic structure determination of epitaxially grown films: Gd2O3 on GaAs(100). Phys. Rev. B 66, 205311 (2002).

    Article  CAS  Google Scholar 

  154. 154

    Yacoby, Y. et al. Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs. Nat. Mater. 1, 99–101 (2002).

    CAS  Article  Google Scholar 

  155. 155

    Tweet, D. J. et al. Direct observation of Ge and Si ordering at the Si/B/GexSi1− x (111) interface by anomalous X-ray diffraction. Phys. Rev. Lett. 69, 2236–2239 (1992).

    CAS  Article  Google Scholar 

  156. 156

    Robinson, I. K., Waskiewicz, W. K., Tung, R. T. & Bohr, J. Ordering at Si(111)/a-Si and Si(111)/SiO2 interfaces. Phys. Rev. Lett. 57, 2714–2717 (1986).

    CAS  Article  Google Scholar 

  157. 157

    Cohen, E. et al. Structure of droplet-epitaxy-grown InAs/GaAs quantum dots. Appl. Phys. Lett. 98, 243115 (2011).

    Article  CAS  Google Scholar 

  158. 158

    Kumah, D. P., Shusterman, S., Paltiel, Y., Yacoby, Y. & Clarke, R. Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nat. Nanotechnol. 4, 835–838 (2009).

    CAS  Article  Google Scholar 

  159. 159

    Specht, E. D. et al. X-Ray-diffraction measurement of interface structure in GaAs/Si(001). Phys. Rev. B 43, 12425 (1991).

    CAS  Article  Google Scholar 

  160. 160

    Kolpak, A. M. et al. Interface-induced polarization and inhibition of ferroelectricity in epitaxial SrTiO3/Si. Phys. Rev. Lett. 105, 217601 (2010).

    CAS  Article  Google Scholar 

  161. 161

    Laanait, N. et al. X-Ray-driven reaction front dynamics at calcite–water interfaces. Science 349, 1330–1334 (2015).

    CAS  Article  Google Scholar 

  162. 162

    Lee, J. H. et al. In situ surface/interface X-ray diffractometer for oxide molecular beam epitaxy. Rev. Sci. Instrum. 87, 013901 (2016).

    CAS  Article  Google Scholar 

  163. 163

    Leroy, F., Revenant, C., Renaud, G. & Lazzari, R. In situ GISAXS study of the growth of Pd on MgO(001). Appl. Surf. Sci. 238, 233–237 (2004).

    CAS  Article  Google Scholar 

  164. 164

    Takahasi, M. et al. In situ three-dimensional X-ray reciprocal-space mapping of GaAs epitaxial films on Si(001). J. Cryst. Growth 378, 34–36 (2013).

    CAS  Article  Google Scholar 

  165. 165

    Murty, M. V. R. et al. In situ X-ray scattering study of PbTiO3 chemical-vapor deposition. Appl. Phys. Lett. 80, 1809 (2002).

    CAS  Article  Google Scholar 

  166. 166

    Vonk, V., Konings, S., Barthe, L., Gorges, B. & Graafsma, H. Pulsed laser deposition chamber for in situ X-ray diffraction. J. Synchrotron Radiat. 12, 833–834 (2005).

    CAS  Article  Google Scholar 

  167. 167

    Tischler, J. et al. Nonequilibrium interlayer transport in pulsed laser deposition. Phys. Rev. Lett. 96, 226104 (2006).

    CAS  Article  Google Scholar 

  168. 168

    Klug, J. A. et al. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes. Rev. Sci. Instrum. 86, 113901 (2015).

    Article  CAS  Google Scholar 

  169. 169

    Devloo-Casier, K. et al. In situ synchrotron based X-ray fluorescence and scattering measurements during atomic layer deposition: initial growth of HfO2 on Si and Ge substrates. Appl. Phys. Lett. 98, 231905 (2011).

    Article  CAS  Google Scholar 

  170. 170

    Florens, S. & Georges, A. Quantum impurity solvers using a slave rotor representation. Phys. Rev. B 66, 165111 (2002).

    Article  CAS  Google Scholar 

  171. 171

    Florens, S. & Georges, A. Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004).

    Article  CAS  Google Scholar 

  172. 172

    de’Medici, L., Georges, A. & Biermann, S. Orbital-selective Mott transition in multiband systems: slave-spin representation and dynamical mean-field theory. Phys. Rev. B 72, 205124 (2005).

    Article  CAS  Google Scholar 

  173. 173

    Zhao, E. & Paramekanti, A. Self-consistent slave rotor mean-field theory for strongly correlated systems. Phys. Rev. B 76, 195101 (2007).

    Article  CAS  Google Scholar 

  174. 174

    Hassan, S. R. & de’Medici, L. Slave spins away from half filling: cluster mean-field theory of the Hubbard and extended Hubbard models. Phys. Rev. B 81, 035106 (2010).

    Article  CAS  Google Scholar 

  175. 175

    Ko, W.-H. & Lee, P. A. Magnetism and Mott transition: a slave-rotor study. Phys. Rev. B 83, 134515 (2011).

    Article  CAS  Google Scholar 

  176. 176

    Yu, R. & Si, Q. U(1) slave-spin theory and its application to Mott transition in a multiorbital model for iron pnictides. Phys. Rev. B 86, 085104 (2012).

    Article  CAS  Google Scholar 

  177. 177

    Georgescu, A. B. & Ismail-Beigi, S. Generalized slave-particle method for extended Hubbard models. Phys. Rev. B 92, 235117 (2015).

    Article  CAS  Google Scholar 

  178. 178

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    CAS  Article  Google Scholar 

  179. 179

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    CAS  Article  Google Scholar 

  180. 180

    Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A. Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  CAS  Google Scholar 

  181. 181

    Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

    CAS  Article  Google Scholar 

  182. 182

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (NSF; Award Nos DMR-1309868 and MRSEC DMR-1119826) and the Air Force Office of Scientific Research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sohrab Ismail-Beigi or Charles H. Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismail-Beigi, S., Walker, F., Disa, A. et al. Picoscale materials engineering. Nat Rev Mater 2, 17060 (2017). https://doi.org/10.1038/natrevmats.2017.60

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing