Picoscale materials engineering

Abstract

The way in which atoms bond to form a material — in particular the pattern of bond lengths and angles — is the fundamental determinant of the properties of the resulting material. Functional materials often derive their properties from alterable or reversible bond distortions at the picometre length scale that modify the electronic configuration. By considering several examples, we discuss how picoscale bond perturbations can be used to achieve specific materials properties. In particular, we examine the orbital engineering demonstrated in nickelates, the functional properties obtained in perovskite superlattices and the influence of interfacial effects on the high superconductive transition temperature of iron selenide. Moreover, we emphasize the relation between band topology and picoscale distortions in transition metal dichalcogenides and the effect of the excitation of lattice modes on materials properties. We use these examples to highlight how the combination of first-principles methods, materials growth techniques that allow control of the composition of individual atomic layers and state-of-the-art methods to characterize or dynamically excite picoscale bond distortions provides a powerful approach for discovering rules and concepts for picoscale materials engineering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Manipulation of materials properties at interfaces by static and dynamic picoscale structural distortions.
Figure 2: Rich phase behaviour in nickelates.
Figure 3: Picoscale distortions in LaNiO3.
Figure 4: Ferroelectricity in a BaTiO3/CaTiO3 superlattice.
Figure 5: Functional response to picoscale distortions at interfaces.
Figure 6: Picoscale distortions and superconductivity.
Figure 7: Topological states due to picoscale distortions.
Figure 8: Interface-induced melting of structural, magnetic and charge order.

References

  1. 1

    Rabe, K. M., Ahn, C. H. & Triscone, J.-M. Physics of Ferroelectrics: A Modern Perspective (Springer, 2007).

  2. 2

    Spaldin, N. A., Cheong, S.-W. & Ramesh, R. Multiferroics: past, present, and future. Phys. Today 63, 38–43 (2010).

  3. 3

    Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

  4. 4

    Wełnic, W. et al. Unravelling the interplay of local structure and physical properties in phase-change materials. Nat. Mater. 5, 56–62 (2005).

  5. 5

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

  6. 6

    Singh, S. et al. Induced magnetization in La0.7Sr0.3MnO3/BiFeO3 superlattices. Phys. Rev. Lett. 113, 047204 (2014).

  7. 7

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

  8. 8

    Bristowe, N. C., Varignon, J., Fontaine, D., Bousquet, E. & Ghosez, P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat. Commun. 6, 6677 (2015).

  9. 9

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

  10. 10

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

  11. 11

    Cohen, M. L. Electronic structure of solids. Phys. Rep. 110, 293–309 (1984).

  12. 12

    Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).

  13. 13

    Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).

  14. 14

    Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

  15. 15

    Goedecker, S. Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999).

  16. 16

    Bowler, D. R., Fattebert, J. L., Gillan, M. J., Haynes, P. D. & Skylaris, C. K. Introductory remarks: linear scaling methods. J. Phys. Condens. Matter 20, 290301 (2008).

  17. 17

    Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

  18. 18

    de Pablo, J. J., Jones, B., Kovacs, C. L., Ozolins, V. & Ramirez, A. P. The Materials Genome Initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid State Mater. Sci. 18, 99–117 (2014).

  19. 19

    Rondinelli, J. M., Poeppelmeier, K. R. & Zunger, A. Research update: towards designed functionalities in oxide-based electronic materials. APL Mater. 3, 080702 (2015).

  20. 20

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

  21. 21

    Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

  22. 22

    Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237–312 (1998).

  23. 23

    Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

  24. 24

    Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

  25. 25

    Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865 (2006).

  26. 26

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  27. 27

    Gonze, X. et al. ABINIT: first-principles approach to material and nanosystem properties. Computer Phys. Commun. 180, 2582–2615 (2009).

  28. 28

    Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr.Cryst. Mater. 220, 567–570 (2005).

  29. 29

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  30. 30

    Paisley, E. A. et al. Surfactant-enabled epitaxy through control of growth mode with chemical boundary conditions. Nat. Commun. 2, 461 (2011).

  31. 31

    Walker, F. J. & McKee, R. A. High-temperature stability of molecular beam epitaxy-grown multilayer ceramic composites: TiO/Ti2O3 . J. Cryst. Growth 116,235–239 (1992).

  32. 32

    Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2− xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002).

  33. 33

    Jalan, B., Moetakef, P. & Stemmer, S. Molecular beam epitaxy of SrTiO3 with a growth window. Appl. Phys. Lett. 95, 032906 (2009).

  34. 34

    Prakash, A. et al. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3 . J. Vac. Sci. Technol. 33, 060608 (2015).

  35. 35

    Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nat. Mater. 13, 879–883 (2014).

  36. 36

    Christen, H. M. & Eres, G. Recent advances in pulsed-laser deposition of complex oxides. J. Phys. Condens. Matter 20, 264005 (2008).

  37. 37

    Dijkkamp, D. et al. Preparation of Y–Ba–Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51, 619–621 (1987).

  38. 38

    Eres, G. et al. Dynamic scaling and island growth kinetics in pulsed laser deposition of SrTiO3 . Phys. Rev. Lett. 117 206102 (2016).

  39. 39

    Ferguson, J. D., Arikan, G., Dale, D. S., Woll, A. R. & Brock, J. D. Measurements of surface diffusivity and coarsening during pulsed laser deposition. Phys. Rev. Lett. 103, 256103 (2009).

  40. 40

    Koster, G., Huijben, M. & Rijnders, G. Epitaxial Growth of Complex Metal Oxides (Elsevier, 2015).

  41. 41

    Koller, E. et al. Growth of SrCuO2 epitaxial thin-films. J. Alloys Compd. 195, 303–306 (1993).

  42. 42

    Bein, B. et al. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices. Nat. Commun. 6, 10136 (2015).

  43. 43

    Lou, X et al. Epitaxial growth of MgxCa1− xO on GaN by atomic layer deposition. Nano Lett. 16, 7650–7654 (2016).

  44. 44

    Ulbrandt, J. G. et al. Direct measurement of the propagation velocity of defects using coherent X-rays. Nat. Phys. 12, 794–799 (2016).

  45. 45

    Nellist, P. D. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).

  46. 46

    Chen, H. et al. Reversible modulation of orbital occupations via an interface-induced polar state in metallic manganites. Nano Lett. 14, 4965–4970 (2014).

  47. 47

    Kumah, D. P. et al. The atomic structure and polarization of strained SrTiO3/Si. Appl. Phys. Lett. 97, 251902 (2010).

  48. 48

    Zhou, H. et al. Anomalous expansion of the copper–apical-oxygen distance in superconducting cuprate bilayers. Proc. Natl Acad. Sci. USA 107, 8103–8107 (2010).

  49. 49

    May, S. J. et al. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 014110 (2010).

  50. 50

    Kumah, D. P. et al. Engineered unique elastic modes at a BaTiO3/(2 × 1)–Ge(001) interface. Phys. Rev. Lett. 116, 106101 (2016).

  51. 51

    Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

  52. 52

    Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

  53. 53

    Kimoto, K. et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007).

  54. 54

    Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263–270 (2009).

  55. 55

    Bonnell, D. A. et al. Imaging physical phenomena with local probes: from electrons to photons. Rev. Mod. Phys. 84, 1343–1381 (2012).

  56. 56

    Zhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

  57. 57

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7, 680 (2013).

  58. 58

    Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

  59. 59

    Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006).

  60. 60

    Hu, W., Catalano, S., Gibert, M., Triscone, J. M. & Cavalleri, A. Broadband terahertz spectroscopy of the insulator-metal transition driven by coherent lattice deformation at the SmNiO3/LaAlO3 interface. Phys. Rev. B 93, 161107 (2016).

  61. 61

    Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

  62. 62

    Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

  63. 63

    Bhattacharya, A. & May, S. J. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).

  64. 64

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

  65. 65

    Dingle, R., Störmer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665–667 (1978).

  66. 66

    Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

  67. 67

    Higuchi, T., Hotta, Y., Susaki, T., Fujimori, A. & Hwang, H. Y. Modulation doping of a Mott quantum well by a proximate polar discontinuity. Phys. Rev. B 79, 075415 (2009).

  68. 68

    Kajdos, A. P., Ouellette, D. G., Cain, T. A. & Stemmer, S. Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti,Zr)O3 heterostructure. Appl. Phys. Lett. 103, 082120 (2013).

  69. 69

    Ahn, C. H., Triscone, J. M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

  70. 70

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

  71. 71

    Wolfram, T. & Ellialtıoglu, S. Electronic and Optical Properties of d-Band Perovskites (Cambridge Univ. Press, 2006).

  72. 72

    Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

  73. 73

    Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988).

  74. 74

    Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

  75. 75

    Hansmann, P. et al. Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).

  76. 76

    Han, M. J., Wang, X., Marianetti, C. A. & Millis, A. J. Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107, 206804 (2011).

  77. 77

    Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011).

  78. 78

    Freeland, J. W. et al. Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices. EPL (Europhys. Lett.) 96, 57004 (2011).

  79. 79

    Liu, J. et al. Metal–insulator transition and orbital reconstruction in Mott-type quantum wells made of NdNiO3 . Phys. Rev. Lett. 109, 107402 (2012).

  80. 80

    Hwang, J., Zhang, J. Y., Son, J. & Stemmer, S. Nanoscale quantification of octahedral tilts in perovskite films. Appl. Phys. Lett. 100, 191909 (2012).

  81. 81

    Mikheev, E. et al. Tuning bad metal and non-Fermi liquid behavior in a Mott material: rare-earth nickelate thin films. Sci. Adv. 1, e1500797 (2015).

  82. 82

    May, S. J. et al. Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices. Phys. Rev. B 83, 153411 (2011).

  83. 83

    Middey, S. et al. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).

  84. 84

    Kumah, D. P. et al. Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv. Mater. 26, 1935–1940 (2014).

  85. 85

    Kumah, D. P. et al. Effect of surface termination on the electronic properties of LaNiO3 films. Phys. Rev. Appl. 2, 054004 (2014).

  86. 86

    Chen, H. et al. Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys. Rev. Lett. 110, 186402 (2013).

  87. 87

    Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).

  88. 88

    Nelson-Cheeseman, B. B. et al. Polar cation ordering: a route to introducing >10% bond strain into layered oxide films. Adv. Funct. Mater. 24, 6884–6891 (2014).

  89. 89

    Balachandran, P. V., Cammarata, A., Nelson-Cheeseman, B. B., Bhattacharya, A. & Rondinelli, J. M. Inductive crystal field control in layered metal oxides with correlated electrons. APL Mater. 2, 076110 (2014).

  90. 90

    Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586 (2003).

  91. 91

    Wen, J. et al. Amplitude contrast imaging in high-resolution transmission electron microscopy of ferroelectric superlattice film. Preprint at https://arxiv.org/abs/1409.0240 (2014).

  92. 92

    Wang, H. et al. Stabilization of highly polar BiFeO3-like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattices. Phys. Rev. X 6, 011027 (2016).

  93. 93

    Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

  94. 94

    Rondinelli, J. M. & Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 24, 1961 (2012).

  95. 95

    Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden–Popper compounds. Adv. Funct. Mater. 23, 4810 (2013).

  96. 96

    Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

  97. 97

    Park, S. Y., Kumar, A. & Rabe, K. M. Charge-order-induced ferroelectricity in LaVO3/SrVO3 superlattices. Phys. Rev. Lett. 118, 087602 (2017).

  98. 98

    Baykara, M. Z. et al. Simultaneous measurement of multiple independent atomic-scale interactions using scanning probe microscopy: data interpretation and the effect of cross-talk. J. Phys. Chem. C 119, 6670 (2015).

  99. 99

    Balachandran, P. V. & Rondinelli, J. M. Massive band gap variation in layered oxides through cation ordering. Nat. Commun. 6, 6191 (2015).

  100. 100

    Rondinelli, J. M. & Spaldin, N. A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO3/SrTiO3 superlattices. Phys. Rev. B 81, 085109 (2010).

  101. 101

    Zhou, Y. & Rabe, K. M. Coupled nonpolar–polar metal–insulator transition in 1:1 SrCrO3/SrTiO3 superlattices: a first-principles study. Phys. Rev. Lett. 115, 106401 (2015).

  102. 102

    Kamihara, Y. et al. Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006).

  103. 103

    Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1− xFx]FeAs(x = 0.05–00.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

  104. 104

    Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1− xFx . Nature 453, 761–762 (2008).

  105. 105

    Takahashi, H. et al. Superconductivity at 43 K in an iron-based layered compound LaO1− xFxFeAs. Nature 453, 376–378 (2008).

  106. 106

    Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the Iron Arsenide (Ba1− xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

  107. 107

    Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262 (2008).

  108. 108

    Ren, Z.-A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1− xFx]FeAs. Chin. Phys. Lett. 25, 2215 (2008).

  109. 109

    Wu, G. et al. Superconductivity at 56 K in samarium-doped SrFeAsF. J. Phys. Condens. Matter 21, 142203 (2009).

  110. 110

    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T. & Akimitsu, J. Pressure-induced high-Tc superconducting phase in FeSe: correlation between anion height and Tc . Phys. Rev. B 81, 205119 (2010).

  111. 111

    Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

  112. 112

    He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610, (2013).

  113. 113

    Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

  114. 114

    Zhang, Z. C. et al. Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 60, 1301–1304 (2015).

  115. 115

    Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nat. Mater. 14, 285–289 (2015).

  116. 116

    Zhi, L. et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: a scanning tunneling microscopy study. J. Phys. Condens. Matter 26, 265002 (2014).

  117. 117

    Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

  118. 118

    Rebec, S. N. et al. Coexistence of replica bands and superconductivity in FeSe monolayer films. Phys. Rev. Lett. 118, 067002 (2017).

  119. 119

    Zhang, S. Y. et al. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity. Phys. Rev. B 94, 081116 (2016).

  120. 120

    Cui, Y. T. et al. Interface ferroelectric transition near the gap-opening temperature in a single-unit-cell FeSe film grown on Nb-doped SrTiO3 substrate. Phys. Rev. Lett. 114, 037002 (2015).

  121. 121

    Sinisa, C., Marvin, L. C. & Steven, G. L. Large electron–phonon interactions from FeSe phonons in a monolayer. New J. Phys. 17, 073027 (2015).

  122. 122

    Li, F. et al. Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Mater. 3, 024002 (2016).

  123. 123

    Zou, K. et al. Role of double TiO2 layers at the interface of FeSe/SrTiO3 superconductors. Phys. Rev. B 93, 180506 (2016).

  124. 124

    Bansil, A., Lin, H. & Das, T. Colloquium: topological band theory. Rev. Mod. Phys. 88 021004 (2016).

  125. 125

    Shi, Y., Zhang, H., Chang, W.-H., Shin, H. S. & Li, L.-J. Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bull. 40, 566–576 (2015).

  126. 126

    Dolcetto, G., Sassetti, M. & Schmidt, T. L. Edge physics in two-dimensional topological insulators. Riv. Nuovo Cimentohttp://dx.doi.org/10.1393/ncr/i2016-10121-7 (2016).

  127. 127

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

  128. 128

    Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 125109 (2016).

  129. 129

    Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

  130. 130

    Li, W. & Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 7, 10843 (2016).

  131. 131

    Kolobov, A. V., Fons, P. & Tominaga, J. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2 . Phys. Rev. B 94, 094114 (2016).

  132. 132

    Ma, Y., Kou, L., Li, X., Dai, Y. & Heine, T. Two-dimensional transition metal dichalcogenides with a hexagonal lattice: room-temperature quantum spin Hall insulators. Phys. Rev. B 93, 035442 (2016).

  133. 133

    Ma, F. et al. Predicting a new phase (T″) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition. Nanoscale 8, 4969–4975 (2016).

  134. 134

    Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2 . Nat. Phys. 11, 482–486 (2015).

  135. 135

    Naylor, C. H. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

  136. 136

    Nicoletti, D. & Cavalleri, A. Nonlinear light–matter interaction at terahertz frequencies. Adv. Opt. Photonics 8, 401–464 (2016).

  137. 137

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

  138. 138

    Sheu, Y. M. et al. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat. Commun. 5, 5832 (2014).

  139. 139

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

  140. 140

    Först, M. et al. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nat. Mater. 14, 883–888 (2015).

  141. 141

    Först, M. et al. Multiple supersonic phase fronts launched at a complex-oxide heterointerface. Phys. Rev. Lett. 118, 027401 (2017).

  142. 142

    Casandruc, E. et al. Wavelength-dependent optical enhancement of superconducting interlayer coupling in La1.885Ba0.115CuO4 . Phys. Rev. B 91, 174502 (2015).

  143. 143

    Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photonics 5, 485–488 (2011).

  144. 144

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

  145. 145

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

  146. 146

    Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4 . Nat. Mater. 15, 601–605 (2016).

  147. 147

    Pickett, W. E. Electronic-structure of the high-temperature oxide superconductors. Rev. Mod. Phys. 61, 433–512 (1989).

  148. 148

    Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

  149. 149

    Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

  150. 150

    Wu, J. D., Si, Q. M. & Abrahams, E. Magnetic and Ising quantum phase transitions in a model for isoelectronically tuned iron pnictides. Phys. Rev. B 93, 104515 (2016).

  151. 151

    Pavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-structure trend in hole-doped cuprates and correlation with Tcmax . Phys. Rev. Lett. 87, 047003 (2001).

  152. 152

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5 . Nature 516, 71–73 (2016).

  153. 153

    Sowwan, M. et al. Direct atomic structure determination of epitaxially grown films: Gd2O3 on GaAs(100). Phys. Rev. B 66, 205311 (2002).

  154. 154

    Yacoby, Y. et al. Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs. Nat. Mater. 1, 99–101 (2002).

  155. 155

    Tweet, D. J. et al. Direct observation of Ge and Si ordering at the Si/B/GexSi1− x (111) interface by anomalous X-ray diffraction. Phys. Rev. Lett. 69, 2236–2239 (1992).

  156. 156

    Robinson, I. K., Waskiewicz, W. K., Tung, R. T. & Bohr, J. Ordering at Si(111)/a-Si and Si(111)/SiO2 interfaces. Phys. Rev. Lett. 57, 2714–2717 (1986).

  157. 157

    Cohen, E. et al. Structure of droplet-epitaxy-grown InAs/GaAs quantum dots. Appl. Phys. Lett. 98, 243115 (2011).

  158. 158

    Kumah, D. P., Shusterman, S., Paltiel, Y., Yacoby, Y. & Clarke, R. Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nat. Nanotechnol. 4, 835–838 (2009).

  159. 159

    Specht, E. D. et al. X-Ray-diffraction measurement of interface structure in GaAs/Si(001). Phys. Rev. B 43, 12425 (1991).

  160. 160

    Kolpak, A. M. et al. Interface-induced polarization and inhibition of ferroelectricity in epitaxial SrTiO3/Si. Phys. Rev. Lett. 105, 217601 (2010).

  161. 161

    Laanait, N. et al. X-Ray-driven reaction front dynamics at calcite–water interfaces. Science 349, 1330–1334 (2015).

  162. 162

    Lee, J. H. et al. In situ surface/interface X-ray diffractometer for oxide molecular beam epitaxy. Rev. Sci. Instrum. 87, 013901 (2016).

  163. 163

    Leroy, F., Revenant, C., Renaud, G. & Lazzari, R. In situ GISAXS study of the growth of Pd on MgO(001). Appl. Surf. Sci. 238, 233–237 (2004).

  164. 164

    Takahasi, M. et al. In situ three-dimensional X-ray reciprocal-space mapping of GaAs epitaxial films on Si(001). J. Cryst. Growth 378, 34–36 (2013).

  165. 165

    Murty, M. V. R. et al. In situ X-ray scattering study of PbTiO3 chemical-vapor deposition. Appl. Phys. Lett. 80, 1809 (2002).

  166. 166

    Vonk, V., Konings, S., Barthe, L., Gorges, B. & Graafsma, H. Pulsed laser deposition chamber for in situ X-ray diffraction. J. Synchrotron Radiat. 12, 833–834 (2005).

  167. 167

    Tischler, J. et al. Nonequilibrium interlayer transport in pulsed laser deposition. Phys. Rev. Lett. 96, 226104 (2006).

  168. 168

    Klug, J. A. et al. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes. Rev. Sci. Instrum. 86, 113901 (2015).

  169. 169

    Devloo-Casier, K. et al. In situ synchrotron based X-ray fluorescence and scattering measurements during atomic layer deposition: initial growth of HfO2 on Si and Ge substrates. Appl. Phys. Lett. 98, 231905 (2011).

  170. 170

    Florens, S. & Georges, A. Quantum impurity solvers using a slave rotor representation. Phys. Rev. B 66, 165111 (2002).

  171. 171

    Florens, S. & Georges, A. Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004).

  172. 172

    de’Medici, L., Georges, A. & Biermann, S. Orbital-selective Mott transition in multiband systems: slave-spin representation and dynamical mean-field theory. Phys. Rev. B 72, 205124 (2005).

  173. 173

    Zhao, E. & Paramekanti, A. Self-consistent slave rotor mean-field theory for strongly correlated systems. Phys. Rev. B 76, 195101 (2007).

  174. 174

    Hassan, S. R. & de’Medici, L. Slave spins away from half filling: cluster mean-field theory of the Hubbard and extended Hubbard models. Phys. Rev. B 81, 035106 (2010).

  175. 175

    Ko, W.-H. & Lee, P. A. Magnetism and Mott transition: a slave-rotor study. Phys. Rev. B 83, 134515 (2011).

  176. 176

    Yu, R. & Si, Q. U(1) slave-spin theory and its application to Mott transition in a multiorbital model for iron pnictides. Phys. Rev. B 86, 085104 (2012).

  177. 177

    Georgescu, A. B. & Ismail-Beigi, S. Generalized slave-particle method for extended Hubbard models. Phys. Rev. B 92, 235117 (2015).

  178. 178

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  179. 179

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  180. 180

    Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A. Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

  181. 181

    Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

  182. 182

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

Download references

Acknowledgements

This work was supported by the US National Science Foundation (NSF; Award Nos DMR-1309868 and MRSEC DMR-1119826) and the Air Force Office of Scientific Research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sohrab Ismail-Beigi or Charles H. Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismail-Beigi, S., Walker, F., Disa, A. et al. Picoscale materials engineering. Nat Rev Mater 2, 17060 (2017). https://doi.org/10.1038/natrevmats.2017.60

Download citation

Further reading