Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design and synthesis of polyoxometalate-framework materials from cluster precursors

Abstract

Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. Although their synthesis is well understood, the scope for new materials is reduced because of the stability limits imposed by high-temperature processing and top-down synthetic approaches. In this Review, we describe the derivatization of polyoxometalate (POM) clusters, which enables their assembly into a range of frameworks by use of organic or inorganic linkers. Additionally, bottom-up synthetic approaches can be used to make metal oxide framework materials, and the features of the molecular POM precursors are retained in these structures. Highly robust all-inorganic frameworks can be made using metal-ion linkers, which combine molecular synthetic control without the need for organic components. The resulting frameworks have high stability, and high catalytic, photochemical and electrochemical activity. Conceptually, these inorganic oxide materials bridge the gap between zeolites and metal–organic frameworks (MOFs) and establish a new class of all-inorganic POM frameworks that can be designed using topological and reactivity principles similar to MOFs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic illustrations of common zeolite frameworks.
Figure 2: Metal–organic frameworks comprising Zn4O clusters and linear organic linkers.
Figure 3: Structures of polyoxometalate clusters of varying dimensions.
Figure 4: Comparison of the molecular sizes and building blocks of {Mo132}, {Mo256} and {Mo368} clusters.
Figure 5: Characterization of the non-classical Wells–Dawson {W18O56XO6} cluster.
Figure 6: A highly porous ionic crystal.
Figure 7: A polyoxometalate open framework material.
Figure 8: A numbering system for known POMzites.
Figure 9: Modular assembly of a 3D polyoxometalate open framework: [Ag(CH3CN)4]{[Ag(CH3CN)2]4[H3W12O40]} with AgI···AgI interactions.
Figure 10: Illustration of the nanosized pockets in a pure Keggin network.

References

  1. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35, 1154–1196 (1996).

    Article  Google Scholar 

  2. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  3. Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

    Article  CAS  Google Scholar 

  4. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 539, 710–712 (1992).

    Article  Google Scholar 

  5. Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Google Scholar 

  6. Eddaoudi, M. et al. Systematic design of pore size and functionality in isorecticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  7. Wang, B., Côté, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–212 (2008).

    Article  CAS  Google Scholar 

  8. Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    Article  CAS  Google Scholar 

  9. Li, J.-R., Kuppler, R. J. Y. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  10. James, S. L. Metal–organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003).

    Article  CAS  Google Scholar 

  11. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996).

    Article  CAS  Google Scholar 

  12. Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves Ch. 1,2,6 (Academic, 1978).

    Google Scholar 

  13. Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: history and from the earliest days to the present time. Chem. Rev. 103, 663–701 (2003).

    Article  CAS  Google Scholar 

  14. Mumpton, F. A. La roca magica: uses of natural zeolites in agriculture and industry. Proc. Natl Acad. Sci. USA 96, 3463–3470 (1999).

    Article  CAS  Google Scholar 

  15. Moliner, M., Martínez, C. & Corma, A. Multipore zeolites: synthesis and catalytic applications. Angew. Chem. Int. Ed. 54, 3560–3579 (2015).

    Article  CAS  Google Scholar 

  16. Davis, M. E. & Lobo, R. F. Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992).

    Article  CAS  Google Scholar 

  17. Barrer, R. M. Syntheses and reactions of mordenite. J. Chem. Soc. 127, 2158–2163 (1948).

    Article  Google Scholar 

  18. Kokotailo, G., Lawton, S. & Olson, D. Structure of synthetic zeolite ZSM 5. Nature 272, 437–438 (1978).

    Article  CAS  Google Scholar 

  19. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  20. Valtchev, V., Majano, G., Mintova, S. & Pérez-Ramírez, J. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 42, 263–290 (2013).

    Article  CAS  Google Scholar 

  21. Wilson, S. T., Lok, B. M., Messina, C. A., Cannon, T. R. & Flanigen, E. M. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 104, 1146–1147 (1982).

    Article  CAS  Google Scholar 

  22. Harvey, G. & Meier, W. M. The synthesis of beryllophosphate zeolites. Stud. Surf. Sci. Catal. A49, 411–420 (1989).

    Article  Google Scholar 

  23. Gier, T. E. & Stucky, G. D. Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves. Nature 349, 508–510 (1991).

    Article  CAS  Google Scholar 

  24. Gier, T. E., Bu, X. H., Feng, P. Y. & Stucky, G. D. Synthesis and organization of zeolite-like materials with three-dimensional helical pores. Nature 395, 154–157 (1998).

    Article  CAS  Google Scholar 

  25. Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A. & Kessler, H. A synthetic gallophosphate molecular sieve with a 20 tetrahedral-atom pore opening. Nature 352, 320–323 (1991).

    Article  CAS  Google Scholar 

  26. Davis, M. E. Grand openings for cloverite. Nature 352, 281–282 (1991).

    Article  Google Scholar 

  27. Wright, P. A., Morris, R. E. & Wheatley, P. S. Synthesis of microporous materials using macrocycles as structure directing agents. Dalton Trans. 5359–5368 (2007).

  28. Jiang, J. et al. Synthesis and structure determination of the hierarchical mesomicroporous zeolite ITQ 43. Science 333, 1131–1134 (2011).

    Article  CAS  Google Scholar 

  29. Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M. & Hutchings, G. J. De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382, 604–606 (1996).

    Article  CAS  Google Scholar 

  30. Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010).

    Article  CAS  Google Scholar 

  31. Sun, J. et al. The ITQ 37 mesoporous chiral zeolite. Nature 458, 1154–1157 (2009).

    Article  CAS  Google Scholar 

  32. Tang, L. et al. A zeolite family with chiral and achiral structures built from the same building layer. Nat. Mater. 7, 381–385 (2008).

    Article  CAS  Google Scholar 

  33. Baerlocher, C. et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ 74. Nat. Mater. 7, 631–635 (2008).

    Article  CAS  Google Scholar 

  34. Baerlocher, C. et al. Structure of the polycrystalline zeolite catalyst IM 5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007).

    Article  CAS  Google Scholar 

  35. Roth, W. J. et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 5, 628–633 (2013).

    Article  CAS  Google Scholar 

  36. Furukawa, H. et al. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  37. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  38. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  CAS  Google Scholar 

  39. Marshall, R. J. & Forgan, R. S. Postsynthetic modification of zirconium metal–organic frameworks.Eur. J. Inorg. Chem. 27, 4310–4331 (2016).

    Article  CAS  Google Scholar 

  40. Rodriguez-Albelo, L. M. et al. Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 131, 16078–16087 (2009).

    Article  CAS  Google Scholar 

  41. Miras, H. N., Vilà-Nadal, L. & Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 43, 5679–5699 (2014).

    Article  CAS  Google Scholar 

  42. Pope, M. T. & Müller, A. (eds) Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity (Kluwer Academic Publishers, 1994).

    Book  Google Scholar 

  43. Proust, A. et al. Functionalization and post-functionalization: a step towards polyoxometalate-based materials. Chem. Soc. Rev. 41, 7605–7622 (2012).

    Article  CAS  Google Scholar 

  44. Song, Y.-F. & Tsunashima, R. Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev. 41, 7384–7402 (2012).

    Article  CAS  Google Scholar 

  45. Miras, H. N., Yan, J., Long, D.-L. & Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 41, 7403–7430 (2012).

    Article  CAS  Google Scholar 

  46. Long, D.-L., Burkholder, E. & Cronin, L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007).

    Article  CAS  Google Scholar 

  47. Hill, C. L. & Prosser-McCartha, C. M. Homogeneous catalysis by transition oxygen anion clusters. Coord. Chem. Rev. 143, 407–455 (1995).

    Article  CAS  Google Scholar 

  48. Dolbecq, A., Dumas, E., Cédric, R. M. & Mialane, P. Hybrid organic–inorganic polyoxometalate compounds: from structural diversity to applications. Chem. Rev. 110, 6009–6048 (2010).

    Article  CAS  Google Scholar 

  49. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4233–4374 (2009).

    Article  CAS  Google Scholar 

  50. Omwoma, S., Chen, W., Tsunashima, R. & Song, Y.-F. Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord. Chem. Rev. 258, 58–71 (2014).

    Article  CAS  Google Scholar 

  51. Nyman, M. & Burns, P. C. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chem. Soc. Rev. 41, 7354–7367 (2012).

    Article  CAS  Google Scholar 

  52. Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 41, 7464–7478 (2012).

    Article  CAS  Google Scholar 

  53. Polarz, S., Landsmann, S. & Klaiber, A. Hybrid surfactant systems with inorganic constituents. Angew. Chem. Int. Ed. 53, 946–954 (2014).

    Article  CAS  Google Scholar 

  54. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  55. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  Google Scholar 

  56. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  57. Krivovichev, S. V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 53, 654–661 (2014).

    Article  CAS  Google Scholar 

  58. Liu, T., Diemann, E., Li, H., Dress, A. W. M. & Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426, 59–62 (2003).

    Article  CAS  Google Scholar 

  59. Mitra, T. et al. Gated and differently functionalized (new) porous capsules direct encapsulates' structures: higher and lower density water. Chem. Eur. J. 15, 1844–1852 (2009).

    Article  CAS  Google Scholar 

  60. Müller, A., Beckmann, E., Bögge, H., Schmidtmann, M. & Dress, A. Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew. Chem. Int. Ed. 41, 1162–1167 (2002).

    Article  Google Scholar 

  61. Weber, T. et al. Large, larger, largest — a family of cluster-based tantalum copper aluminides with giant unit cells. I. Structure solution and refinement. Acta Cryst. B65, 308–317 (2009).

    Article  CAS  Google Scholar 

  62. Lister, S. E., Evans, I. R. & Evans, J. S. O. Complex superstructures of Mo2P4O15 . Inorg. Chem. 48, 9271–9281 (2009).

    Article  CAS  Google Scholar 

  63. Lindqvist, I. On the structure of the paratungstate ion. Acta Cryst. 5, 667–670 (1952).

    Article  CAS  Google Scholar 

  64. Keggin, F. J. Structure of the molecule of 12 phosphotungstic acid. Nature 131, 908–909 (1933).

    Article  CAS  Google Scholar 

  65. Dawson, B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)·14H2O. Acta Cryst. 6, 113–126 (1953).

    Article  CAS  Google Scholar 

  66. Alizadeh, M. H., Harmalker, S. P., Jeannin, Y., Martin-Frère, J. & Pope, M. T. A heteropolyanion with fivefold molecular symmetry that contains a nonlabile encapsulated sodium ion. The structure and chemistry of [NaP5W30O110]14−. J. Am. Chem. Soc. 107, 2662–2669 (1985).

    Article  CAS  Google Scholar 

  67. Rong, C. & Pope, M. T. Lacunary polyoxometalate anions are π acceptor ligands. Characterization of some tungstoruthenate(II,III,IV,V) heteropolyanions and their atom-transfer reactivity. J. Am. Chem. Soc. 114, 2932–2938 (1992).

    Article  CAS  Google Scholar 

  68. Black, J. R., Nyman, M. & Casey, W. H. Rates of oxygen exchange between the [HxNb6O19]8−x (aq) Lindqvist ion and aqueous solutions. J. Am. Chem. Soc. 128, 14712–14720 (2006).

    Article  CAS  Google Scholar 

  69. Sloan, J. et al. Direct imaging of the structure, relaxation, and sterically constrained motion of encapsulated tungsten polyoxometalate Lindqvist ions within carbon nanotubes. ACS Nano 2, 966–976 (2008).

    Article  CAS  Google Scholar 

  70. Vilà-Nadal, L. et al. Combined theoretical and mass spectrometry study of the formation-fragmentation of small polyoxomolybdates. Inorg. Chem. 50, 7811–7819 (2011).

    Article  CAS  Google Scholar 

  71. Vilà-Nadal, L. et al. Nucleation mechanisms of molecular oxides: a study of the assembly-disassembly of [W6O19]2− by theory and mass spectrometry. Angew. Chem. Int. Ed. 48, 5452–5456 (2009).

    Article  CAS  Google Scholar 

  72. Vilà-Nadal, L., Rodríguez-Fortea, A. & Poblet, J. M. Theoretical analysis of the possible intermediates in the formation of [W6O19]2−. Eur. J. Inorg. Chem. 5125–5133 (2009).

  73. Long, D. L., Kögerler, P., Parenty, A. D. C., Fielden, J. & Cronin, L. Discovery of a family of isopolyoxotungstates [H4W19O62]6− encapsulating a {WO6} moiety within a {W18} Dawson-like cluster cage. Angew. Chem. Int. Ed. 45, 4798–4803 (2006).

    Article  CAS  Google Scholar 

  74. Vilà-Nadal, L. et al. Polyoxometalate {W18O56XO6} clusters with embedded redox-active main-group templates as localized inner-cluster radicals. Angew. Chem. Int. Ed. 52, 9695–9699 (2013).

    Article  CAS  Google Scholar 

  75. Busche, C. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 515, 545–549 (2014).

    Article  CAS  Google Scholar 

  76. Müller, A. & Gouzerh, P. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem. Soc. Rev. 41, 7431–7463 (2012).

    Article  CAS  Google Scholar 

  77. Pradeep, C. P., Long, D.-L. & Cronin, L. Cations in control: crystal engineering polyoxometalate clusters using cation directed self-assembly. Dalton Trans. 39, 9443–9457 (2010).

    Article  CAS  Google Scholar 

  78. Cheong, S. W. Transition metal oxides: the exciting world of orbitals. Nat. Mater. 6, 927–928 (2007).

    Article  CAS  Google Scholar 

  79. Bassil, B. S. & Kortz, U. Divacant polyoxotungstates: reactivity of the gamma-decatungstates [γ-XW10O36]8− (X = Si, Ge). Dalton Trans. 40, 9649 (2011).

    Article  CAS  Google Scholar 

  80. Zhang, Z. et al. Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster. Inorg. Chem. 46, 8162–8169 (2007).

    Article  CAS  Google Scholar 

  81. Winter, R. S., Long, D.-L. & Cronin, L. Synthesis and characterization of a series of [M2(β-SiW8O31)2]n clusters and mechanistic insight into the reorganization of {β-SiW8O31} into {α-SiW9O34}. Inorg. Chem 54, 4151–4155 (2015).

    Article  CAS  Google Scholar 

  82. Zhang, Z. et al. Synthesis, characterization, and crystal structures of two novel high-nuclear nickel-substituted dimeric polyoxometalates. Inorg. Chem. 45, 4313–4315 (2006).

    Article  CAS  Google Scholar 

  83. Assran, A. S. et al. Alpha and beta isomers of tetrahafnium(IV) containing decatungstosilicates, [Hf4(OH)6(CH3COO)2(x-SiW10O37)2]12− (x = α, β). Dalton Trans. 40, 2920–2925 (2011).

    Article  CAS  Google Scholar 

  84. Bassil, B. S. et al. A planar {Mn19(OH)12}26+ unit incorporated in a 60 tungsto-6 silicate polyanion. Angew. Chem. Int. Ed. 50, 5961–5964 (2011).

    Article  CAS  Google Scholar 

  85. Winter, R. S. et al. Nanoscale control of polyoxometalate assembly: a {Mn8W4} cluster within a {W36Si4Mn10} cluster showing a new type of isomerism. Chem. Eur. J. 19, 2976–2981 (2013).

    Article  CAS  Google Scholar 

  86. Hussain, F., Bassil, B. S., Bi, L. H., Reicke, M. & Kortz, U. Structural control on the nanomolecular scale: self-assembly of the polyoxotungstate wheel [{β = Ti2SiW10O39}4]24−. Angew. Chem. Int. Ed. 43, 3485–3488 (2004).

    Article  CAS  Google Scholar 

  87. Mitchell, S. G. et al. A mixed-valence manganese cubane trapped by inequivalent trilacunary polyoxometalate ligands. Angew. Chem. Int. Ed. 50, 9154–9157 (2011).

    Article  CAS  Google Scholar 

  88. Zheng, S. T., Zhang, J., Clemente-Juan, J. M., Yuan, D. Q. & Yang, G. Poly(polyoxotungstate)s with 20 nickel centers: from nanoclusters to one-dimensional chains. Angew. Chem. Int. Ed. 48, 7176–7179 (2009).

    Article  CAS  Google Scholar 

  89. Huang, L., Wang, S.-S., Zhao, J.-W., Cheng, L. & Yang, G.-Y. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 136, 7637–7642 (2014).

    Article  CAS  Google Scholar 

  90. Sartorel, A. et al. Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: a totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 130, 5006–5007 (2008).

    Article  CAS  Google Scholar 

  91. Stracke, J. J. & Finke, R. G. Distinguishing homogeneous from heterogeneous water oxidation catalysis when beginning with polyoxometalates. ACS Catal. 4, 909–933 (2014).

    Article  CAS  Google Scholar 

  92. Kamata, K. et al. Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide. Science 300, 964–966 (2003).

    Article  CAS  Google Scholar 

  93. Ritchie, C. et al. Polyoxometalate-mediated self-assembly of single-molecule magnets: {[XW9O34]2[MnIII4MnII2O4(H2O)4]}12−. Angew. Chem. Int. Ed. 47, 5609–5612 (2008).

    Article  CAS  Google Scholar 

  94. Ge, M., Zhong, B., Klemperer, W. G. & Gewirth, A. A. Self-assembly of silicotungstate anions on silver surfaces. J. Am. Chem. Soc 118, 5812–5813 (1996).

    Article  CAS  Google Scholar 

  95. Klonowski, P. et al. Synthesis and characterization of the platinum-substituted Keggin anion α-H2SiPtW11O404−. Inorg. Chem 53, 13239–13246 (2014).

    Article  CAS  Google Scholar 

  96. Cameron, J. M. et al. Investigating the transformations of polyoxoanions using mass spectrometry and molecular dynamics. J. Am. Chem. Soc. 138, 8765–8773 (2016).

    Article  CAS  Google Scholar 

  97. Saalfrank, R. W., Maid, H. & Scheurer, A. Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew. Chem. Int. Ed. 47, 8795–8824 (2008).

    Google Scholar 

  98. Ritchie, C. et al. Reversible redox reactions in an extended polyoxometalate framework solid. Angew. Chem. Int. Ed. 47, 6881–6884 (2008).

    Article  CAS  Google Scholar 

  99. Khenkin, A. M., Weiner, L., Wang, Y. & Neumann, R. Electron and oxygen transfer in polyoxometalate, H5PV2Mo10O40, catalyzed oxidation of aromatic and alkyl aromatic compounds: evidence for aerobic Mars-van Krevelen-type reactions in the liquid homogeneous phase. J. Am. Chem. Soc 123, 8531–8542 (2001).

    Article  CAS  Google Scholar 

  100. Kastner, K. et al. Controlled reactivity tuning of metal-functionalized vanadium oxide clusters. Chem. Eur. J. 21, 7686–7689 (2015).

    Article  CAS  Google Scholar 

  101. Martin-Sabi, M. et al. Rearrangement of {α-P2W15} to {PW6} moieties during the assembly of transition-metal-linked polyoxometalate clusters. Chem. Commun. 52, 919–921 (2016).

    Article  CAS  Google Scholar 

  102. Zheng, Q. et al. Following the reaction of heteroanions inside a {W18O56} polyoxometalate nanocage by NMR spectroscopy and mass spectrometry. Angew. Chem. Int. Ed. 54, 7895–7899 (2015).

    Article  CAS  Google Scholar 

  103. Macdonell, A., Johnson, N. B., Surman, A. J. & Cronin, L. Configurable nanosized metal oxide oligomers via precise ‘click’ coupling control of hybrid polyoxometalates. J. Am. Chem. Soc. 137, 5662–5665 (2015).

    Article  CAS  Google Scholar 

  104. Sadeghi, O., Zakharov, L. N. & Nyman, M. Crystal growth. Aqueous formation and manipulation of the iron-oxo Keggin ion. Science 347, 1359–1362 (2015).

    Article  CAS  Google Scholar 

  105. Winter, R. S., Cameron, J. M. & Cronin, L. Controlling the minimal self assembly of complex polyoxometalate clusters. J. Am. Chem. Soc. 136, 12753–12761 (2014).

    Article  CAS  Google Scholar 

  106. Long, D.-L. et al. Capture of periodate in a {W18O54} cluster cage yielding a catalytically active polyoxometalate [H3W18O56(IO6)]6− embedded with high-valent iodine. Angew. Chem. Int. Ed. 47, 4384–4387 (2008).

    Article  CAS  Google Scholar 

  107. Yan, J., Long, D.-L., Wilson, E. F. & Cronin, L. Discovery of heteroatom-‘embedded’ Te{W18O54} nanofunctional polyoxometalates by use of cryospray mass spectrometry. Angew. Chem. Int. Ed. 48, 4376–4380 (2009).

    Article  CAS  Google Scholar 

  108. Ritchie, C. et al. Exploiting the multifunctionality of organocations in the assembly of hybrid polyoxometalate clusters and networks. Chem. Commun. 5, 468–470 (2007).

    Article  Google Scholar 

  109. Cameron, J. M., Gao, J., Vilà-Nadal, L., Long, D.-L. & Cronin, L. Formation, self-assembly and transformation of a transient selenotungstate building block into clusters, chains and macrocycles. Chem. Commun. 50, 2155–2157 (2014).

    Article  CAS  Google Scholar 

  110. Mizuno, N. & Uchida, S. Structures and sorption properties of ionic crystals of polyoxometalates with macrocation. Chem. Lett. 35, 688–693 (2006).

    Article  CAS  Google Scholar 

  111. Kawamoto, R., Uchida, S. & Mizuno, N. Amphiphilic guest sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] ionic crystal. J. Am. Chem. Soc. 127, 10560–10567 (2005).

    Article  CAS  Google Scholar 

  112. Okamoto, K., Uchida, S., Ito, T. & Mizuno, N. Self-organization of all-inorganic dodecatungstophosphate nanocrystallites. J. Am. Chem. Soc 129, 7378–7384 (2007).

    Article  CAS  Google Scholar 

  113. Suzuki, K. et al. Three-dimensional ordered arrays of 58 × 58 × 58 Å3 hollow frameworks in ionic crystals of M2Zn2-substituted polyoxometalates. Angew. Chem. Int. Ed. 51, 1597–1601 (2012).

    Article  CAS  Google Scholar 

  114. Khan, M. I., Yohannes, E. & Doedens, R. [M3V18O42(H2O)12(XO4)]·24H2O (M = Fe, Co; X = V, S): metal oxide based framework materials composed of polyoxovanadate clusters. Angew. Chem. Int. Ed. 38, 1292–1294 (1999).

    Article  CAS  Google Scholar 

  115. Wang, X. -L. et al. Polyoxometalate-based porous framework with perovskite topology. Crys. Growth Des. 10, 4227–4230 (2010).

    Article  CAS  Google Scholar 

  116. Takashima, Y., Miras, H. N., Glatzel, S. & Cronin, L. Shrink wrapping redox-active crystals of polyoxometalate open frameworks with organic polymers via crystal induced polymerisation. Chem. Commun. 52, 7794–7797 (2016).

    Article  CAS  Google Scholar 

  117. Yue, L. et al. Flexible single-layer ionic organic–inorganic frameworks toward precise nano-size separation. Nat. Commun. 7, 10742 (2016).

    Article  CAS  Google Scholar 

  118. Ma, H. et al. Cationic covalent organic frameworks: a simple platform of anionic exchange porosity tuning and proton conduction. J. Am. Chem. Soc. 138, 5897–5903 (2016).

    Article  CAS  Google Scholar 

  119. Qin, J. S. et al. Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 137, 7169–7177 (2015).

    Article  CAS  Google Scholar 

  120. Shi, D. et al. A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C–H alkylation of aliphatic nitriles. Chem. Commun. 52, 4714–4717 (2016).

    Article  CAS  Google Scholar 

  121. Salomon, W. et al. Immobilization of polyoxometalates in the Zr based metal organic framework UiO-67. Chem. Commun. 51, 2972–2975 (2015).

    Article  CAS  Google Scholar 

  122. Lysenko, A. B. et al. Synthesis and structural elucidation of triazolylmolybdenum(VI) oxide hybrids and their behavior as oxidation catalysts. Inorg. Chem. 54, 8327–8338 (2015).

    Article  CAS  Google Scholar 

  123. Watfa, N. et al. Two compartmentalized inner receptors for the tetramethylammonium guest within a keplerate-type capsule. Inorg. Chem. 55, 9368–9376 (2016).

    Article  CAS  Google Scholar 

  124. Sadeghi, O. et al. Chemical stabilization and electrochemical destabilization of the iron Keggin ion in water. Inorg. Chem. 55, 11078–11088 (2016).

    Article  CAS  Google Scholar 

  125. Guo, L. Y. et al. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 55, 9006–9011 (2016).

    Article  CAS  Google Scholar 

  126. Zhu, S. L. et al. Assembly of a metalloporphyrin–polyoxometalate hybrid material for highly efficient activation of molecular oxygen. Inorg. Chem. 55, 7295–7300 (2016).

    Article  CAS  Google Scholar 

  127. Martín-Caballero, J. et al. A robust open framework formed by decavanadate clusters and copper(II) complexes of macrocyclic polyamines: permanent microporosity and catalytic oxidation of cycloalkanes. Inorg. Chem. 55, 4970–4979 (2016).

    Article  CAS  Google Scholar 

  128. Li, H., Swenson, L., Doedensb, R. J. & Khan, M. I. An organo-functionalized metal–oxide cluster, [VIV6O6{(OCH2CH2)2N(CH2CH2OH)}6], with Anderson-like structure. Dalton Trans. 45, 16511–16518 (2016).

    Article  CAS  Google Scholar 

  129. Mitchell, S. G., Boyd, T., Miras, H. N., Long, D.-L. & Cronin, L. Extended polyoxometalate framework solids: two Mn(II)-linked {P8W48} network arrays. Inorg. Chem. 50, 136–143 (2011).

    Article  CAS  Google Scholar 

  130. Chen, S. W., Boubekeur, K., Gouzerh, P. & Proust, A. Versatile host–guest chemistry and networking ability of the cyclic tungstophosphate {P8W48}: two further manganese derivatives. J. Mol. Struct. 994, 104–108 (2011).

    Article  CAS  Google Scholar 

  131. Streb, C., Ritchie, C., Long, D.-L., Kögerler, P. & Cronin, L. Modular assembly of a functional polyoxometalate-based open framework constructed from unsupported AgI···AgI interactions. Angew. Chem. Int. Ed. 46, 7579–7582 (2007).

    Article  CAS  Google Scholar 

  132. Wang, X. L., Hu, H. L. & Tian, A. X. Influence of transition metal coordination nature on the assembly of multinuclear subunits in polyoxometalates-based compounds. Cryst. Growth Des. 10, 4786–4794 (2010).

    Article  CAS  Google Scholar 

  133. Wang, Y. et al. Hydrothermal syntheses and characterizations of two novel frameworks constructed from polyoxometalates, metals and organic units. Dalton. Trans. 39, 1916–1919 (2010).

    Article  CAS  Google Scholar 

  134. Mitchell, S. G. et al. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat. Chem. 2, 308–312 (2010).

    Article  CAS  Google Scholar 

  135. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  136. Liu, S. et al. A Sodalite-type porous metal–organic framework with polyoxometalate templates: adsorption and decomposition of dimethyl methylphosphonate. J. Am. Chem. Soc. 133, 4178–4181 (2011).

    Article  CAS  Google Scholar 

  137. Song, J. et al. A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc. 133, 16839–16846 (2011).

    Article  CAS  Google Scholar 

  138. Contant, R. & Tézé, A . A new crown heteropolyanion K28Li5H7P8W48O184·92H2O: synthesis, structure, and properties. Inorg. Chem. 24, 4610–4614 (1985).

    Article  CAS  Google Scholar 

  139. Sing, K. S. W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 54, 603–619 (1985).

    Article  Google Scholar 

  140. Zhan, C. et al. A metamorphic inorganic framework that can be switched between eight single-crystalline states. Nat. Commun. 8, 14185 (2017).

    Article  CAS  Google Scholar 

  141. Boyd, T. et al. POMzites: a family of zeolitic polyoxometalate frameworks from a minimal building block library. J. Am. Chem. Soc. 139, 5930–5938 (2017).

    Article  CAS  Google Scholar 

  142. Thiel, J., Ritchie, C., Streb, C., Long, D. L. & Cronin, L. Heteroatom-controlled kinetics of switchable polyoxometalate frameworks. J. Am. Chem. Soc 131, 4180–4181 (2009).

    Article  CAS  Google Scholar 

  143. Thiel, J. et al. Modular inorganic polyoxometalate frameworks showing emergent properties: redox alloys. Angew. Chem. Int. Ed. 49, 6984–6988 (2010).

    Article  CAS  Google Scholar 

  144. Ritchie, C. et al. Spontaneous assembly and real-time growth of micrometre-scale tubular structures from polyoxometalate-based inorganic solids. Nat. Chem. 1, 47–52 (2009).

    Article  CAS  Google Scholar 

  145. Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    Article  CAS  Google Scholar 

  146. Nazarian, D., Camp, J. S., Chung, Y. G., Snurr, R. Q. & Sholl, D. S. Large-scale refinement of metal–organic framework structures using density functional theory. Chem. Mater. 29, 2521–2528 (2017).

    Article  CAS  Google Scholar 

  147. Vilà-Nadal, L. Exploring the rotational isomerism in non-classical Wells–Dawson anions {W18X}: a combined theoretical and mass spectrometry study. Dalton Trans. 41, 2264–2271 (2012).

    Article  Google Scholar 

  148. Mitchell, S. G. et al. Controlling nucleation of the cyclic heteropolyanion {P8W48}: a cobalt-substituted phosphotungstate chain and network. Cryst. Eng. Commun. 11, 36–39 (2009).

    Article  CAS  Google Scholar 

  149. Bassil, B. S. et al. Cobalt, manganese, nickel, and vanadium derivatives of the cyclic 48 tungsto-8 phosphate [H7P8W48O184]33−. Inorg. Chem. 49, 4949–4959 (2010).

    Article  CAS  Google Scholar 

  150. Zhang, L. C. et al. Two new {P8W49} wheel-shaped tungstophosphates decorated by Co(II), Ni(II) ions.J. Cluster Sci. 21, 679–689 (2010).

    Article  CAS  Google Scholar 

  151. Mitchell, S. G. et al. Extended polyoxometalate framework solids: two Mn(II)-linked {P8W48} network arrays. Inorg. Chem. 50, 136–143 (2011).

    Article  CAS  Google Scholar 

  152. Chen, S.-W., Boubekeur, K., Gouzerh, P. & Proust, A. Versatile host–guest chemistry and networking ability of the cyclic tungstophosphate {P8W48}: two further manganese derivatives. J. Mol. Struct. 994, 104–108 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.V.-N. and L.C. gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC; Grant Nos EP/H024107/1, EP/I033459/1, EP/J00135X/1, EP/J015156/1, EP/K021966/1, EP/K023004/1, EP/K038885/1, EP/L015668/1 and EP/L023652/1), and the European Research Council (ERC; project 670467 SMART-POM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vilà-Nadal, L., Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat Rev Mater 2, 17054 (2017). https://doi.org/10.1038/natrevmats.2017.54

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing