Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tetradymites as thermoelectrics and topological insulators


Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Crystallography of M2X3 compounds with M = Bi, Sb or As and X = Te, Se or S.
Figure 2: Angular-resolved photoemission spectroscopy data on the binary tetradymites and line compounds.
Figure 3: Spin-resolved angular-resolved photoemission spectroscopy in ultrathin Bi2Se3 films.
Figure 4: Quantum anomalous Hall effect.
Figure 5: Topological spintronics.
Figure 6: Phonons in tetradymites.
Figure 7: Thermoelectric figure of merit.


  1. 1

    Heremans, J. P. & Wiendlocha, B. in Materials Aspect of Thermoelectricity Ch. 2 (ed. Uher, C. ) 39–94 (CRC Press, 2016).

    Book  Google Scholar 

  2. 2

    Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    CAS  Article  Google Scholar 

  3. 3

    Hasan, M. Z. & Kane, C. L. Topological insulators review. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  CAS  Google Scholar 

  6. 6

    Isaeva, A., Rasche, B. & Ruck, M. Bismuth-based candidates for topological insulators: chemistry beyond Bi2Te3 . Phys. Status Solidi RRL 7, 39–49 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Cava, R. J., Ji, H., Fuccillo, M. K., Gibson, Q. D. & Hor, Y. S. Crystal structure and chemistry of topological insulators. J. Mat. Chem. C 1, 3176–3189 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Shi, H., Parker, D., Du, M. S. & Singh, D. J. Connecting thermoelectric performance and topological insulator behavior: Bi2Te3 and Bi2Te2Se from first principles. Phys. Rev. Appl. 3, 014004 (2015).

    Article  CAS  Google Scholar 

  9. 9

    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Pauling, L. The formula, structure, and chemical bonding of tetradymite, Bi14Te13S8, and the phase Bi14Te15S6 . Am. Mineral. 60, 994–997 (1975).

    CAS  Google Scholar 

  12. 12

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Article  CAS  Google Scholar 

  13. 13

    Jia, S. et al. Low-carrier-concentration crystals of the topological insulator Bi2Te2Se. Phys. Rev. B 84, 235206 (2011).

    Article  CAS  Google Scholar 

  14. 14

    Grauer, D. C., Hor, Y. S., Williams, A. J. & Cava, R. J. Thermoelectric properties of the tetradymite-type Bi2Te2S–Sb2Te2S solid solution. Mater. Res. Bull. 44, 1926–1929 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Reiann, J., Gudde, J., Kuroda, K., Chulkov, E. V. & Hoefer, U. Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S. Phys. Rev. B 90, 081106 (2014).

    Article  CAS  Google Scholar 

  16. 16

    Ji, H. et al. Crystal structure and elementary electronic properties of Bi-stabilized α-In2Se3 . Mater. Res. Bull. 48, 2517–2521 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Ji, H. et al. A strong-topological-metal material with multiple Dirac cones. Phys. Rev. B 93, 045315 (2016).

    Article  CAS  Google Scholar 

  18. 18

    Chen, K. W. et al. Uncovering the behavior of Hf2Te2P and the candidate Dirac metal Zr2Te2P. J. Phys. Condens. Matter 28, 14LT01 (2016).

    Article  CAS  Google Scholar 

  19. 19

    Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Bernevig, B. A. & Hughes, T. L. (eds) in Topological Insulators and Topological Superconductors Ch. 4.4 37–38 (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  21. 21

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Kong, D. et al. Ambipolar field effect in the ternary topological insulator (BixSb1 – x)2Te3 by composition tuning. Nat. Nanotechnol. 6, 705–709 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Neupane, M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012).

    Article  CAS  Google Scholar 

  25. 25

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  26. 26

    Gao, Y.-B., He, B., Parker, D., Androulakis, I. & Heremans, J. P. Experimental study of the valence band of Bi2Se3 . Phys. Rev. B 90, 125204 (2014).

    Article  CAS  Google Scholar 

  27. 27

    Behnia, K. On the mobility of electrons in a shallow Fermi sea over a rough seafloor. J. Phys. Condens. Matter 27, 375501 (2015).

    Article  CAS  Google Scholar 

  28. 28

    Scanlon, D. O. et al. Controlling bulk conductivity in topological insulators: key role of antisite defects. Adv. Mater. 24, 2154–2158 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Xue, L. et al. First principles study of native point defects in Bi2Te3 . AIP Adv. 3, 052105 (2013).

    Article  CAS  Google Scholar 

  30. 30

    Wiendlocha, B. Resonant levels, vacancies, and doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 tetradymites. J. Electron. Mater. 45, 3515–3531 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Reimann, J., Gudde, J., Kuroda, K., Chulkov, E. V. & Hofer, U. Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S. Phys. Rev. B 90, 081106 (2014).

    Article  CAS  Google Scholar 

  32. 32

    Hor, Y. S. et al. p-Type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009).

    Article  CAS  Google Scholar 

  33. 33

    Kuroda, K. et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3 . Phys. Rev. Lett. 105, 076802 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Observations of two-dimensional quantum oscillations and ambipolar transport in the topological insulator Bi2Se3 achieved by Cd doping. Phys. Rev. B 84, 075316 (2011).

    Article  CAS  Google Scholar 

  35. 35

    Pan, Y. et al. Low carrier concentration crystals of the topological insulator Bi2 − xSbxTe3 − ySey: a magnetotransport study. New J. Phys. 16, 123035 (2014).

    Article  CAS  Google Scholar 

  36. 36

    Jaworski, C. M., Kulbachinskii, V. A. & Heremans, J. P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Kushwaha, S. K. et al. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties. Nat. Commun. 7, 11456 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Xu, Y. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Kim, D. et al. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3 . Nat. Phys. 8, 459–463 (2012).

    Article  CAS  Google Scholar 

  40. 40

    Xu, Y., Miotkowski, I. & Chen, Y. P. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 7, 11434 (2016).

    CAS  Article  Google Scholar 

  41. 41

    Zhang, G. et al. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3 . Appl. Phys. Lett. 95, 053114 (2009).

    Article  CAS  Google Scholar 

  42. 42

    Bansal, N. et al. Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface. Thin Solid Films 520, 224–229 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Richardella, A. et al. Coherent heteroepitaxy of Bi2Se3 on GaAs (111)B. Appl. Phys. Lett. 97, 262104 (2010).

    Article  CAS  Google Scholar 

  44. 44

    Guo, X. et al. Single domain Bi2Se3 films grown on InP(111)A by molecular-beam epitaxy. Appl. Phys. Lett. 102, 151604 (2013).

    Article  CAS  Google Scholar 

  45. 45

    Schreyeck, S. et al. Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP (111) substrates. Appl. Phys. Lett. 102, 041914 (2013).

    Article  CAS  Google Scholar 

  46. 46

    Chen, J. et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3 . Phys. Rev. Lett. 105, 176602 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Zhang, G. et al. Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 21, 2351–2355 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 109, 066803 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Bansal, N., Kim, Y. S., Brahlek, M., Edrey, E. & Oh, S. Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 109, 116804 (2012).

    Article  CAS  Google Scholar 

  50. 50

    Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010).

    Article  CAS  Google Scholar 

  51. 51

    Kou, X. F. et al. Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl. Phys. Lett. 98, 242102 (2011).

    Article  CAS  Google Scholar 

  52. 52

    Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator — ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    CAS  Article  Google Scholar 

  53. 53

    Wang, H. et al. Surface-state-dominated spin-charge current conversion in topological insulator/ferromagnetic insulator heterostructures. Phys. Rev. Lett. 117, 076601 (2016).

    Article  CAS  Google Scholar 

  54. 54

    Richardella, A., Kandala, A., Lee, J. S. & Samarth, N. Characterizing the structure of topological insulator thin films. APL Mater. 3, 083303 (2015).

    Article  CAS  Google Scholar 

  55. 55

    Koirala, N. et al. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015).

    CAS  Article  Google Scholar 

  56. 56

    Steinberg, H., Laloë, J. B., Fatemi, V., Moodera, J. S. & Jarillo-Herrero, P. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B 84, 233101 (2011).

    Article  CAS  Google Scholar 

  57. 57

    Chang, C.-Z. et al. Simultaneous electrical-field-effect modulation of both top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators. Nano Lett. 15, 1090–1094 (2015).

    Article  CAS  Google Scholar 

  58. 58

    Lang, M. et al. Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett. 13, 48–53 (2013).

    CAS  Article  Google Scholar 

  59. 59

    Neupane, M. et al. Observation of quantum-tunneling-modulated spin texture in ultrathin topological insulator Bi2Se3 films. Nat. Commun. 5, 3841 (2014).

    CAS  Article  Google Scholar 

  60. 60

    Landolt, G. et al. Spin texture of Bi2Se3 thin films in the quantum tunneling limit. Phys. Rev. Lett. 112, 057601 (2014).

    Article  CAS  Google Scholar 

  61. 61

    Chang, C. Z. et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

    CAS  Article  Google Scholar 

  62. 62

    Kandala, A. et al. Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl. Phys. Lett. 103, 202409 (2013).

    Article  CAS  Google Scholar 

  63. 63

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    CAS  Article  Google Scholar 

  64. 64

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Article  Google Scholar 

  65. 65

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  66. 66

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    CAS  Article  Google Scholar 

  67. 67

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Article  Google Scholar 

  68. 68

    Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014); erratum 113, 199901 (2014).

    Article  CAS  Google Scholar 

  69. 69

    Kandala, A., Richardella, A., Kempinger, S., Liu, C. X. & Samarth, N. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434 (2015).

    Article  Google Scholar 

  70. 70

    Bestwick, A. J. et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).

    CAS  Article  Google Scholar 

  71. 71

    Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

    Article  CAS  Google Scholar 

  72. 72

    Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

    Article  Google Scholar 

  73. 73

    Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  CAS  Google Scholar 

  74. 74

    Fan, Y. B. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    CAS  Article  Google Scholar 

  75. 75

    Jamali, M. et al. Giant spin pumping and inverse spin Hall effect in the presence of surface and bulk spin–orbit coupling of topological insulator Bi2Se3 . Nano Lett. 15, 7126–7132 (2015).

    CAS  Article  Google Scholar 

  76. 76

    Wang, Y. et al. Topological surface states originated spin-orbit torques in Bi2Se3 . Phys. Rev. Lett. 114, 257202 (2015).

    Article  CAS  Google Scholar 

  77. 77

    Liu, L. et al. Spin-polarized tunneling study of spin–momentum locking in topological insulators. Phys. Rev. B 91, 235437 (2015).

    Article  CAS  Google Scholar 

  78. 78

    Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

    CAS  Article  Google Scholar 

  79. 79

    Jiang, Z. et al. Enhanced spin Seebeck effect signal due to spin–momentum locked topological surface states. Nat. Commun. 7, 11458 (2016).

    CAS  Article  Google Scholar 

  80. 80

    Han, J. et al. Room temperature spin–orbit torque switching induced by a topological insulator. Eprint at arXiv (2017).

  81. 81

    Mahendra, D. C. et al. Room-temperature perpendicular magnetization switching through giant spin–orbit torque from sputtered BixSe1 − x topological insulator material. Eprint at arXiv (2017).

  82. 82

    Goldsmid, H. J. & Douglas, R. W. The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386–390 (1954).

    Article  Google Scholar 

  83. 83

    Kim, S. I. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015).

    CAS  Article  Google Scholar 

  84. 84

    Heremans, J. P. The anharmonicity blacksmith. Nat. Phys. 11, 990–991 (2015).

    CAS  Article  Google Scholar 

  85. 85

    Hellman, O. & Broido, D. A. Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90, 134309 (2014); erratum 92, 219903 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

    Article  Google Scholar 

  87. 87

    Nielsen, M. D., Ozolins, V. & Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013).

    CAS  Article  Google Scholar 

  88. 88

    Jin, H. et al. The phonon-induced diamagnetic force and its effect on the lattice thermal conductivity. Nat. Mater. 14, 601–606 (2015).

    CAS  Article  Google Scholar 

  89. 89

    Kullmann, W. et al. Lattice dynamics and phonon dispersion in the narrow gap semiconductor Bi2Te3 with sandwich structure. Phys. Status Solidi B 162, 125–140 (1990).

    CAS  Article  Google Scholar 

  90. 90

    Lyddane, R., Sachs, R. & Teller, E. On the polar vibrations of alkali halides. Phys. Rev. 59, 673–676 (1941).

    CAS  Article  Google Scholar 

  91. 91

    Scherrer, H. & Scherrer, S. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M. ) 211–237 (CRC Press, 1995).

    Google Scholar 

  92. 92

    Heikes, R. R. & Ure, R. W. Thermoelectricity: Science and Engineering (Interscience Publishers, 1961).

    Google Scholar 

  93. 93

    Yim, W. M. & Rosi, F. D. Compound Tellurides and their alloys for Peltier cooling — a review. Solid State Electron. 15, 1121–1140 (1972).

    CAS  Article  Google Scholar 

  94. 94

    Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).

    CAS  Article  Google Scholar 

  95. 95

    Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    CAS  Article  Google Scholar 

  96. 96

    Anderson, A. C. in Phonon Scattering in Condensed Matter (eds Eisenmenger, W., Lassmann, K. & Dottinger, S. ) 348–354 (Springer, 1983).

    Google Scholar 

  97. 97

    Hu, L. et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015).

    Article  CAS  Google Scholar 

  98. 98

    Zhu, T. et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 1605884 (2017).

    Article  CAS  Google Scholar 

  99. 99

    Hittmair, O. Lehrbuch der Quantentheorie [German] (Verlag Karl Thiemig, 1972).

    Google Scholar 

  100. 100

    Li, H. et al. Microstructure and transport properties of copper-doped p-type (BiSbTe) alloy prepared by mechanical alloying and subsequent spark plasma sintering. J. Alloy. Compd. 576, 369–374 (2013).

    CAS  Article  Google Scholar 

  101. 101

    Bulat, L. P. et al. Structure and transport properties of bulk nanothermoelectrics based on BixSb2 − xTe3 fabricated by SPS method. J. Electron. Mater. 42, 2110–2113 (2013).

    CAS  Article  Google Scholar 

  102. 102

    Xie, W. et al. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 48, 2745–2760 (2013).

    CAS  Article  Google Scholar 

  103. 103

    Nguyen, P. K. et al. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance. Nanotechnology 23, 415604–415610 (2012).

    CAS  Article  Google Scholar 

  104. 104

    Son, J. H. et al. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3 . J. Alloy. Compd. 566, 168–174 (2013).

    CAS  Article  Google Scholar 

  105. 105

    Imamuddin, M. & Dupre, A. Thermoelectric properties of p-type Bi2Te3–Sb2Te3–Sb2Se3 alloys and n-type Bi2Te3–Bi2Se3 alloys in the temperature range 300 to 600 K. Phys. Status Solidi A 10, 415–424 (1972).

    CAS  Article  Google Scholar 

  106. 106

    Wright, D. A. Materials for direct-conversion thermoelectric generators. Metall. Rev. 15, 147–160 (1970).

    CAS  Google Scholar 

  107. 107

    Snyder, G. J. in Thermoelectrics Handbook: Macro to Nano Ch. 9 (ed. Rowe, D. M. ) (CRC Press, 2006).

    Google Scholar 

  108. 108

    Goldsmid, H. J. & Cochrane, J. W. Solar thermoelectric generators. Proc. 4th IEEE Int. Conf. Thermoelectr. Energy Convers. 7–10 (1982).

  109. 109

    Bogomolov, D. I., Bublik, V. T., Skipidarov, S. Y. & Tabachkova, N. Y. Structure and properties of thermoelectric materials based on Bi2(SeTe)3 and (BiSb)2Te3 solid solutions prepared by equal-channel angular pressing. Inorg. Mater. 49, 758–775 (2013).

    CAS  Article  Google Scholar 

  110. 110

    Wu, F. et al. Effects of different morphologies of Bi2Te3 nanopowders on thermoelectric properties. J. Electron. Mater. 42, 1140–1145 (2013).

    CAS  Article  Google Scholar 

  111. 111

    Kim, H., Han, M. K., Yo, C. H., Lee, W. & Kim, S. J. Effects of Bi2Se3 nanoparticle inclusions on the microstructure and thermoelectric properties of Bi2Te3-based nanocomposites. J. Electron. Mater. 41, 3411–3416 (2012).

    CAS  Article  Google Scholar 

  112. 112

    Yu, C. et al. Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods. J. Alloy. Compd. 570, 86–93 (2013).

    CAS  Article  Google Scholar 

  113. 113

    Dashevsky, Z., Drabkin, I., Korotaev, V. & Rabinovich, D. Improved materials for thermoelectric conversion (generation). Proc. 16th IEEE Int. Conf. Thermoelectr. 26–29 (1997).

  114. 114

    Gerovac, N., Snyder, G. J. & Caillat, T. Thermoelectric properties of n-type polycrystalline BixSb2 − xTe3 alloys. Proc. 21st IEEE Int. Conf. Thermoelectr. 25–29 (2002).

  115. 115

    Richter, W., Köhler, H. & Becker, C. R. A raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1 − xSex)3 (0 <x <1), (Bi1 − ySby)2Te3 (0 <y <1). Phys. Status Solidi B 84, 619–628 (1977).

    CAS  Article  Google Scholar 

  116. 116

    Drope, R. Zur Gitterdynamik von V2VI3 Verbindungen [German] Dissertation, RWTH Aachen (1975).

    Google Scholar 

  117. 117

    Stordeur, M., Ketavong, K. K., Priemuth, A., Sobotta, H. & Riede, V. Optical and electrical investigations of n-type Bi2Se3 single crystals. Phys. Status Solidi B 169, 505–514 (1992).

    CAS  Article  Google Scholar 

  118. 118

    Unkelbach, K. H. Nachweis optisch aktiver Gitterschwingungen und optische Eigenschaften von Antimontellurid [German] Dissertation, RWTH Aachen (1973).

    Google Scholar 

  119. 119

    Sehr, R. & Testardi, L. R. The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219–1224 (1962).

    CAS  Article  Google Scholar 

  120. 120

    Köhler, H. & Fabricius, A. Galvanomagnetic properties of Bi2Se3 with free carrier densities below 5 × 1017 cm−3. Phys. Status Solidi B 71, 487–496 (1975).

    Article  Google Scholar 

  121. 121

    Köhler, H. & Hartmann, J. Burstein shift of the absorption edge of n-Bi2Se3 . Phys. Status Solidi B 63, 171 (1974).

    Article  Google Scholar 

  122. 122

    Köhler, H. Conduction band parameters of Bi2Se3 from Shubnikov–de Haas investigations. Phys. Status Solidi B 58, 91–100 (1973).

    Article  Google Scholar 

  123. 123

    Köhler, H. Non-parabolic E(k) relation of the lowest conduction band in Bi2Te3 . Phys. Status Solidi B 73, 95–104 (1976).

    Article  Google Scholar 

  124. 124

    Köhler, H. The application of high magnetic fields in semiconductor physics. Proc. 6th Int. Conf. 632–653 (1976).

  125. 125

    Tichy, L. & Horák, J. Nonparabolicity of the conduction band and anisotropy of the electron effective mass in n-Bi2Se3 single crystals. Phys. Rev. B 19, 1126–1131 (1979).

    CAS  Article  Google Scholar 

  126. 126

    Harman, T. C., Paris, B., Miller, S. F. & Goering, H. L. Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3*. J. Phys. Chem. Solids 2, 181–190 (1957).

    CAS  Article  Google Scholar 

  127. 127

    Köhler, H. Non-parabolicity of the highest valence band of Bi2Te3 from Shubnikov–de Haas effect. Phys. Status Solidi B 74, 591–600 (1976).

    Article  Google Scholar 

  128. 128

    von Middendorff, A., Dietrich, K. & Landwehr, G. Shubnikov–de Haas effect in p-type Sb2Te3 . Solid State Commun. 13, 443–446 (1973).

    CAS  Article  Google Scholar 

  129. 129

    Stordeur, M., Stöltzer, M., Sobota, H. & Riede, V. Investigation of the valence band structure of thermoelectric (Bi1 − xSbx)2Te3 single crystals. Phys. Stat. Solidi B 150, 165–176 (1988).

    CAS  Article  Google Scholar 

Download references


The research of R.J.C. and N.S. on topological insulators was supported by the Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) (Grant No. W911NF-12-1-0461) and the National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-1420451). N.S. acknowledges the Pennsylvania State University Two-Dimensional Crystal Consortium–Materials Innovation Platform (2DCC–MIP), which is supported by the NSF cooperative agreement DMR-1539916. The work of J.P.H. and R.J.C. was supported by the Air Force Office of Scientific Research (AFOSR) MURI on thermoelectrics (Grant No. FA9550-10-1-0533). J.P.H. is currently supported by the NSF (Grant Nos EFRI-1433467 and DMR-142051); he acknowledges useful discussions with B. Wiendlocha, W. Windl and T. M. McCormick.

Author information



Corresponding author

Correspondence to Joseph P. Heremans.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heremans, J., Cava, R. & Samarth, N. Tetradymites as thermoelectrics and topological insulators. Nat Rev Mater 2, 17049 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing