Review Article

Tetradymites as thermoelectrics and topological insulators

  • Nature Reviews Materials 2, Article number: 17049 (2017)
  • doi:10.1038/natrevmats.2017.49
  • Download Citation
Published online:

Abstract

Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & in Materials Aspect of Thermoelectricity Ch. 2 (ed. Uher, C.) 39–94 (CRC Press, 2016).

  2. 2.

    On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

  3. 3.

    & Topological insulators review. Rev. Mod. Phys. 82, 3045–3067 (2010).

  4. 4.

    & Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  5. 5.

    Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

  6. 6.

    , & Bismuth-based candidates for topological insulators: chemistry beyond Bi2Te3. Phys. Status Solidi RRL 7, 39–49 (2013).

  7. 7.

    , , , & Crystal structure and chemistry of topological insulators. J. Mat. Chem. C 1, 3176–3189 (2013).

  8. 8.

    , , & Connecting thermoelectric performance and topological insulator behavior: Bi2Te3 and Bi2Te2Se from first principles. Phys. Rev. Appl. 3, 014004 (2015).

  9. 9.

    et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

  10. 10.

    et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

  11. 11.

    The formula, structure, and chemical bonding of tetradymite, Bi14Te13S8, and the phase Bi14Te15S6. Am. Mineral. 60, 994–997 (1975).

  12. 12.

    , , , & Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

  13. 13.

    et al. Low-carrier-concentration crystals of the topological insulator Bi2Te2Se. Phys. Rev. B 84, 235206 (2011).

  14. 14.

    , , & Thermoelectric properties of the tetradymite-type Bi2Te2S–Sb2Te2S solid solution. Mater. Res. Bull. 44, 1926–1929 (2009).

  15. 15.

    , , , & Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S. Phys. Rev. B 90, 081106 (2014).

  16. 16.

    et al. Crystal structure and elementary electronic properties of Bi-stabilized α-In2Se3. Mater. Res. Bull. 48, 2517–2521 (2013).

  17. 17.

    et al. A strong-topological-metal material with multiple Dirac cones. Phys. Rev. B 93, 045315 (2016).

  18. 18.

    et al. Uncovering the behavior of Hf2Te2P and the candidate Dirac metal Zr2Te2P. J. Phys. Condens. Matter 28, 14LT01 (2016).

  19. 19.

    et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

  20. 20.

    & (eds) in Topological Insulators and Topological Superconductors Ch. 4.4 37–38 (Princeton Univ. Press, 2013).

  21. 21.

    et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

  22. 22.

    et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

  23. 23.

    et al. Ambipolar field effect in the ternary topological insulator (BixSb1 – x)2Te3 by composition tuning. Nat. Nanotechnol. 6, 705–709 (2011).

  24. 24.

    et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012).

  25. 25.

    Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

  26. 26.

    , , , & Experimental study of the valence band of Bi2Se3. Phys. Rev. B 90, 125204 (2014).

  27. 27.

    On the mobility of electrons in a shallow Fermi sea over a rough seafloor. J. Phys. Condens. Matter 27, 375501 (2015).

  28. 28.

    et al. Controlling bulk conductivity in topological insulators: key role of antisite defects. Adv. Mater. 24, 2154–2158 (2012).

  29. 29.

    et al. First principles study of native point defects in Bi2Te3. AIP Adv. 3, 052105 (2013).

  30. 30.

    Resonant levels, vacancies, and doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 tetradymites. J. Electron. Mater. 45, 3515–3531 (2016).

  31. 31.

    , , , & Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S. Phys. Rev. B 90, 081106 (2014).

  32. 32.

    et al. p-Type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009).

  33. 33.

    et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3. Phys. Rev. Lett. 105, 076802 (2010).

  34. 34.

    , , , & Observations of two-dimensional quantum oscillations and ambipolar transport in the topological insulator Bi2Se3 achieved by Cd doping. Phys. Rev. B 84, 075316 (2011).

  35. 35.

    et al. Low carrier concentration crystals of the topological insulator Bi2 − xSbxTe3 − ySey: a magnetotransport study. New J. Phys. 16, 123035 (2014).

  36. 36.

    , & Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009).

  37. 37.

    et al. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties. Nat. Commun. 7, 11456 (2016).

  38. 38.

    et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

  39. 39.

    et al. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 8, 459–463 (2012).

  40. 40.

    , & Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 7, 11434 (2016).

  41. 41.

    et al. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 95, 053114 (2009).

  42. 42.

    et al. Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface. Thin Solid Films 520, 224–229 (2011).

  43. 43.

    et al. Coherent heteroepitaxy of Bi2Se3 on GaAs (111)B. Appl. Phys. Lett. 97, 262104 (2010).

  44. 44.

    et al. Single domain Bi2Se3 films grown on InP(111)A by molecular-beam epitaxy. Appl. Phys. Lett. 102, 151604 (2013).

  45. 45.

    et al. Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP (111) substrates. Appl. Phys. Lett. 102, 041914 (2013).

  46. 46.

    et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys. Rev. Lett. 105, 176602 (2010).

  47. 47.

    et al. Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 21, 2351–2355 (2011).

  48. 48.

    , , & Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 109, 066803 (2012).

  49. 49.

    , , , & Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 109, 116804 (2012).

  50. 50.

    et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010).

  51. 51.

    et al. Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl. Phys. Lett. 98, 242102 (2011).

  52. 52.

    et al. Proximity induced high-temperature magnetic order in topological insulator — ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

  53. 53.

    et al. Surface-state-dominated spin-charge current conversion in topological insulator/ferromagnetic insulator heterostructures. Phys. Rev. Lett. 117, 076601 (2016).

  54. 54.

    , , & Characterizing the structure of topological insulator thin films. APL Mater. 3, 083303 (2015).

  55. 55.

    et al. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015).

  56. 56.

    , , , & Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B 84, 233101 (2011).

  57. 57.

    et al. Simultaneous electrical-field-effect modulation of both top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators. Nano Lett. 15, 1090–1094 (2015).

  58. 58.

    et al. Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett. 13, 48–53 (2013).

  59. 59.

    et al. Observation of quantum-tunneling-modulated spin texture in ultrathin topological insulator Bi2Se3 films. Nat. Commun. 5, 3841 (2014).

  60. 60.

    et al. Spin texture of Bi2Se3 thin films in the quantum tunneling limit. Phys. Rev. Lett. 112, 057601 (2014).

  61. 61.

    et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

  62. 62.

    et al. Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl. Phys. Lett. 103, 202409 (2013).

  63. 63.

    et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

  64. 64.

    Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015–2018 (1988).

  65. 65.

    et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

  66. 66.

    et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

  67. 67.

    et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

  68. 68.

    et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014); erratum 113, 199901 (2014).

  69. 69.

    , , , & Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434 (2015).

  70. 70.

    et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).

  71. 71.

    et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

  72. 72.

    et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

  73. 73.

    et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

  74. 74.

    et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

  75. 75.

    et al. Giant spin pumping and inverse spin Hall effect in the presence of surface and bulk spin–orbit coupling of topological insulator Bi2Se3. Nano Lett. 15, 7126–7132 (2015).

  76. 76.

    et al. Topological surface states originated spin-orbit torques in Bi2Se3. Phys. Rev. Lett. 114, 257202 (2015).

  77. 77.

    et al. Spin-polarized tunneling study of spin–momentum locking in topological insulators. Phys. Rev. B 91, 235437 (2015).

  78. 78.

    et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

  79. 79.

    et al. Enhanced spin Seebeck effect signal due to spin–momentum locked topological surface states. Nat. Commun. 7, 11458 (2016).

  80. 80.

    et al. Room temperature spin–orbit torque switching induced by a topological insulator. Eprint at arXiv (2017).

  81. 81.

    et al. Room-temperature perpendicular magnetization switching through giant spin–orbit torque from sputtered BixSe1 − x topological insulator material. Eprint at arXiv (2017).

  82. 82.

    & The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386–390 (1954).

  83. 83.

    et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015).

  84. 84.

    The anharmonicity blacksmith. Nat. Phys. 11, 990–991 (2015).

  85. 85.

    & Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90, 134309 (2014); erratum 92, 219903 (2015).

  86. 86.

    et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

  87. 87.

    , & Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013).

  88. 88.

    et al. The phonon-induced diamagnetic force and its effect on the lattice thermal conductivity. Nat. Mater. 14, 601–606 (2015).

  89. 89.

    et al. Lattice dynamics and phonon dispersion in the narrow gap semiconductor Bi2Te3 with sandwich structure. Phys. Status Solidi B 162, 125–140 (1990).

  90. 90.

    , & On the polar vibrations of alkali halides. Phys. Rev. 59, 673–676 (1941).

  91. 91.

    & in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 211–237 (CRC Press, 1995).

  92. 92.

    & Thermoelectricity: Science and Engineering (Interscience Publishers, 1961).

  93. 93.

    & Compound Tellurides and their alloys for Peltier cooling — a review. Solid State Electron. 15, 1121–1140 (1972).

  94. 94.

    , & Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).

  95. 95.

    et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

  96. 96.

    in Phonon Scattering in Condensed Matter (eds Eisenmenger, W., Lassmann, K. & Dottinger, S.) 348–354 (Springer, 1983).

  97. 97.

    et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015).

  98. 98.

    et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 1605884 (2017).

  99. 99.

    Lehrbuch der Quantentheorie [German] (Verlag Karl Thiemig, 1972).

  100. 100.

    et al. Microstructure and transport properties of copper-doped p-type (BiSbTe) alloy prepared by mechanical alloying and subsequent spark plasma sintering. J. Alloy. Compd. 576, 369–374 (2013).

  101. 101.

    et al. Structure and transport properties of bulk nanothermoelectrics based on BixSb2 − xTe3 fabricated by SPS method. J. Electron. Mater. 42, 2110–2113 (2013).

  102. 102.

    et al. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 48, 2745–2760 (2013).

  103. 103.

    et al. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance. Nanotechnology 23, 415604–415610 (2012).

  104. 104.

    et al. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3. J. Alloy. Compd. 566, 168–174 (2013).

  105. 105.

    & Thermoelectric properties of p-type Bi2Te3–Sb2Te3–Sb2Se3 alloys and n-type Bi2Te3–Bi2Se3 alloys in the temperature range 300 to 600 K. Phys. Status Solidi A 10, 415–424 (1972).

  106. 106.

    Materials for direct-conversion thermoelectric generators. Metall. Rev. 15, 147–160 (1970).

  107. 107.

    in Thermoelectrics Handbook: Macro to Nano Ch. 9 (ed. Rowe, D. M.) (CRC Press, 2006).

  108. 108.

    & Solar thermoelectric generators. Proc. 4th IEEE Int. Conf. Thermoelectr. Energy Convers. 7–10 (1982).

  109. 109.

    , , & Structure and properties of thermoelectric materials based on Bi2(SeTe)3 and (BiSb)2Te3 solid solutions prepared by equal-channel angular pressing. Inorg. Mater. 49, 758–775 (2013).

  110. 110.

    et al. Effects of different morphologies of Bi2Te3 nanopowders on thermoelectric properties. J. Electron. Mater. 42, 1140–1145 (2013).

  111. 111.

    , , , & Effects of Bi2Se3 nanoparticle inclusions on the microstructure and thermoelectric properties of Bi2Te3-based nanocomposites. J. Electron. Mater. 41, 3411–3416 (2012).

  112. 112.

    et al. Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods. J. Alloy. Compd. 570, 86–93 (2013).

  113. 113.

    , , & Improved materials for thermoelectric conversion (generation). Proc. 16th IEEE Int. Conf. Thermoelectr. 26–29 (1997).

  114. 114.

    , & Thermoelectric properties of n-type polycrystalline BixSb2 − xTe3 alloys. Proc. 21st IEEE Int. Conf. Thermoelectr. 25–29 (2002).

  115. 115.

    , & A raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1 − xSex)3 (0 <x <1), (Bi1 − ySby)2Te3 (0 <y <1). Phys. Status Solidi B 84, 619–628 (1977).

  116. 116.

    Zur Gitterdynamik von V2VI3 Verbindungen [German] Dissertation, RWTH Aachen (1975).

  117. 117.

    , , , & Optical and electrical investigations of n-type Bi2Se3 single crystals. Phys. Status Solidi B 169, 505–514 (1992).

  118. 118.

    Nachweis optisch aktiver Gitterschwingungen und optische Eigenschaften von Antimontellurid [German] Dissertation, RWTH Aachen (1973).

  119. 119.

    & The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219–1224 (1962).

  120. 120.

    & Galvanomagnetic properties of Bi2Se3 with free carrier densities below 5 × 1017 cm−3. Phys. Status Solidi B 71, 487–496 (1975).

  121. 121.

    & Burstein shift of the absorption edge of n-Bi2Se3. Phys. Status Solidi B 63, 171 (1974).

  122. 122.

    Conduction band parameters of Bi2Se3 from Shubnikov–de Haas investigations. Phys. Status Solidi B 58, 91–100 (1973).

  123. 123.

    Non-parabolic E(k) relation of the lowest conduction band in Bi2Te3. Phys. Status Solidi B 73, 95–104 (1976).

  124. 124.

    The application of high magnetic fields in semiconductor physics. Proc. 6th Int. Conf. 632–653 (1976).

  125. 125.

    & Nonparabolicity of the conduction band and anisotropy of the electron effective mass in n-Bi2Se3 single crystals. Phys. Rev. B 19, 1126–1131 (1979).

  126. 126.

    , , & Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3*. J. Phys. Chem. Solids 2, 181–190 (1957).

  127. 127.

    Non-parabolicity of the highest valence band of Bi2Te3 from Shubnikov–de Haas effect. Phys. Status Solidi B 74, 591–600 (1976).

  128. 128.

    , & Shubnikov–de Haas effect in p-type Sb2Te3. Solid State Commun. 13, 443–446 (1973).

  129. 129.

    , , & Investigation of the valence band structure of thermoelectric (Bi1 − xSbx)2Te3 single crystals. Phys. Stat. Solidi B 150, 165–176 (1988).

Download references

Acknowledgements

The research of R.J.C. and N.S. on topological insulators was supported by the Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) (Grant No. W911NF-12-1-0461) and the National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-1420451). N.S. acknowledges the Pennsylvania State University Two-Dimensional Crystal Consortium–Materials Innovation Platform (2DCC–MIP), which is supported by the NSF cooperative agreement DMR-1539916. The work of J.P.H. and R.J.C. was supported by the Air Force Office of Scientific Research (AFOSR) MURI on thermoelectrics (Grant No. FA9550-10-1-0533). J.P.H. is currently supported by the NSF (Grant Nos EFRI-1433467 and DMR-142051); he acknowledges useful discussions with B. Wiendlocha, W. Windl and T. M. McCormick.

Author information

Affiliations

  1. Departments of Mechanical and Aerospace Engineering, Physics, and Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA.

    • Joseph P. Heremans
  2. Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.

    • Robert J. Cava
  3. Department of Physics and Materials Research Institute, the Pennsylvania State University, University Park, Pennsylvania 16802, USA.

    • Nitin Samarth

Authors

  1. Search for Joseph P. Heremans in:

  2. Search for Robert J. Cava in:

  3. Search for Nitin Samarth in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Joseph P. Heremans.