Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Graphene-based smart materials

Abstract

The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or ‘smart’ materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemically responsive graphene materials and their applications.
Figure 2: Electroresponsive graphene materials.
Figure 3: Mechanically responsive graphene materials.
Figure 4: Thermoresponsive graphene materials.
Figure 5: Light-responsive graphene materials.

Similar content being viewed by others

References

  1. de Lima, C. R. et al. A biomimetic piezoelectric pump: computational and experimental characterization. Sens. Actuators A 152, 110–118 (2009).

    Article  CAS  Google Scholar 

  2. Baughman, R. H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

    Article  CAS  Google Scholar 

  3. Pelrine, R., Kornbluh, R., Pei, Q. B. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Article  CAS  Google Scholar 

  4. Ahir, S. V. & Terentjev, E. M. Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491–495 (2005).

    Article  CAS  Google Scholar 

  5. Huang, Y., Liang, J. & Chen, Y. The application of graphene based materials for actuators. J. Mater. Chem. 22, 3671–3679 (2012).

    Article  CAS  Google Scholar 

  6. Zhang, J., Song, L., Zhang, Z., Chen, N. & Qu, L. Environmentally responsive graphene systems. Small 10, 2151–2164 (2014).

    Article  CAS  Google Scholar 

  7. Zhao, F., Zhao, Y., Chen, N. & Qu, L. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly. Mater. Today 19, 146–156 (2016).

    Article  CAS  Google Scholar 

  8. Dai, J., Yuan, J. & Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009).

    Article  CAS  Google Scholar 

  9. Yuan, W., Liu, A., Huang, L., Li, C. & Shi, G. High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25, 766–771 (2013).

    Article  CAS  Google Scholar 

  10. Han, D.-D. et al. Light-mediated manufacture and manipulation of actuators. Adv. Mater. 28, 8328–8343 (2016).

    Article  CAS  Google Scholar 

  11. Kong, L. & Chen, W. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 26, 1025–1043 (2014).

    Article  CAS  Google Scholar 

  12. Yuan, W. & Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 1, 10078–10091 (2013).

    Article  CAS  Google Scholar 

  13. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). The first paper to report the graphene-based gas sensor.

    Article  CAS  Google Scholar 

  14. Huang, B. et al. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 112, 13442–13446 (2008).

    Article  CAS  Google Scholar 

  15. Leenaerts, O., Partoens, B. & Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008).

    Article  CAS  Google Scholar 

  16. Yu, K. et al. Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2, 537–542 (2011).

    Article  CAS  Google Scholar 

  17. Pearce, R. et al. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B 155, 451–455 (2011).

    Article  CAS  Google Scholar 

  18. Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  19. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z. & Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137–3140 (2008).

    Article  CAS  Google Scholar 

  20. Fowler, J. D. et al. Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009).

    Article  CAS  Google Scholar 

  21. Hwang, E. H., Adam, S. & Das Sarma, S. Transport in chemically doped graphene in the presence of adsorbed molecules. Phys. Rev. B 76, 195421 (2007).

    Article  CAS  Google Scholar 

  22. Ao, Z. M., Yang, J., Li, S. & Jiang, Q. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett. 461, 276–279 (2008).

    Article  CAS  Google Scholar 

  23. Dan, Y., Lu, Y., Kybert, N. J., Luo, Z. & Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009).

    Article  CAS  Google Scholar 

  24. Al-Mashat, L. et al. Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114, 16168–16173 (2010).

    Article  CAS  Google Scholar 

  25. Bai, H., Sheng, K., Zhang, P., Li, C. & Shi, G. Graphene oxide/conducting polymer composite hydrogels. J. Mater. Chem. 21, 18653–18658 (2011).

    Article  CAS  Google Scholar 

  26. Bai, S. et al. Enhancement of NO2-sensing performance at room temperature by graphene-modified polythiophene. Ind. Eng. Chem. Res. 55, 5788–5794 (2016).

    Article  CAS  Google Scholar 

  27. Konwer, S., Guha, A. K. & Dolui, S. K. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J. Mater. Sci. 48, 1729–1739 (2013).

    Article  CAS  Google Scholar 

  28. Sundaram, R. S., Gómez-Navarro, C., Balasubramanian, K., Burghard, M. & Kern, K. Electrochemical modification of graphene. Adv. Mater. 20, 3050–3053 (2008).

    Article  CAS  Google Scholar 

  29. Chu, B. H. et al. Hydrogen detection using platinum coated graphene grown on SiC. Sens. Actuators B 157, 500–503 (2011).

    Article  CAS  Google Scholar 

  30. Yi, J., Lee, J. M. & Park, W. II. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155, 264–269 (2011).

    Article  CAS  Google Scholar 

  31. Song, Z. et al. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28, 1205–1212 (2016).

    Article  CAS  Google Scholar 

  32. Choi, S.-J. et al. Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci. Rep. 5, 8067 (2015).

    Article  CAS  Google Scholar 

  33. Yavari, F. et al. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6, 2535–2538 (2010).

    Article  CAS  Google Scholar 

  34. Zhang, D., Tong, J. & Xia, B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B 197, 66–72 (2014).

    Article  CAS  Google Scholar 

  35. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  36. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  CAS  Google Scholar 

  37. Buchsteiner, A., Lerf, A. & Pieper, J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006).

    Article  CAS  Google Scholar 

  38. Bi, H. et al. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013). This work revealed the mechanisms of a GO film for a humidity sensor in detail.

    Article  Google Scholar 

  39. Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011).

    Article  CAS  Google Scholar 

  40. Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015).

    Article  CAS  Google Scholar 

  41. Zhao, F., Liang, Y., Cheng, H., Jiang, L. & Qu, L. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016).

    Article  CAS  Google Scholar 

  42. Zhu, J. et al. Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies. ACS Nano 6, 8357–8365 (2012). This work demonstrated the pseudonegative thermal expansion property of a GO film.

    Article  CAS  Google Scholar 

  43. Park, S., An, J., Suk, J. W. & Ruoff, R. S. Graphene-based actuators. Small 6, 210–212 (2010). The first work to report a graphene bilayer film for a humidity sensor.

    Article  CAS  Google Scholar 

  44. Cheng, H. et al. Graphene fibers with predetermined deformation as moisture triggered actuators and robots. Angew. Chem. Int. Ed. 52, 10482–10486 (2013).

    Article  CAS  Google Scholar 

  45. Han, D.-D. et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv. Mater. 27, 332–338 (2015).

    Article  CAS  Google Scholar 

  46. Cheng, H. et al. One single graphene oxide film for responsive actuation. ACS Nano 10, 9529–9535 (2016).

    Article  CAS  Google Scholar 

  47. Mu, J. et al. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Sci. Rep. 5, 9503 (2015).

    Article  CAS  Google Scholar 

  48. Han, D.-D. et al. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv. Funct. Mater. 25, 4548–4557 (2015).

    Article  CAS  Google Scholar 

  49. Zhou, M., Zhai, Y. & Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81, 5603–5613 (2009). This work demonstrated the potential applications of rGO for electrochemcial biosensing.

    Article  CAS  Google Scholar 

  50. Liu, Y., Yu, D., Zeng, C., Miao, Z. & Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158–6160 (2010).

    Article  CAS  Google Scholar 

  51. Liu, Y., Dong, X. & Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012).

    Article  CAS  Google Scholar 

  52. Mohanty, N. & Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008).

    Article  CAS  Google Scholar 

  53. He, Y., Xing, X., Tang, H. & Pang, D. Graphene oxide-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA. Small 9, 2097–2101 (2013).

    Article  CAS  Google Scholar 

  54. Chen, J.-L., Yan, X.-P., Meng, K. & Wang, S.-F. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal. Chem. 83, 8787–8793 (2011).

    Article  CAS  Google Scholar 

  55. Li, D., Mueller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). The first study on the preparation of processable aqueous dispersions of rGO sheets.

    Article  CAS  Google Scholar 

  56. Liu, J., Cui, L. & Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9, 9243–9257 (2013).

    Article  CAS  Google Scholar 

  57. Liu, Z., Robinson, J. T., Sun, X. & Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008). The first study on GO for drug delivery.

    Article  CAS  Google Scholar 

  58. Bai, H., Li, C., Wang, X. & Shi, G. A. pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 46, 2376–2378 (2010).

    Article  CAS  Google Scholar 

  59. Hu, H., Yu, J., Li, Y., Zhao, J. & Dong, H. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. A 100, 141–148 (2012).

    Article  CAS  Google Scholar 

  60. Bai, H., Li, C., Wang, X. & Shi, G. On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545–5551 (2011). The first study on the mechanisms of the gelation of GO.

    Article  CAS  Google Scholar 

  61. Chen, J.-L. & Yan, X.-P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH. Chem. Commun. 47, 3135–3137 (2011).

    Article  CAS  Google Scholar 

  62. Rogers, G. W. & Liu, J. Z. Graphene actuators: quantum-mechanical and electrostatic double-layer effects. J. Am. Chem. Soc. 133, 10858–10863 (2011). Theoretical studies on the electrochemical induced strains in graphene.

    Article  CAS  Google Scholar 

  63. Xie, X. et al. An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 4, 6050–6054 (2010). This work demonstrated an asymmetrical graphene film for an electrochemical actuator.

    Article  CAS  Google Scholar 

  64. Liang, J. et al. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 21, 3778–3784 (2011).

    Article  CAS  Google Scholar 

  65. Liu, J. et al. A rationally-designed synergetic polypyrrole/graphene bilayer actuator. J. Mater. Chem. 22, 4015–4020 (2012).

    Article  CAS  Google Scholar 

  66. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  67. Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).

    Article  CAS  Google Scholar 

  68. Zhu, S.-E. et al. Graphene-based bimorph microactuators. Nano Lett. 11, 977–981 (2011).

    Article  CAS  Google Scholar 

  69. Liang, J. et al. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 6, 4508–4519 (2012).

    Article  CAS  Google Scholar 

  70. Hong, J.-Y. & Jang, J. Highly stable, concentrated dispersions of graphene oxide sheets and their electro-responsive characteristics. Soft Matter 8, 7348–7350 (2012).

    Article  CAS  Google Scholar 

  71. Hong, J.-Y., Lee, E. & Jang, J. Electro-responsive and dielectric characteristics of graphene sheets decorated with TiO2 nanorods. J. Mater. Chem. A 1, 117–121 (2013).

    Article  CAS  Google Scholar 

  72. Yin, J., Chang, R., Kai, Y. & Zhao, X. Highly stable and AC electric field-activated electrorheological fluid based on mesoporous silica-coated graphene nanosheets. Soft Matter 9, 3910–3914 (2013).

    Article  CAS  Google Scholar 

  73. Yin, J., Chang, R., Shui, Y. & Zhao, X. Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions. Soft Matter 9, 7468–7478 (2013).

    Article  CAS  Google Scholar 

  74. Sakhaee-Pour, A., Ahmadian, M. T. & Vafai, A. Potential application of single-layered graphene sheet as strain sensor. Solid State Commun. 147, 336–340 (2008).

    Article  CAS  Google Scholar 

  75. Choi, S.-M., Jhi, S.-H. & Son, Y.-W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010).

    Article  CAS  Google Scholar 

  76. Cocco, G., Cadelano, E. & Colombo, L. Gap opening in graphene by shear strain. Phys. Rev. B 81, 241412 (2010).

    Article  CAS  Google Scholar 

  77. Lu, Y. & Guo, J. Band gap of strained graphene nanoribbons. Nano Res. 3, 189–199 (2010).

    Article  CAS  Google Scholar 

  78. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). The first paper to report the CVD graphene films transferred on elastic substrates for stretchable electrodes.

    Article  CAS  Google Scholar 

  79. Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    Article  CAS  Google Scholar 

  80. Fu, X.-W. et al. Strain dependent resistance in chemical vapor deposition grown graphene. Appl. Phys. Lett. 99, 213107 (2011).

    Article  CAS  Google Scholar 

  81. Jin, C., Lan, H., Peng, L., Suenaga, K. & Iijima, S. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    Article  CAS  Google Scholar 

  82. Wang, Y. et al. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5, 3645–3650 (2011).

    Article  CAS  Google Scholar 

  83. Liu, Q., Chen, J., Li, Y. & Shi, G. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10, 7901–7906 (2016).

    Article  CAS  Google Scholar 

  84. Kim, Y.-J. et al. Preparation of piezoresistive nano smart hybrid material based on graphene. Curr. Appl. Phys. 11, S350–S352 (2011).

    Article  Google Scholar 

  85. Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012).

    Article  CAS  Google Scholar 

  86. Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011).

    Article  CAS  Google Scholar 

  87. Qiu, L., Liu, J. Z., Chang, S. L. Y., Wu, Y. & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).

    Article  CAS  Google Scholar 

  88. Zhao, J. et al. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl. Phys. Lett. 101, 063112 (2012).

    Article  CAS  Google Scholar 

  89. Kim, S. J., Choi, K., Lee, B., Kim, Y. & Hong, B. H. Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63–84 (2015).

    Article  CAS  Google Scholar 

  90. Ahn, J.-H. & Hong, B. H. Graphene for displays that bend. Nat. Nanotechnol. 9, 737–738 (2014).

    Article  CAS  Google Scholar 

  91. Ryu, J. et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8, 950–956 (2014).

    Article  CAS  Google Scholar 

  92. Khan, U., Kim, T.-H., Ryu, H., Seung, W. & Kim, S.-W. Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29, 1603544 (2017).

    Article  CAS  Google Scholar 

  93. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105–110 (2012).

    Article  CAS  Google Scholar 

  94. Jiang, H.-B. et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. Laser Photonics Rev. 10, 441–450 (2016).

    Article  CAS  Google Scholar 

  95. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  96. Ren, L., Qiu, J. & Wang, S. Thermo-adaptive functionality of graphene/polydimethylsiloxane nanocomposites. Smart Mater. Struct. 21, 105032 (2012).

    Article  CAS  Google Scholar 

  97. Hyunseung, Y., Kwanyeol, P. & Kim, B. J. Efficient temperature sensing platform based on fluorescent block copolymer-functionalized graphene oxide. Nanoscale 5, 5720–5724 (2013).

    Article  CAS  Google Scholar 

  98. Lee, J. et al. Colorimetric thermometer from graphene oxide platform integrated with red, green, and blue emitting, responsive block copolymers. Chem. Mater. 28, 3446–3453 (2016).

    Article  CAS  Google Scholar 

  99. Haraguchi, K. & Li, H. J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew. Chem. Int. Ed. 44, 6500–6504 (2005).

    Article  CAS  Google Scholar 

  100. Ling, Q. et al. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 26, 3333–3337 (2014).

    Article  CAS  Google Scholar 

  101. Acik, M. et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9, 840–845 (2010).

    Article  CAS  Google Scholar 

  102. Liang, J. et al. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113, 9921–9927 (2009).

    Article  CAS  Google Scholar 

  103. Loomis, J., King, B. & Panchapakesan, B. Layer dependent mechanical responses of graphene composites to near-infrared light. Appl. Phys. Lett. 100, 073108 (2012).

    Article  CAS  Google Scholar 

  104. Loomis, J. et al. Graphene/elastomer composite-based photo-thermal nanopositioners. Sci. Rep. 3, 1900 (2013).

    Article  Google Scholar 

  105. Muralidharan, M. N. & Ansari, S. Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Adv. Mater. Lett. 4, 927–932 (2013).

    Article  CAS  Google Scholar 

  106. Wu, C. et al. Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli. J. Mater. Chem. 21, 18584–18591 (2011).

    Article  CAS  Google Scholar 

  107. Ji, M., Jiang, N., Chang, J. & Sun, J. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater. 24, 5412–5419 (2014).

    Article  CAS  Google Scholar 

  108. Jiang, W. et al. Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv. Funct. Mater. 24, 7598–7604 (2014).

    Article  CAS  Google Scholar 

  109. Zhang, E. et al. Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels. J. Mater. Chem. A 2, 15633–15639 (2014).

    Article  CAS  Google Scholar 

  110. Hu, Y. et al. A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 27, 7867–7873 (2015).

    Article  CAS  Google Scholar 

  111. Zhang, E. et al. Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation. ACS Appl. Mater. Interfaces 6, 22855–22861 (2014).

    Article  CAS  Google Scholar 

  112. Huang, L. et al. Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013).

    Article  CAS  Google Scholar 

  113. Hou, C., Duan, Y., Zhang, Q., Wang, H. & Li, Y. Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J. Mater. Chem. 22, 14991–14996 (2012).

    Article  CAS  Google Scholar 

  114. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001).

    Article  CAS  Google Scholar 

  115. Kim, H., Lee, D., Kim, J., Kim, T.-i. & Kim, W. J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7, 6735–6746 (2013).

    Article  CAS  Google Scholar 

  116. Robinson, J. T. et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011).

    Article  CAS  Google Scholar 

  117. Wang, Y. et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 135, 4799–4804 (2013).

    Article  CAS  Google Scholar 

  118. Hu, S.-H. et al. Photoresponsive protein-graphene-protein hybrid capsules with dual targeted heat-triggered drug delivery approach for enhanced tumor therapy. Adv. Funct. Mater. 24, 4144–4155 (2014).

    Article  CAS  Google Scholar 

  119. Yang, X. et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710–2714 (2009).

    Article  CAS  Google Scholar 

  120. Cong, H.-P., He, J.-J., Lu, Y. & Yu, S.-H. Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6, 169–173 (2010).

    Article  CAS  Google Scholar 

  121. Chandra, V. et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010).

    Article  CAS  Google Scholar 

  122. Xie, G. et al. A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J. Mater. Chem. 22, 1033–1039 (2012).

    Article  CAS  Google Scholar 

  123. Zhang, W. L. & Choi, H. J. Graphene oxide based smart fluids. Soft Matter 10, 6601–6608 (2014).

    Article  CAS  Google Scholar 

  124. Lee, S.-H., Jung, J.-H. & Oh, I.-K. 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity. Small 10, 3880–3886 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Special Project of Nanotechnology of China (2016YFA0200200), the National Basic Research Program of China (2013CB933001), the National Key Research and Development Program of China (2017YFB1104300), the National Natural Science Foundation of China (51433005, 21674056, 21325415 and 51673026), the Beijing Natural Science Foundation (2152028), and the Beijing Municipal Science and Technology Comission (Z161100002116022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangti Qu or Gaoquan Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Cheng, H., Zhang, M. et al. Graphene-based smart materials. Nat Rev Mater 2, 17046 (2017). https://doi.org/10.1038/natrevmats.2017.46

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing