Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-bandgap conjugated polymers enabling solution-processable tandem solar cells

Abstract

The technology of polymer-based organic photovoltaic (OPV) cells has made great progress in the past decade, with the power conversion efficiency increasing from just a few per cent to around 12%, and the stability increasing from hours to years. One of the important milestones in this progress has been the invention of infrared-absorbing low-bandgap polymers, which allows the OPV cells to form effective tandem structures for harvesting near-infrared energy from the solar spectrum. In this Review, we focus on the progress in low-bandgap conjugated polymers and several tandem OPV cells enabled by these low-bandgap polymers. Specifically, we cover polymer-based tandem solar cells; hybrid tandem solar cells combining polymers with hydrogenated amorphous silicon; and unconventional solar cells. For each of these technologies, we address the challenges and offer our perspectives for future development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A brief timeline of discovery and development of organic polymers for solar cells.
Figure 2: Principles of organic semiconductor and donor–acceptor polymers.
Figure 3: Molecular structures of representative donor–acceptor low-bandgap polymers.
Figure 4: Various tandem polymer solar cells.
Figure 5: Variety of hybrid tandem solar cells containing low-bandgap polymers.

References

  1. 1

    Chapin, D. M., Fuller, C. S. & Pearson, G. L. A. New silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).

    CAS  Article  Google Scholar 

  2. 2

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). This is the classic paper on the theoretical thermodynamic efficiency limit in solar cells.

    CAS  Article  Google Scholar 

  3. 3

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser efficiency limit. J. Photovolt. 2, 303–311 (2012).

    Article  Google Scholar 

  4. 4

    International Energy Agency. Snapshot of Global Photovoltaic Markets 2016 Report IEA PVPS T1-31:2017 (IEA, 2017).

  5. 5

    Gunes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    Article  CAS  Google Scholar 

  6. 6

    Chen, L.-M., Hong, Z., Li, G. & Yang, Y. Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells. Adv. Mater. 21, 1434–1449 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005). Representative report on the understanding and control of bulk heterojunction morphology in a classical P3HT:PCBM polymer solar cell with high efficiency.

    CAS  Article  Google Scholar 

  10. 10

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007). Low-bandgap (1.4-eV) polymer solar cell reaching 5.5% achieved using an important solvent additive approach.

    CAS  Article  Google Scholar 

  11. 11

    Heeger, A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 2354–2371 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Bässler, H. & Köhler, A. Charge transport in organic semiconductors. Top. Curr. Chem. 312, 1–65 (2012).

    Google Scholar 

  13. 13

    Tang, C. W. Multilayer organic photovoltaic elements. US patent 4164431A (1979).

  14. 14

    Tang, C. W. 2-Layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    CAS  Article  Google Scholar 

  15. 15

    Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995). This paper is the starting point of bulk heterojunction organic solar cells.

    CAS  Article  Google Scholar 

  17. 17

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    CAS  Article  Google Scholar 

  18. 18

    King, R. et al. Band gap–voltage offset and energy production in next-generation multijunction solar cells. Prog. Photovoltaics 19, 797–812 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Zhou, Z.-H. et al. Unique optical and electrochemical properties of π-conjugated electrically conducting copolymers consisting of electron-withdrawing pyridine units and electron-donating thiophene units. J. Chem. Soc. Chem. Commun. 1991, 1210–1212 (1991).

    Article  Google Scholar 

  20. 20

    Havinga, E. E. et al. Alternate donor–acceptor small-band-gap semiconducting polymers: polysquaraines and polyconaines. Synth. Met. 55, 299 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Havinga, E. E. et al. A new class of small bandgap organic polymer conductors. Polym. Bull. 29, 119–126 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Kitamura, C. et al. Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem. Mater. 8, 570–578 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Yamamoto, T. et al. π-Conjugated donor–acceptor copolymers constituted of π-excessive and π-deficient arylene units. optical and electrochemical properties in relation to CT structure of the polymer. J. Am. Chem. Soc. 118, 10389–10399 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Brédas, J. L. Relationship between bandgap and bond length alternation in organic conjugated polymers. J. Chem. Phys. 82, 3808 (1985).

    Article  Google Scholar 

  25. 25

    Brocks, G. & Tol, A. Small band gap semiconducting polymers made from dye molecules: polysquaraines. J. Phys. Chem. 100, 1838–1846 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Cheng, Y.-J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Gibson, G. L., McCormick, T. M. & Seferos, D. S. Atomistic band gap engineering in donor–acceptor polymers. J. Am. Chem. Soc. 134, 539–547 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Yuen, J. D. & Wudl, F. Strong acceptors in donor–acceptor polymers for high performance thin film transistors. Energy Environ. Sci. 6, 392–406 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Cheng, Y. J. & Luh, T.-Y. Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions. J. Organomet. Chem. 689, 4137–4148 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Dou, L. et al. 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642–6671 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Dou, L., Liu, Y. S., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/ molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Mu¨hlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

    Article  Google Scholar 

  33. 33

    Chen, H. Y. et al. Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv. Mater. 22, 371–375 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Scharber, M. C. et al. Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell. Adv. Mater. 22, 367–370 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Hou, J. H., Chen, H.-Y., Zhang, S.-Q., Li, G. & Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Kim, J. S. et al. Germanium- and silicon-substituted donor–acceptor type copolymers: effect of the bridging heteroatom on molecular packing and photovoltaic device performance. Adv. Energy Mater. 4, 1400527 (2014).

    Article  CAS  Google Scholar 

  37. 37

    Dou, L. et al. Synthesis of 5H-dithieno[3,2-b:2’,3′-d]pyran as an electron-rich building block for donor–acceptor type low-bandgap polymers. Macromolecules 46, 3384–3390 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016). Single-junction polymer solar cell breaks 11% efficiency barrier.

    CAS  Article  Google Scholar 

  40. 40

    Bijleveld, J. C. et al. Poly(diketopyrrolopyrrole–terthiophene) for ambipolar logic and photovoltaics. J. Am. Chem. Soc. 131, 16616–16617 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Hendriks, K. H., Heintges, G. H. L., Gevaerts, V. S., Wienk, M. M. & Janssen, R. A. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. Int. Ed. 52, 8341–8344 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 6, 180–185 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Dou, L. et al. A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv. Mater. 25, 825–831 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Meager, I. et al. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J. Am. Chem. Soc. 135, 11537–11540 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Ashraf, R. S. et al. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. J. Am. Chem. Soc. 137, 1314–1321 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Hendriks, K. H., Li, W. W., Wienk, M. M. & Janssen, R. A. J. Small-bandgap semiconducting polymers with high near-infrared photoresponse. J. Am. Chem. Soc. 136, 12130–12136 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Ma, T. et al. Efficient low-bandgap polymer solar cells with high open-circuit voltage and good stability. Adv. Energy Mater. 5, 1501282 (2015).

    Article  CAS  Google Scholar 

  48. 48

    Gao, J. et al. Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells. Adv. Mater. 26, 3142–3147 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Gao, J. et al. Improving structural order for a high-performance diketopyrrolopyrrole-based polymer solar cell with a thick active layer. Adv. Energy Mater. 4, 1300739 (2013).

    Article  CAS  Google Scholar 

  50. 50

    Liang, Y. et al. For the bright future — bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135–138 (2010). PTB polymers reach NREL-certified 7.4% PCE in conventional configuration. PTB7 polymer is still one of the champion polymers in the field.

    Article  CAS  Google Scholar 

  51. 51

    Liang, Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009).

    CAS  Article  Google Scholar 

  52. 52

    Hou, J. et al. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules 41, 6012–6018 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Liang, Y. et al. Highly efficient solar cell polymers developed via fine tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    CAS  Article  Google Scholar 

  54. 54

    Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Lu, L. & Yu, L. P. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 26, 4413–4430 (2014).

    CAS  Article  Google Scholar 

  56. 56

    Hou, J. et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J. Am. Chem. Soc. 131, 15586–15587 (2009).

    CAS  Article  Google Scholar 

  57. 57

    Liao, S.-H., Jhuo, H.-J., Cheng, Y.-S. & Chen, S.-A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 25, 4766–4771 (2013).

    CAS  Article  Google Scholar 

  58. 58

    He, Z. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591–595 (2012).

    Article  CAS  Google Scholar 

  59. 59

    He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9, 174–179 (2015). Interface engineering leads to a PCE of over 10% for a single-junction polymer solar cell using an inverted configuration and a PTB series polymer.

    CAS  Article  Google Scholar 

  60. 60

    Zhang, W., Min, C., Zhang, Q., Li, X. & Fang, J. Zwitterionic ammonium and neutral amino molecules as cathode interlayer for inverted polymer solar cells. Org. Electron. 15, 3632–3638 (2014).

    CAS  Article  Google Scholar 

  61. 61

    Ouyang, X., Peng, R., Ling, A., Zhang, X. & Ge, Z. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat. Photonics 9, 520–524 (2015).

    CAS  Article  Google Scholar 

  62. 62

    Chang, W.-H. et al. A selenophene containing benzodithiophene-alt-thienothiophene polymer for additive-free high performance solar cell. Macromolecules 48, 562–568 (2015).

    CAS  Article  Google Scholar 

  63. 63

    van Franeker, J. J., Turbiez, M., Li, W. W., Wienk, M. M. & Janssen, R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6, 6229 (2015).

    CAS  Article  Google Scholar 

  64. 64

    Cui, C. et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ. Sci. 7, 2276–2284 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Chen, M. S. et al. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity. Chem. Mater. 25, 4088–4096 (2013).

    CAS  Article  Google Scholar 

  66. 66

    Koizumi, Y. et al. Thienoisoindigo-based low-band gap polymers for organic electronic devices. Polym. Chem. 4, 484–494 (2013).

    CAS  Article  Google Scholar 

  67. 67

    Zou, Y. et al. A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J. Am. Chem. Soc. 132, 5330–5331 (2010).

    CAS  Article  Google Scholar 

  68. 68

    Zhang, Y. et al. Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione. Chem. Mater. 22, 2696–2698 (2010).

    CAS  Article  Google Scholar 

  69. 69

    Piliego, C. et al. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010).

    CAS  Article  Google Scholar 

  70. 70

    Chu, T. Y. et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno [3,2-b: 2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J. Am. Chem. Soc. 133, 4250 (2011).

    CAS  Article  Google Scholar 

  71. 71

    Amb, C. M. et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Chem. Soc. 133, 10062–10065 (2011).

    CAS  Article  Google Scholar 

  72. 72

    Small, C. E. et al. High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nat. Photonics 6, 115–120 (2012).

    CAS  Article  Google Scholar 

  73. 73

    Wen, W. et al. Regioregular pyridyl[2,1,3]thiadiazole-co-indacenodithiophene conjugated polymers. Chem. Commun. 49, 7192–7194 (2013).

    CAS  Article  Google Scholar 

  74. 74

    Ying, L. et al. Regioregular pyridyl[2,1,3]thiadiazole-π-conjugated copolymers. J. Am. Chem. Soc. 133, 18538–18541 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Steckler, T. T. et al. Very low bandgap thiadiazoloquinoxaline donor–acceptor polymers as multi-tool conjugated polymers. J. Am. Chem. Soc. 136, 1190–1193 (2014).

    CAS  Article  Google Scholar 

  76. 76

    Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    CAS  Article  Google Scholar 

  77. 77

    Gao, L. et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016).

    CAS  Article  Google Scholar 

  78. 78

    Friedman, D. J., Olson, J. M. & Kurtz, S. in Handbook of Photovoltaic Science and Engineering 2nd edn, Ch. 8 (eds Luque, A. & Hegedus, S. ) 314–364 (Wiley, 2011).

    Book  Google Scholar 

  79. 79

    Olson, J. M., Gessert, T. & Al-Jassim, M.M. Proc. 18th IEEE Photovoltaic Specialists Conf. Las Vegas, 21–25 October, 552–555 (IEEE, 1985).

    Google Scholar 

  80. 80

    Shrotriya, V., Wu, E. H.-E., Li, G., Yao, Y. & Yang, Y. Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl. Phys. Lett. 88, 064104 (2006).

    Article  CAS  Google Scholar 

  81. 81

    Kawano, K., Ito, N., Nishimori, T. & Sakai, J. Open circuit voltage of stacked bulk heterojunction organic solar cells. Appl. Phys. Lett. 88, 073514 (2006).

    Article  CAS  Google Scholar 

  82. 82

    Tung, V. C., Kim, J., Cote, L. J. & Huang, J. X. Sticky interconnect for solution-processed tandem solar cells. J. Am. Chem. Soc. 133, 9262–9265 (2011).

    CAS  Article  Google Scholar 

  83. 83

    Sun, X. W. et al. Inverted tandem organic solar cells with a MoO3/Ag/Al/CaMoO3/Ag/Al/Ca intermediate layer. Appl. Phys. Lett. 97, 053303 (2010).

    Article  CAS  Google Scholar 

  84. 84

    Puetz, A. et al. Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells. Org. Electron. 13, 2696–2701 (2012).

    CAS  Article  Google Scholar 

  85. 85

    Hadipour, A. et al. Solution-processed organic tandem solar cells. Adv. Funct. Mater. 16, 1897–1903 (2006).

    CAS  Article  Google Scholar 

  86. 86

    Lee, K. et al. Air-stable polymer electronic devices. Adv. Mater. 19, 2445–2449 (2007).

    CAS  Article  Google Scholar 

  87. 87

    Gilot, J., Barbu, I., Wienk, M. M. & Janssen, R. A. J. The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl. Phys. Lett. 91, 113520 (2007).

    Article  CAS  Google Scholar 

  88. 88

    Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007). Influential report on high-efficiency, all-solution-processed tandem polymer solar cells.

    CAS  Article  Google Scholar 

  89. 89

    Park, M.-H., Li, J.-H., Kumar, A., Li, G. & Yang, Y. Doping of the metal oxide nanostructure and its influence in organic electronics. Adv. Funct. Mater. 19, 1241–1246 (2009).

    CAS  Article  Google Scholar 

  90. 90

    Sista, S. et al. Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 22, 380 (2010).

    CAS  Article  Google Scholar 

  91. 91

    Yang, J. et al. A robust inter-connecting layer for achieving high performance tandem polymer solar cells. Adv. Mater. 23, 3465–3470 (2011).

    CAS  Article  Google Scholar 

  92. 92

    Gilot, J., Wienk, M. M. & Janssen, R. A. J. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90, 143512 (2007).

    Article  CAS  Google Scholar 

  93. 93

    Li, W. W., Furlan, A., Hendriks, K. H., Wienk, M. M. & Janssen, R. A. J. Efficient tandem and triple-junction polymer solar cells. J. Am. Chem. Soc. 135, 5529–5532 (2013).

    CAS  Article  Google Scholar 

  94. 94

    Shrotriya, V., Li, G., Yao, Y., Chu, C. W. & Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073508 (2006).

    Article  CAS  Google Scholar 

  95. 95

    Li, G., Chu, C. W., Shrotriya, V., Huang, J. & Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006). Early report on polymer solar cells with an inverted configuration using interface layers to modify the work function of the electrode.

    Article  CAS  Google Scholar 

  96. 96

    Janssen, A. G. F., Riedl, T., Hamwi, S., Johannes, H.-H. & Kowalsky, W. Highly efficient organic tandem solar cells using an improved connecting architecture. Appl. Phys. Lett. 91, 073519 (2007).

    Article  CAS  Google Scholar 

  97. 97

    White, M. S., Olson, D. C., Shaheen, S. E., Kopidakis, N. & Ginley, D. S. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    Article  CAS  Google Scholar 

  98. 98

    Chou, C. H., Kwan, W. L., Hong, Z., Chen, L.-M. & Yang, Y. Metal–oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv. Mater. 23, 1282–1286 (2011).

    CAS  Article  Google Scholar 

  99. 99

    You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013). An all-solution-processed inverted tandem polymer solar cell achieves NREL-certified 10.6% efficiency.

    Article  CAS  Google Scholar 

  100. 100

    Li, N. et al. Design of the solution-processed intermediate layer by engineering for inverted organic multi junction solar cells. Adv. Energy Mater. 3, 301–307 (2013).

    CAS  Article  Google Scholar 

  101. 101

    Chen, C.-C. et al. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 5670–5677 (2014).

    CAS  Article  Google Scholar 

  102. 102

    Yusoff, A. R. M. et al. A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ. Sci. 8, 303–316 (2015).

    CAS  Article  Google Scholar 

  103. 103

    You, J. B. et al. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Adv. Mater. 25, 3973–3978 (2013).

    CAS  Article  Google Scholar 

  104. 104

    Yuan, J. et al. High efficiency all-polymer tandem solar cells. Sci. Rep. 6, 26459 (2016).

    CAS  Article  Google Scholar 

  105. 105

    Liu, W. et al. Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V. Adv. Mater. 28, 9729–9734 (2016).

    CAS  Article  Google Scholar 

  106. 106

    Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering (Wiley, 2003).

    Book  Google Scholar 

  107. 107

    Shah, A. Thin-film Silicon Solar Cells (EPFL, 2010).

    Book  Google Scholar 

  108. 108

    Kim, T. et al. Organic–inorganic hybrid tandem multijunction photovoltaics with extended spectral response. Appl. Phys. Lett. 98, 183503 (2011).

    Article  CAS  Google Scholar 

  109. 109

    Pattnaik, S., Xiao, T., Shinar, R., Shinar, J. & Dalal, V. L. Novel hybrid amorphous/organic tandem junction solar cell. IEEE J. Photovolt. 3, 295–299 (2013).

    Article  Google Scholar 

  110. 110

    Albrecht, S. et al. Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts. Sol. Energy Mater. Sol. Cells 127, 157–162 (2014).

    CAS  Article  Google Scholar 

  111. 111

    Qin, W. et al. High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption. J. Mater. Chem. A. 2, 15303–15307 (2014).

    CAS  Article  Google Scholar 

  112. 112

    Kim, J. et al. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nat. Commun. 6, 6391 (2015).

    CAS  Article  Google Scholar 

  113. 113

    Roland, S. et al. Hybrid organic/inorganic thin-film multijunction solar cells exceeding 11% power conversion efficiency. Adv. Mater. 27, 1262–1267 (2016).

    Article  CAS  Google Scholar 

  114. 114

    Ameri, T., Dennler, G., Lungenschmided, C. & Brabec, C. J. Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009).

    CAS  Article  Google Scholar 

  115. 115

    Yang, M. Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9, 190–198 (2015).

    CAS  Article  Google Scholar 

  116. 116

    Zhang, Y. et al. Synergistic effect of polymer and small molecules for high performance ternary organic solar cells. Adv. Mater. 27, 1071–1076 (2015).

    CAS  Article  Google Scholar 

  117. 117

    Honda, S., Ohkita, H., Benten, H. & Ito, S. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem. Commun. 46, 6596–6598 (2010).

    CAS  Article  Google Scholar 

  118. 118

    Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8, 716–722 (2014).

    CAS  Article  Google Scholar 

  119. 119

    Itskos, G. et al. Optical properties of organic semiconductor blends with near-infrared quantum-dot sensitizers for light harvesting applications. Adv. Energy Mater. 1, 802–812 (2011).

    CAS  Article  Google Scholar 

  120. 120

    Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

    CAS  Article  Google Scholar 

  121. 121

    Yang, L., Yan, L. & You, W. Organic solar cells beyond one pair of donor–acceptor: ternary blends and more. J. Phys. Chem. Lett. 4, 1802–1810 (2013).

    CAS  Article  Google Scholar 

  122. 122

    Lu, L., Chen, W., Xu, T. & Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 6, 7327 (2015).

    CAS  Article  Google Scholar 

  123. 123

    Li, G. et al. Combinatorial study of exciplex formation at the interface between two wide band gap organic semiconductors. Appl. Phys. Lett. 88, 253505 (2006).

    Article  CAS  Google Scholar 

  124. 124

    Liu, S. et al. Enhanced efficiency of polymer solar cells by adding a high mobility conjugated polymer. Energy Environ. Sci. 8, 1463–1470 (2015).

    CAS  Article  Google Scholar 

  125. 125

    Zhao, W. et al. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 29, 1604059 (2017). Non-fullerene acceptors enable the fabrication of a polymer solar cell with over 12% PCE.

    Article  CAS  Google Scholar 

  126. 126

    Baran, D. et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–370 (2016).

    Article  CAS  Google Scholar 

  127. 127

    Liu, Y. et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Letter 15, 662–668 (2015).

    CAS  Article  Google Scholar 

  128. 128

    Zuo, C. & Ding, L. Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm. J. Mater. Chem. A 3, 9063–9066 (2015).

    CAS  Article  Google Scholar 

  129. 129

    Kim, J. et al. High-performance integrated perovskite and organic solar cells with enhanced fill factors and near-infrared harvesting. Adv. Mater. 28, 3159–3165 (2016).

    CAS  Article  Google Scholar 

  130. 130

    Li, X. et al. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv. Mater. 24, 3046–3052 (2012).

    CAS  Article  Google Scholar 

  131. 131

    Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    CAS  Article  Google Scholar 

  132. 132

    Hong, Z., Dou, L., Li, G. & Yang, Y. in Progress in High-Efficient Solution Process Organic Photovoltaic Devices Ch. 11 (eds Yang, Y. & Li, G. ) 315–346 (Springer, 2015).

    Google Scholar 

  133. 133

    Bae, S.-H. et al. Printable solar cells from advanced solution-processible materials. Chem 1, 197–219 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the US Office of Naval Research (ONR, Grant No. N00014-14-1-0648, programme director: P. Armistead), Air Force Office of Scientific Research (AFOSR, Grant No. FA2386–15-1–4108, programme director: C. Lee) and National Science Foundation (CHE 1230598, programme director: L. S. Sapochak; DMR 1335645, programme director: C. Ying). This work was also supported by the funding for Project of Strategic Importance provided by The Hong Kong Polytechnic University (project code: 1-ZE29). The authors thank I. Wang for help in editing and proofreading this article before submission.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gang Li or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, G., Chang, WH. & Yang, Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater 2, 17043 (2017). https://doi.org/10.1038/natrevmats.2017.43

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing