Understanding the physical properties of hybrid perovskites for photovoltaic applications

Abstract

New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic–inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Exciton or free charge generation under illumination in OIHPs?
Figure 2: Electromechanical properties of OIHPs.
Figure 3: Photon recycling effect in OIHPs?
Figure 4: Defect tolerance of OIHPs.
Figure 5: Surface charge recombinations in OIHPs.
Figure 6: Charge trap densities and surface passivation of OIHPs.
Figure 7: Ion migration in OIHPs.

References

  1. 1

    Li, X. et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013). A pioneering study of the thermal stability and crystallography of perovskite materials, especially MAPbI3.

    CAS  Article  Google Scholar 

  3. 3

    Divitini, G. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). A pioneering study of all kinds of optoelectronic properties of Pb-based and Sn-based hybrid (and all-inorganic) perovskite materials.

    CAS  Article  Google Scholar 

  5. 5

    Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Jensen, N., Hausner, R., Bergmann, R., Werner, J. & Rau, U. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells. Prog. Photovoltaics 10, 1–14 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Zhao, J., Wang, A., Green, M. A. & Ferrazza, F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Brivio, F., Butler, K. T., Walsh, A. & Van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

    Article  CAS  Google Scholar 

  11. 11

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Yin, W. J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R. & Forrest, S. R. Thermodynamic efficiency limit of excitonic solar cells. Phys. Rev. B 83, 195326 (2011).

    Article  CAS  Google Scholar 

  14. 14

    Shaklee, K. & Nahory, R. Valley-orbit splitting of free excitons? The absorption edge Si. Phys. Rev. Lett. 24, 942 (1970).

    CAS  Article  Google Scholar 

  15. 15

    Fehrenbach, G., Schafer, W. & Ulbrich, R. Excitonic versus plasma screening in highly excited gallium arsenide. J. Lumin. 30, 154 (2012).

    Article  Google Scholar 

  16. 16

    Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015).

    CAS  Article  Google Scholar 

  17. 17

    D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5 3586 (2014).

    Article  CAS  Google Scholar 

  18. 18

    Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3 NH3)PbI3 . Phys. B: Condens. Matter 201, 427–430 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003). The EB of MAPbI3 and MAPbBr3 were accurately identified in this magnetoabsorption study.

    CAS  Article  Google Scholar 

  20. 20

    Ishihara, T. Optical properties of PbI-based perovskite structures. J. Lumin. 60, 269–274 (1994).

    Article  Google Scholar 

  21. 21

    Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5 5049 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Hu, M. et al. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in the same system. Small 11, 2164–2169 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Grancini, G. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nat. Photonics 9, 695–701 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). This study disclosed the intrinsic property of perovskites that enabled the development of solar cell radiation detectors.

    CAS  Article  Google Scholar 

  25. 25

    Nah, S. et al. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11, 285–288 (2017).

    CAS  Article  Google Scholar 

  26. 26

    Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10, 53–59 (2016). The first report of long hot carriers in perovskites that may result in real applications.

    CAS  Article  Google Scholar 

  27. 27

    Yang, Y. et al. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nat. Commun. 7 12613 (2016).

    CAS  Article  Google Scholar 

  28. 28

    Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Article  Google Scholar 

  30. 30

    Giovanni, D. et al. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2, e1600477 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Milot, R. L. et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett. 16, 7001–7007 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Wu, X., Trinh, M. T. & Zhu, X.-Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C 119, 14714–14721 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Article  Google Scholar 

  34. 34

    Yaffe, O. et al. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

    Article  CAS  Google Scholar 

  35. 35

    Tanaka, K. et al. Image charge effect on two-dimensional excitons in an inorganic–organic quantum-well crystal. Phys. Rev. B 71, 045312 (2005).

    Article  CAS  Google Scholar 

  36. 36

    Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2015).

    Article  CAS  Google Scholar 

  37. 37

    Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3 NH3PbI3 − x Clx . Energy Environ. Sci. 7, 2269–2275 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3 NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136, 11610–11613 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Stranks, S. D. et al. Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  CAS  Google Scholar 

  42. 42

    Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737–743 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

    CAS  Article  Google Scholar 

  45. 45

    Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    CAS  Article  Google Scholar 

  46. 46

    Chen, Y. et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7 12253 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    CAS  Article  Google Scholar 

  48. 48

    Pérez- del-Rey, D. et al. Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 28, 9839–9845 (2016).

    Article  CAS  Google Scholar 

  49. 49

    deQuilettes, D. W. et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

    CAS  Article  Google Scholar 

  50. 50

    Blackburn, J. L. Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett. 2, 1598–1613 (2017).

    CAS  Article  Google Scholar 

  51. 51

    Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3 . Nano Lett. 15, 7794–7800 (2015).

    CAS  Article  Google Scholar 

  52. 52

    Nelson, R. & Sobers, R. Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

    CAS  Article  Google Scholar 

  53. 53

    Moore, D. T. et al. Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015).

    CAS  Article  Google Scholar 

  54. 54

    Köster, U. Crystallization of amorphous silicon films. Phys. Status Solidi A 48, 313–321 (1978).

    Article  Google Scholar 

  55. 55

    Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). Pioneering theoretical work that revealed the excellent defect tolerance of MAPbI3, which led to high-efficiency solar cells.

    Article  CAS  Google Scholar 

  56. 56

    Egger, D. A., Rappe, A. M. & Kronik, L. Hybrid organic–inorganic perovskites on the move. Acc. Chem. Res. 49, 573–581 (2016).

    CAS  Article  Google Scholar 

  57. 57

    Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    CAS  Article  Google Scholar 

  58. 58

    Fan, Z. et al. Ferroelectricity of CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015).

    CAS  Article  Google Scholar 

  59. 59

    Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    CAS  Article  Google Scholar 

  60. 60

    Zheng, F., Takenaka, H., Wang, F., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3 − x Clx . J. Phys. Chem. Lett. 6, 31–37 (2014).

    Article  CAS  Google Scholar 

  61. 61

    Dang, Y. et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 . CrystEngComm 17, 665–670 (2015).

    CAS  Article  Google Scholar 

  62. 62

    Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

    Article  Google Scholar 

  63. 63

    Aizu, K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn 27, 387–396 (1969).

    CAS  Article  Google Scholar 

  64. 64

    Mosconi, E., Quarti, C., Ivanovska, T., Ruani, G. & De Angelis, F. Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys. Chem. Chem. Phys. 16, 16137–16144 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Chen, T. et al. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17, 31278–31286 (2015).

    CAS  Article  Google Scholar 

  66. 66

    Leguy, A. M. et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nat. Commun. 6 7124 (2015).

    Article  Google Scholar 

  67. 67

    Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J. Phys. Chem. C 120, 5724–5731 (2016).

    CAS  Article  Google Scholar 

  68. 68

    Wei, J. et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 5, 3937–3945 (2014).

    CAS  Article  Google Scholar 

  69. 69

    Pintilie, L. & Alexe, M. Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 87, 112903 (2005).

    Article  CAS  Google Scholar 

  70. 70

    Scott, J. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008).

    Article  CAS  Google Scholar 

  71. 71

    Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015). The first work that demonstrated the ion-migration effect and switchable photovoltaic effect in OIHPs.

    CAS  Article  Google Scholar 

  72. 72

    Coll, M. et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).

    CAS  Article  Google Scholar 

  73. 73

    Balke, N. et al. Local detection of activation energy for ionic transport in lithium cobalt oxide. Nano Lett. 12, 3399–3403 (2012).

    CAS  Article  Google Scholar 

  74. 74

    Bark, C. et al. Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. Nano Lett. 12, 1765–1771 (2012).

    CAS  Article  Google Scholar 

  75. 75

    Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3 . Nat. Mater. 12, 1112–1118 (2013).

    CAS  Article  Google Scholar 

  76. 76

    Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2016).

    Article  CAS  Google Scholar 

  77. 77

    Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3 . Nat. Commun. 8, 14547 (2017).

    CAS  Article  Google Scholar 

  78. 78

    Liu, S., Zheng, F., Grinberg, I. & Rappe, A. M. Photoferroelectric and photopiezoelectric properties of organometal halide perovskites. J. Phys. Chem. Lett. 7, 1460–1465 (2016).

    CAS  Article  Google Scholar 

  79. 79

    Zhou, Y. et al. Giant photostriction in organic–inorganic lead halide perovskites. Nat. Commun. 7, 11193 (2016).

    CAS  Article  Google Scholar 

  80. 80

    Mosconi, E. & De Angelis, F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 1, 182–188 (2016).

    CAS  Article  Google Scholar 

  81. 81

    Fan, Z., Sun, K. & Wang, J. Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3, 18809–18828 (2015).

    CAS  Article  Google Scholar 

  82. 82

    Kulbak, M., Cahen, D. & Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015).

    CAS  Article  Google Scholar 

  83. 83

    Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Article  Google Scholar 

  84. 84

    Zhu, H. et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2016).

    Article  CAS  Google Scholar 

  85. 85

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Article  Google Scholar 

  86. 86

    Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).

    CAS  Article  Google Scholar 

  87. 87

    Zhang, C. et al. Charge recombination and band-edge shift in the dye-sensitized Mg2+-doped TiO2 solar cells. J. Phys. Chem. C 115, 16418–16424 (2011).

    CAS  Article  Google Scholar 

  88. 88

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Article  Google Scholar 

  89. 89

    Gao, Y. et al. Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Adv. Mater. 23, 1903–1908 (2011).

    CAS  Article  Google Scholar 

  90. 90

    Zhu, F. et al. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells. ChemPhysChem 13, 3731–3737 (2012).

    CAS  Article  Google Scholar 

  91. 91

    Shi, Y. et al. Work function engineering of graphene electrode via chemical doping. ACS Nano 4, 2689–2694 (2010).

    CAS  Article  Google Scholar 

  92. 92

    Bi, C. et al. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508–18514 (2014).

    CAS  Article  Google Scholar 

  93. 93

    Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    CAS  Article  Google Scholar 

  94. 94

    Laban, W. A. & Etgar, L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013).

    CAS  Article  Google Scholar 

  95. 95

    You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014).

    CAS  Article  Google Scholar 

  96. 96

    Yuan, Y. et al. Anomalous photovoltaic effect in organic–inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017). The first observation of the anomalous photovoltaic effect in lateral OIHP solar cells, uncovering an abrupt band bending around grain boundaries caused by ion accumulation.

    Article  CAS  Google Scholar 

  97. 97

    Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Article  CAS  Google Scholar 

  98. 98

    Fang, Y., Wei, H., Dong, Q. & Huang, J. Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat. Commun. 8, 14417 (2016).

    Article  CAS  Google Scholar 

  99. 99

    Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    CAS  Article  Google Scholar 

  100. 100

    Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017).

    Article  CAS  Google Scholar 

  101. 101

    Kim, Y. et al. Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. Ed. 55, 9586–9590 (2016).

    CAS  Article  Google Scholar 

  102. 102

    Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126, 11414–11417 (2014).

    Article  Google Scholar 

  103. 103

    Slavney, A. H. et al. Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers. Inorg. Chem. 56, 46–55 (2017).

    CAS  Article  Google Scholar 

  104. 104

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    CAS  Article  Google Scholar 

  105. 105

    Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1− xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

    CAS  Article  Google Scholar 

  106. 106

    Samiee, M. et al. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502 (2014).

    Article  CAS  Google Scholar 

  107. 107

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    CAS  Article  Google Scholar 

  108. 108

    Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333–339 (2016).

    CAS  Article  Google Scholar 

  109. 109

    Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    CAS  Article  Google Scholar 

  110. 110

    Mosconi, E., Meggiolaro, D., Snaith, H. J., Stranks, S. D. & De Angelis, F. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy Environ. Sci. 9, 3180–3187 (2016).

    CAS  Article  Google Scholar 

  111. 111

    Zhang, W. et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

    Article  CAS  Google Scholar 

  112. 112

    Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015).

    CAS  Article  Google Scholar 

  113. 113

    Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1, 16093 (2016).

    CAS  Article  Google Scholar 

  114. 114

    Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). This pioneering experimental work demonstrated that surface defects on OIHP can cause photocurrent hysteresis and that fullerene passivation can efficiently reduce photocurrent hysteresis.

    CAS  Article  Google Scholar 

  115. 115

    Murali, B. et al. Surface restructuring of hybrid perovskite crystals. ACS Energy Lett. 1, 1119–1126 (2016).

    CAS  Article  Google Scholar 

  116. 116

    Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

    CAS  Article  Google Scholar 

  117. 117

    Zhang, F. et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment. J. Mater. Chem. A 4, 8554–8561 (2016).

    CAS  Article  Google Scholar 

  118. 118

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    CAS  Article  Google Scholar 

  119. 119

    Chen, Q. et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).

    CAS  Article  Google Scholar 

  120. 120

    Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

    CAS  Article  Google Scholar 

  121. 121

    de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    CAS  Article  Google Scholar 

  122. 122

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    CAS  Article  Google Scholar 

  123. 123

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Article  Google Scholar 

  124. 124

    Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    Article  Google Scholar 

  125. 125

    Bi, Y. et al. Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7, 923–928 (2016).

    CAS  Article  Google Scholar 

  126. 126

    Leijtens, T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9, 3472–3481 (2016).

    CAS  Article  Google Scholar 

  127. 127

    Baeg, K. J., Binda, M., Natali, D., Caironi, M. & Noh, Y. Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    CAS  Article  Google Scholar 

  128. 128

    Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).

    CAS  Article  Google Scholar 

  129. 129

    Yuan, Y. & Huang, J. Ultrahigh gain, low noise, ultraviolet photodetectors with highly aligned organic crystals. Adv. Opt. Mater. 4, 264–270 (2016).

    CAS  Article  Google Scholar 

  130. 130

    Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).

    CAS  Article  Google Scholar 

  131. 131

    Ihly, R. et al. Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ. Sci. 9, 1439–1449 (2016).

    CAS  Article  Google Scholar 

  132. 132

    Schulz, P. et al. Charge transfer dynamics between carbon nanotubes and hybrid organic metal halide perovskite films. J. Phys. Chem. Lett. 7, 418–425 (2016).

    CAS  Article  Google Scholar 

  133. 133

    Wang, Q., Liu, X., Shao, Y., Gao, Y. & Huang, J. Qualification of p and n self-doping in CH3NH3PbI3 Films. Appl. Phys. Lett. 105, 163508 (2014).

    Article  CAS  Google Scholar 

  134. 134

    Wetzelaer, G. J. A. et al. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).

    CAS  Article  Google Scholar 

  135. 135

    Adinolfi, V. et al. The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28, 3406–3410 (2016).

    CAS  Article  Google Scholar 

  136. 136

    Liu, P. et al. Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl. Phys. Lett. 106, 193903 (2015).

    Article  CAS  Google Scholar 

  137. 137

    Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    CAS  Article  Google Scholar 

  138. 138

    Chae, J., Dong, Q., Huang, J. & Centrone, A. Chloride incorporation process in CH3NH3PbI3 − x Clx perovskites via nanoscale bandgap maps. Nano Lett. 15, 8114–8121 (2015).

    CAS  Article  Google Scholar 

  139. 139

    Jiang, M. et al. Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3, 963–967 (2015).

    CAS  Article  Google Scholar 

  140. 140

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Article  Google Scholar 

  141. 141

    Yuan, Y., Wang, Q. & Huang, J. in Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures (eds Park, N.-G., Grätzel, M. & Miyasaka, T. ) 137–162 (Springer, 2016).

    Google Scholar 

  142. 142

    Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    CAS  Article  Google Scholar 

  143. 143

    Yuan, Y., Xiao, Z., Yang, B. & Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014).

    CAS  Article  Google Scholar 

  144. 144

    Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015).

    Article  CAS  Google Scholar 

  145. 145

    Deng, Y., Xiao, Z. & Huang, J. Light induced self-poling effect in organometal trihalide perovskite solar cells for increased device efficiency and stability. Adv. Energy Mater. 5, 1500721 (2015).

    Article  CAS  Google Scholar 

  146. 146

    Zou, Y. & Holmes, R. J. Temperature-dependent bias poling and hysteresis in planar organo-metal halide perovskite photovoltaic cells. Adv. Energy Mater. 6, 1501994 (2016).

    Article  CAS  Google Scholar 

  147. 147

    Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    CAS  Article  Google Scholar 

  148. 148

    Huang, F. et al. Fatigue behavior of planar CH3NH3PbI3 perovskite solar cells revealed by light on/off diurnal cycling. Nano Energy 27, 509–514 (2016).

    CAS  Article  Google Scholar 

  149. 149

    Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 18, 30484–30490 (2016).

    CAS  Article  Google Scholar 

  150. 150

    Yuan, Y. et al. Electric field driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperature. Adv. Energy Mater. 6, 1501803 (2015).

    Article  CAS  Google Scholar 

  151. 151

    Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016).

    CAS  Article  Google Scholar 

  152. 152

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Article  Google Scholar 

  153. 153

    Kirchartz, T., Rau, U., Kurth, M., Mattheis, J. & Werner, J. Comparative study of electroluminescence from Cu(In, Ga)Se2 and Si solar cells. Thin Solid Films 515, 6238–6242 (2007).

    CAS  Article  Google Scholar 

  154. 154

    Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

    CAS  Article  Google Scholar 

  155. 155

    Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    Article  CAS  Google Scholar 

  156. 156

    Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Office of Naval Research (ONR) (Grant No. N00014-15-1-2713), Air Force Office of Scientific Research (AFOSR) (Grant No. A9550-16-1-0299) and National Science Foundation under awards of OIA-1538893, ECCS-1252623 and DMR-1505535. Y. Yuan also thanks the National Natural Science Foundation of China (Grant No. 51673218) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yuan, Y., Shao, Y. et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42

Download citation

Further reading