Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiroplasmonic DNA-based nanostructures

Abstract

Chiroplasmonic properties of nanoparticles, organized using DNA-based nanostructures, have attracted both theoretical and experimental interest. Theory suggests that the circular dichroism spectra accompanying chiroplasmonic nanoparticle assemblies are controlled by the sizes, shapes, geometries and interparticle distances of the nanoparticles. In this Review, we present different methods to assemble chiroplasmonic nanoparticle or nanorod systems using DNA scaffolds, and we discuss the operations of dynamically reconfigurable chiroplasmonic nanostructures. The chiroplasmonic properties of the different systems are characterized by circular dichroism and further supported by high-resolution transmission electron microscopy or cryo-transmission electron microscopy imaging and theoretical modelling. We also outline the applications of chiroplasmonic assemblies, including their use as DNA-sensing platforms and as functional systems for information processing and storage. Finally, future perspectives in applying chiroplasmonic nanoparticles as waveguides for selective information transfer and their use as ensembles for chiroselective synthesis are discussed. Specifically, we highlight the upscaling of the systems to device-like configurations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nanoparticle and plasmonic nanoparticle aggregates on static and dynamic DNA scaffolds.
Figure 2: Mechanisms and optical properties corresponding to the assembly of chiroplasmonic nanostructures.
Figure 3: Asymmetric chiral configurations of plasmonic nanoparticles and their optical properties.
Figure 4: Helical chiroplasmonic assemblies of gold nanoparticles on DNA origami scaffolds.
Figure 5: Assembly of chiroplasmonic structures on helical nucleic acid tethers associated with DNA barrels.
Figure 6: Chiroplasmonic gold nanorod systems and their optical properties.
Figure 7: Chiroplasmonic devices and machines.
Figure 8: Sensing with chiroplasmonic nanostructures.

References

  1. 1

    Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1–11 (2015).

    Article  CAS  Google Scholar 

  3. 3

    Wilner, O. I. & Willner, I. Functionalized DNA nanostructures. Chem. Rev. 112, 2528–2556 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Wang, F., Liu, X. & Willner, I. DNA switches: from principles to applications. Angew. Chem. Int. Ed. 54, 1098–1129 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Liu, X., Lu, C.-H. & Willner, I. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 47, 1673–1680 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Lu, C.-H., Willner, B. & Willner, I. DNA nanotechnology: from sensing and DNA machines to drug-delivery systems. ACS Nano 7, 8320–8332 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Chen, L., Cai, L., Zhang, X. & Rich, A. Crystal structure of a four-stranded intercalated DNA: d(C4). Biochemistry 33, 13540–13546 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Simonsson, T. G-Quadruplex DNA structures — variations on a theme. Biol. Chem. 382, 621–628 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Miyake, Y. et al. MercuryII-mediated formation of thymine–HgII–thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128, 2172–2173 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Ritchie, C. M. et al. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C. 111, 175–181 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Asanuma, H. et al. Enantioselective incorporation of azobenzenes into oligodeoxyribonucleotide for effective photoregulation of duplex formation. Angew. Chem. Int. Ed. 40, 2671–2673 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Asanuma, H. et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Li, Q., Luan, G., Guo, Q. & Liang, J. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, e5 (2002).

    Article  Google Scholar 

  14. 14

    Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Yurke, B. et al. DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Muller, B. K., Reuter, A., Simmel, F. C. & Lamb, D. C. Single-pair FRET characterization of DNA tweezers. Nano Lett. 6, 2814–2820 (2006).

    Article  CAS  Google Scholar 

  17. 17

    Elbaz, J., Moshe, M. & Willner, I. Coherent activation of DNA tweezers: a ‘SET–RESET’ logic system. Angew. Chem. Int. Ed. 48, 3834–3837 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Elbaz, J., Wang, Z.-G., Orbach, R. & Willner, I. pH-stimulated concurrent mechanical activation of two DNA ‘tweezers’. A ‘SET–RESET’ logic gate system. Nano Lett. 9, 4510–4514 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Shin, J.-S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Cha, T.-G. et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat. Nanotechnol. 9, 39–43 (2013).

    Article  CAS  Google Scholar 

  22. 22

    Simmel, F. C. Processive motion of bipedal DNA walkers. ChemPhysChem 10, 2593–2597 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Wickham, S. F. J. et al. A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Lu, C.-H., Cecconello, A., Elbaz, J., Credi, A. & Willner, I. A three-station DNA catenane rotary motor with controlled directionality. Nano Lett. 13, 2303–2308 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Tian, Y. & Mao, C. D. Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Murphy, C. J. et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109, 13857–13870 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Seo, D. et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C. 112, 2469–2475 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Sun, Y., Mayers, B. & Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Yin, Y., Erdonmez, C., Aloni, S. & Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 128, 12671–12673 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. Phys. Chem. 100, 13226–13239 (1996).

    CAS  Article  Google Scholar 

  37. 37

    Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Fu, A. et al. Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett. 7, 179–182 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Prasek, J. et al. Methods for carbon nanotubes synthesis — review. J. Mater. Chem. 21, 15872–15884 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Li, H., Kang, Z., Liu, Y. & Lee, S.-T. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Martindale, B. C. M., Joliat, E., Bachmann, C., Alberto, R. & Reisner, E. Clean donor oxidation enhances H2 evolution activity of a carbon quantum dot–molecular catalyst photosystem. Angew. Chem. Int. Ed. 55, 9402–9406 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A. DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  46. 46

    Wang, W. et al. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir 23, 11956–11959 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Hu, L., Liu, X., Cecconello, A. & Willner, I. Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett. 14, 6030–6035 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Parab, H. J., Jung, C., Lee, J.-H. & Park, H. G. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens. Bioelectron. 26, 667–673 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Deng, Z., Tian, Y., Lee, S.-H. & Ribbe, A. E. Mao, C. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 3582–3585 (2005).

    CAS  Article  Google Scholar 

  50. 50

    Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Xiao, S. J. et al. Self-assembly of metallic nanoparticle arrays by DNA scaffolding. Nanopart. Res. 4, 313–317 (2002).

    CAS  Article  Google Scholar 

  52. 52

    Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    CAS  Article  Google Scholar 

  53. 53

    Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116–120 (2010).

    CAS  Article  Google Scholar 

  54. 54

    Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Article  Google Scholar 

  55. 55

    Liu, D., Wang, M., Deng, Z., Walulu, R. & Mao, C. Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004).

    CAS  Article  Google Scholar 

  56. 56

    Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    CAS  Article  Google Scholar 

  57. 57

    Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    CAS  Article  Google Scholar 

  58. 58

    Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    CAS  Article  Google Scholar 

  59. 59

    Sebba, D. S., Mock, J. J., Smith, D. R., LaBean, T. H. & Lazarides, A. A. Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett. 8, 1803–1808 (2008).

    CAS  Article  Google Scholar 

  60. 60

    Chen, J. I. L., Chen, Y. & Ginger, D. S. Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J. Am. Chem. Soc. 132, 9600–9601 (2010).

    CAS  Article  Google Scholar 

  61. 61

    Lermusiaux, L., Sereda, A., Portier, B., Larquet, E. & Bidault, S. Reversible switching of the interparticle distance in DNA-templated gold nanoparticle dimers. ACS Nano 10, 10992–10998 (2012).

    Article  CAS  Google Scholar 

  62. 62

    Xu, P. F., Hung, A. M., Noh, H. & Cha, J. N. Switchable nanodumbbell probes for analyte detection. Small 9, 228–232 (2013).

    CAS  Article  Google Scholar 

  63. 63

    Guo, L. et al. Distance-mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of more than 60 nm. Small 9, 234–240 (2013).

    CAS  Article  Google Scholar 

  64. 64

    Shimron, S., Cecconello, A., Lu, C.-H. & Willner, I. Metal nanoparticle-functionalized DNA tweezers: from mechanically programmed nanostructures to switchable fluorescence properties. Nano Lett. 13, 3791–3795 (2013).

    CAS  Article  Google Scholar 

  65. 65

    Pavlov, V. et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal. Chem. 76, 2152–2156 (2004).

    CAS  Article  Google Scholar 

  66. 66

    Zhang, Z., Wang, F., Balogh, D. & Willner, I. pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes. J. Mater. Chem. B 2, 4449–4455 (2014).

    CAS  Article  Google Scholar 

  67. 67

    Zhang, Z., Balogh, D., Wang, F. & Willner, I. Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J. Am. Chem. Soc. 135, 1934–1940 (2013).

    CAS  Article  Google Scholar 

  68. 68

    Balogh, D., Aleman Garcia, M. A., Albada, H. B. & Willner, I. Programmed synthesis by stimuli-responsive DNAzyme-modified mesoporous SiO2 nanoparticles. Angew. Chem. Int. Ed. 54, 11652–11656 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Hu, Y. et al. Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures. Chem. Eur. J. 20, 16203–16209 (2014).

    CAS  Article  Google Scholar 

  70. 70

    Freeman, R., Xu, J.-P. & Willner, I. in Nanoparticles 2nd edn, Ch. 6 (ed. Schmid, G. ) 455–511 (Wiley-VCH, 2010).

    Book  Google Scholar 

  71. 71

    Gill, R., Zayats, M. & Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008).

    CAS  Article  Google Scholar 

  72. 72

    Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    CAS  Article  Google Scholar 

  73. 73

    Elbaz, J., Cecconello, A., Fan, Z., Govorov, A. O. & Willner, I. Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines. Nat. Commun. 4, 2000 (2013).

  74. 74

    Ben-Moshe, A., Maoz, B. M., Govorov, A. O. & Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028–7041 (2013). This review highlights state-of-the-art experimental and theoretical advances in chiral inorganic nanocrystal materials.

    CAS  Article  Google Scholar 

  75. 75

    Lu, F. et al. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 13, 3145–3151 (2013).

    CAS  Article  Google Scholar 

  76. 76

    Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    CAS  Article  Google Scholar 

  77. 77

    Balogh, D. et al. Helquat-induced chiroselective aggregation of gold NPs. Nano Lett. 12, 5835–5839 (2012).

    CAS  Article  Google Scholar 

  78. 78

    Fan, Z. & Govorov, A. O. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 12, 3283–3589 (2012).

    CAS  Article  Google Scholar 

  79. 79

    Shemer, G. et al. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc. 128, 11006–11007 (2006).

    CAS  Article  Google Scholar 

  80. 80

    Maoz, B. M. et al. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J. Am. Chem. Soc. 134, 17807–17813 (2012).

    CAS  Article  Google Scholar 

  81. 81

    Hendler, N. et al. Bio-inspired synthesis of chiral silver nanoparticles in mucin glycoprotein-the natural choice. Chem. Commun. 47, 7419–7421 (2011).

    CAS  Article  Google Scholar 

  82. 82

    Behar-Levy, H., Neumann, O., Naaman, R. & Avnir, D. Chirality induction in bulk gold and silver. Adv. Mater. 19, 1207–1211 (2007).

    CAS  Article  Google Scholar 

  83. 83

    Sun, J. et al. Core-controlled polymorphism in virus-like particles. Proc. Natl Acad. Sci. USA 104, 1354–1359 (2007).

    CAS  Article  Google Scholar 

  84. 84

    Harkness, K. M. et al. Biomimetic monolayer-protected gold nanoparticles for immunorecognition. Nanoscale 4, 3843–3851 (2012).

    CAS  Article  Google Scholar 

  85. 85

    Zhou, Y. et al. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

    CAS  Article  Google Scholar 

  86. 86

    Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    CAS  Article  Google Scholar 

  87. 87

    Govorov, A. O. et al. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem. 21, 16806–16818 (2011).

    CAS  Article  Google Scholar 

  88. 88

    Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanostructures comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010). A fundamental paper that predicted and theoretically described the plasmon-induced CD effect at the plasmonic wavelength in molecule–nanocrystal complexes.

    CAS  Article  Google Scholar 

  89. 89

    Zhang, H. & Govorov, A. O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 87, 075410 (2013).

  90. 90

    Layani, M. E. et al. Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies. J. Phys. Chem. C 117, 22240–22244 (2013).

    CAS  Article  Google Scholar 

  91. 91

    Fan, Z. & Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10, 2580–2587 (2010). A fundamental paper that addresses the chiroplasmonic properties of asymmetric assemblies of metal nanoparticles.

    CAS  Article  Google Scholar 

  92. 92

    Moffitt, W. Optical rotatory dispersion of helical polymers. J. Chem. Phys. 25, 467–479 (1956).

    CAS  Article  Google Scholar 

  93. 93

    Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012). A pioneering study demonstrating the self-assembly of helical chiroplasmonic structures on DNA origami bundles.

    CAS  Article  Google Scholar 

  94. 94

    Guerrero-Martinez, A. et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 50, 5499–5503 (2011).

    CAS  Article  Google Scholar 

  95. 95

    Fan, Z., Zhang, H. & Govorov, A. O. Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects. J. Phys. Chem. C 117, 14770–14777 (2013).

    CAS  Article  Google Scholar 

  96. 96

    Mason, S. F. Molecular Optical Activity and the Chiral Discriminations 1st edn (Cambridge Univ. Press, 2009).

    Google Scholar 

  97. 97

    Shen, X. et al. 3D plasmonic chiral colloids. Nanoscale 6, 2077–2081 (2014).

    CAS  Article  Google Scholar 

  98. 98

    Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014). A pioneering study describing the chiroplasmonic properties of a switchable and reconfigurable Au nanorod structure on DNA origami.

    CAS  Article  Google Scholar 

  99. 99

    Kuzyk, A. et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016). A study demonstrating the chiroplasmonic transduction of a light-driven reconfigurable Au nanorod device.

  100. 100

    Lee, J., Hernandez, P., Lee, J., Govorov, A. O. & Kotov, N. A. Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 6, 291–295 (2007).

    CAS  Article  Google Scholar 

  101. 101

    Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Article  CAS  Google Scholar 

  102. 102

    Cecconello, A. et al. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J. Am. Chem. Soc. 138, 9895–9901 (2016). A study highlighting the dictated self-assembly of left- and right-handed plasmonic Au nanoparticles on DNA scaffolds and the related chiro-optical properties of the nanoassemblies.

    CAS  Article  Google Scholar 

  103. 103

    Roh, Y. H., Ruiz, R. C. H., Peng, S., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

    CAS  Article  Google Scholar 

  104. 104

    Churchill, M. E., Tullius, T. D., Kallenbach, N. R. & Seeman, N. C. A. Holliday recombination intermediate is twofold symmetric. Proc. Natl Acad. Sci. USA 85, 4653–4656 (1988).

    CAS  Article  Google Scholar 

  105. 105

    Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    CAS  Article  Google Scholar 

  106. 106

    Chen, J. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  Article  Google Scholar 

  107. 107

    LaBean, T. H. et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000).

    CAS  Article  Google Scholar 

  108. 108

    Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    CAS  Article  Google Scholar 

  109. 109

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  110. 110

    Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS  Article  Google Scholar 

  111. 111

    Wu, N. & Willner, I. DNAzyme-controlled cleavage of dimer and trimer origami tiles. Nano Lett. 16, 2867–2872 (2016).

    CAS  Article  Google Scholar 

  112. 112

    Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009). A pioneering study demonstrating the construction of chiral pyramids composed of different-sized Au nanoparticles.

    CAS  Article  Google Scholar 

  113. 113

    Yan, W. et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012). A fundamental study describing asymmetric pyramidal nanostructures of different constituent materials and their chiro-optical properties.

    CAS  Article  Google Scholar 

  114. 114

    Tian, Y. et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 10, 637–644 (2015).

    CAS  Article  Google Scholar 

  115. 115

    Ferry, V. E., Smith, J. M. & Alivisatos, A. P. Symmetry breaking in tetrahedral chiral plasmonic nanoparticle assemblies. ACS Photonics 1, 1189–1196 (2014).

    CAS  Article  Google Scholar 

  116. 116

    Wu, X. et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135, 18629–18636 (2013).

    CAS  Article  Google Scholar 

  117. 117

    Shen, X. et al. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 13, 2128–2133 (2013).

    CAS  Article  Google Scholar 

  118. 118

    Shen, X. et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134, 146–149 (2012).

    CAS  Article  Google Scholar 

  119. 119

    Ma, W. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3, 1934 (2013).

  120. 120

    Wang, F., Willner, B. & Willner, I. DNA-based machines. Top. Curr. Chem. 354, 279–338 (2014).

    CAS  Article  Google Scholar 

  121. 121

    Lu, C.-H., Cecconello, A. & Willner, I. Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J. Am. Chem. Soc. 138, 5172–5185 (2016).

    CAS  Article  Google Scholar 

  122. 122

    Wang, Z.-G., Elbaz, J. & Willner, I. DNA machines: bipedal walker and stepper. Nano Lett. 11, 304–309 (2010).

    Article  CAS  Google Scholar 

  123. 123

    Qi, X. J. et al. Autonomous control of interfacial electron transfer and the activation of DNA machines by an oscillatory pH system. Nano Lett. 13, 4920–4924 (2013).

    CAS  Article  Google Scholar 

  124. 124

    Lu, C.-H. et al. Switchable reconfiguration of a seven-ring interlocked DNA catenane nanostructure. Nano Lett. 15, 7133–7137 (2015).

    Article  CAS  Google Scholar 

  125. 125

    Lu, C.-H. et al. Switchable reconfiguration of an interlocked DNA olympiadane nanostructure. Angew. Chem. Int. Ed. 53, 7499–7503 (2014).

    CAS  Article  Google Scholar 

  126. 126

    Guo, W. et al. pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015).

    CAS  Article  Google Scholar 

  127. 127

    Qi, X.-J., Lu, C.-H., Cecconello, A., Yang, H.-H. & Willner, I. A two-ring interlocked DNA catenane rotor undergoing switchable transitions across three states. Chem. Commun. 50, 4717–4720 (2014).

    CAS  Article  Google Scholar 

  128. 128

    Lohmann, F., Ackermann, D. & Famulok, M. Reversible light switch for macrocycle mobility in a DNA rotaxane. J. Am. Chem. Soc. 134, 11884–11887 (2012).

    CAS  Article  Google Scholar 

  129. 129

    Elbaz, J. et al. DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5, 417–422 (2010).

    CAS  Article  Google Scholar 

  130. 130

    Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    CAS  Article  Google Scholar 

  131. 131

    Liao, W. C. et al. The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells. Adv. Funct. Mater. 26, 4262–4273 (2016).

    CAS  Article  Google Scholar 

  132. 132

    Elbaz, J., Shlyahovsky, B., Li, D. & Willner, I. Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations. ChemBioChem 9, 232–239 (2008).

    CAS  Article  Google Scholar 

  133. 133

    Zhou, C., Duan, X. & Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015). A pioneering study highlighting the dynamic transitions of a Au nanorod walker device by means of the chiroplasmonic responses of the system.

  134. 134

    Urban, M. J., Zhou, C., Duan, X. & Liu, N. Optically resolving the dynamic walking of a plasmonic walker couple. Nano Lett. 15, 8392–8396 (2015).

    CAS  Article  Google Scholar 

  135. 135

    Yan, W. et al. Pyramidal sensor platform with reversible chiroptical signals for DNA detection. Small 10, 4293–4297 (2014). A study demonstrating the application of a pyramidal Au nanoparticle structure for the chiroplasmonic detection of DNA.

    CAS  Google Scholar 

  136. 136

    Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).

  137. 137

    Merg, A. D. et al. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 138, 13655–13663 (2016).

    CAS  Article  Google Scholar 

  138. 138

    Ben-Moshe, A. et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014).

  139. 139

    Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    CAS  Article  Google Scholar 

  140. 140

    Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

    Article  CAS  Google Scholar 

  141. 141

    Stratakis, M. & Garcia, H. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem. Rev. 112, 4469–4506 (2012).

    CAS  Article  Google Scholar 

  142. 142

    Schreiber, S. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).

Download references

Acknowledgements

L.V.B. and A.O.G. acknowledge support from the Volkswagen Foundation (Germany). The research of I.W. and A.C. is supported by the Israel Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cecconello, A., Besteiro, L., Govorov, A. et al. Chiroplasmonic DNA-based nanostructures. Nat Rev Mater 2, 17039 (2017). https://doi.org/10.1038/natrevmats.2017.39

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing