Review Article

Chiroplasmonic DNA-based nanostructures

  • Nature Reviews Materials 2, Article number: 17039 (2017)
  • doi:10.1038/natrevmats.2017.39
  • Download Citation
Published online:

Abstract

Chiroplasmonic properties of nanoparticles, organized using DNA-based nanostructures, have attracted both theoretical and experimental interest. Theory suggests that the circular dichroism spectra accompanying chiroplasmonic nanoparticle assemblies are controlled by the sizes, shapes, geometries and interparticle distances of the nanoparticles. In this Review, we present different methods to assemble chiroplasmonic nanoparticle or nanorod systems using DNA scaffolds, and we discuss the operations of dynamically reconfigurable chiroplasmonic nanostructures. The chiroplasmonic properties of the different systems are characterized by circular dichroism and further supported by high-resolution transmission electron microscopy or cryo-transmission electron microscopy imaging and theoretical modelling. We also outline the applications of chiroplasmonic assemblies, including their use as DNA-sensing platforms and as functional systems for information processing and storage. Finally, future perspectives in applying chiroplasmonic nanoparticles as waveguides for selective information transfer and their use as ensembles for chiroselective synthesis are discussed. Specifically, we highlight the upscaling of the systems to device-like configurations.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

  2. 2.

    , & Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1–11 (2015).

  3. 3.

    & Functionalized DNA nanostructures. Chem. Rev. 112, 2528–2556 (2012).

  4. 4.

    , & DNA switches: from principles to applications. Angew. Chem. Int. Ed. 54, 1098–1129 (2015).

  5. 5.

    , & Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 47, 1673–1680 (2014).

  6. 6.

    , & DNA nanotechnology: from sensing and DNA machines to drug-delivery systems. ACS Nano 7, 8320–8332 (2013).

  7. 7.

    , , & Crystal structure of a four-stranded intercalated DNA: d(C4). Biochemistry 33, 13540–13546 (1994).

  8. 8.

    G-Quadruplex DNA structures — variations on a theme. Biol. Chem. 382, 621–628 (2001).

  9. 9.

    et al. MercuryII-mediated formation of thymine–HgII–thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128, 2172–2173 (2006).

  10. 10.

    et al. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C. 111, 175–181 (2007).

  11. 11.

    et al. Enantioselective incorporation of azobenzenes into oligodeoxyribonucleotide for effective photoregulation of duplex formation. Angew. Chem. Int. Ed. 40, 2671–2673 (2001).

  12. 12.

    et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007).

  13. 13.

    , , & A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, e5 (2002).

  14. 14.

    & Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

  15. 15.

    et al. DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

  16. 16.

    , , & Single-pair FRET characterization of DNA tweezers. Nano Lett. 6, 2814–2820 (2006).

  17. 17.

    , & Coherent activation of DNA tweezers: a ‘SET–RESET’ logic system. Angew. Chem. Int. Ed. 48, 3834–3837 (2009).

  18. 18.

    , , & pH-stimulated concurrent mechanical activation of two DNA ‘tweezers’. A ‘SET–RESET’ logic gate system. Nano Lett. 9, 4510–4514 (2009).

  19. 19.

    & A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

  20. 20.

    , , , & A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004).

  21. 21.

    et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat. Nanotechnol. 9, 39–43 (2013).

  22. 22.

    Processive motion of bipedal DNA walkers. ChemPhysChem 10, 2593–2597 (2009).

  23. 23.

    , & A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

  24. 24.

    et al. A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012).

  25. 25.

    , , , & A three-station DNA catenane rotary motor with controlled directionality. Nano Lett. 13, 2303–2308 (2013).

  26. 26.

    & Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

  27. 27.

    , & Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

  28. 28.

    et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109, 13857–13870 (2005).

  29. 29.

    , , , & Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004).

  30. 30.

    et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C. 112, 2469–2475 (2008).

  31. 31.

    et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).

  32. 32.

    , & Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003).

  33. 33.

    , , & Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 128, 12671–12673 (2006).

  34. 34.

    & Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

  35. 35.

    Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

  36. 36.

    Perspectives on the physical chemistry of semiconductor nanocrystals. Phys. Chem. 100, 13226–13239 (1996).

  37. 37.

    et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

  38. 38.

    et al. Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett. 7, 179–182 (2007).

  39. 39.

    et al. Methods for carbon nanotubes synthesis — review. J. Mater. Chem. 21, 15872–15884 (2011).

  40. 40.

    Graphene: status and prospects. Science 324, 1530–1534 (2009).

  41. 41.

    & The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  42. 42.

    & Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

  43. 43.

    , , & Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012).

  44. 44.

    , , , & Clean donor oxidation enhances H2 evolution activity of a carbon quantum dot–molecular catalyst photosystem. Angew. Chem. Int. Ed. 55, 9402–9406 (2016).

  45. 45.

    , , & DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

  46. 46.

    et al. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir 23, 11956–11959 (2007).

  47. 47.

    , , & Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett. 14, 6030–6035 (2014).

  48. 48.

    , , & A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens. Bioelectron. 26, 667–673 (2010).

  49. 49.

    , , & DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 3582–3585 (2005).

  50. 50.

    et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

  51. 51.

    et al. Self-assembly of metallic nanoparticle arrays by DNA scaffolding. Nanopart. Res. 4, 313–317 (2002).

  52. 52.

    et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

  53. 53.

    , , , & Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116–120 (2010).

  54. 54.

    et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

  55. 55.

    , , , & Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004).

  56. 56.

    & Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

  57. 57.

    et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

  58. 58.

    et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

  59. 59.

    , , , & Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett. 8, 1803–1808 (2008).

  60. 60.

    , & Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J. Am. Chem. Soc. 132, 9600–9601 (2010).

  61. 61.

    , , , & Reversible switching of the interparticle distance in DNA-templated gold nanoparticle dimers. ACS Nano 10, 10992–10998 (2012).

  62. 62.

    , , & Switchable nanodumbbell probes for analyte detection. Small 9, 228–232 (2013).

  63. 63.

    et al. Distance-mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of more than 60 nm. Small 9, 234–240 (2013).

  64. 64.

    , , & Metal nanoparticle-functionalized DNA tweezers: from mechanically programmed nanostructures to switchable fluorescence properties. Nano Lett. 13, 3791–3795 (2013).

  65. 65.

    et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal. Chem. 76, 2152–2156 (2004).

  66. 66.

    , , & pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes. J. Mater. Chem. B 2, 4449–4455 (2014).

  67. 67.

    , , & Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J. Am. Chem. Soc. 135, 1934–1940 (2013).

  68. 68.

    , , & Programmed synthesis by stimuli-responsive DNAzyme-modified mesoporous SiO2 nanoparticles. Angew. Chem. Int. Ed. 54, 11652–11656 (2015).

  69. 69.

    et al. Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures. Chem. Eur. J. 20, 16203–16209 (2014).

  70. 70.

    , & in Nanoparticles 2nd edn, Ch. 6 (ed. ) 455–511 (Wiley-VCH, 2010).

  71. 71.

    , & Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008).

  72. 72.

    et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

  73. 73.

    , , , & Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines. Nat. Commun. 4, 2000 (2013).

  74. 74.

    , , & Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028–7041 (2013). This review highlights state-of-the-art experimental and theoretical advances in chiral inorganic nanocrystal materials.

  75. 75.

    et al. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 13, 3145–3151 (2013).

  76. 76.

    et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

  77. 77.

    et al. Helquat-induced chiroselective aggregation of gold NPs. Nano Lett. 12, 5835–5839 (2012).

  78. 78.

    & Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 12, 3283–3589 (2012).

  79. 79.

    et al. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc. 128, 11006–11007 (2006).

  80. 80.

    et al. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J. Am. Chem. Soc. 134, 17807–17813 (2012).

  81. 81.

    et al. Bio-inspired synthesis of chiral silver nanoparticles in mucin glycoprotein-the natural choice. Chem. Commun. 47, 7419–7421 (2011).

  82. 82.

    , , & Chirality induction in bulk gold and silver. Adv. Mater. 19, 1207–1211 (2007).

  83. 83.

    et al. Core-controlled polymorphism in virus-like particles. Proc. Natl Acad. Sci. USA 104, 1354–1359 (2007).

  84. 84.

    et al. Biomimetic monolayer-protected gold nanoparticles for immunorecognition. Nanoscale 4, 3843–3851 (2012).

  85. 85.

    et al. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

  86. 86.

    Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

  87. 87.

    et al. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem. 21, 16806–16818 (2011).

  88. 88.

    , , , & Theory of circular dichroism of nanostructures comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010). A fundamental paper that predicted and theoretically described the plasmon-induced CD effect at the plasmonic wavelength in molecule–nanocrystal complexes.

  89. 89.

    & Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 87, 075410 (2013).

  90. 90.

    et al. Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies. J. Phys. Chem. C 117, 22240–22244 (2013).

  91. 91.

    & Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10, 2580–2587 (2010). A fundamental paper that addresses the chiroplasmonic properties of asymmetric assemblies of metal nanoparticles.

  92. 92.

    Optical rotatory dispersion of helical polymers. J. Chem. Phys. 25, 467–479 (1956).

  93. 93.

    et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012). A pioneering study demonstrating the self-assembly of helical chiroplasmonic structures on DNA origami bundles.

  94. 94.

    et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 50, 5499–5503 (2011).

  95. 95.

    , & Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects. J. Phys. Chem. C 117, 14770–14777 (2013).

  96. 96.

    Molecular Optical Activity and the Chiral Discriminations 1st edn (Cambridge Univ. Press, 2009).

  97. 97.

    et al. 3D plasmonic chiral colloids. Nanoscale 6, 2077–2081 (2014).

  98. 98.

    et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014). A pioneering study describing the chiroplasmonic properties of a switchable and reconfigurable Au nanorod structure on DNA origami.

  99. 99.

    et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016). A study demonstrating the chiroplasmonic transduction of a light-driven reconfigurable Au nanorod device.

  100. 100.

    , , , & Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 6, 291–295 (2007).

  101. 101.

    et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

  102. 102.

    et al. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J. Am. Chem. Soc. 138, 9895–9901 (2016). A study highlighting the dictated self-assembly of left- and right-handed plasmonic Au nanoparticles on DNA scaffolds and the related chiro-optical properties of the nanoassemblies.

  103. 103.

    , , , & Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

  104. 104.

    , , & Holliday recombination intermediate is twofold symmetric. Proc. Natl Acad. Sci. USA 85, 4653–4656 (1988).

  105. 105.

    et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

  106. 106.

    & Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

  107. 107.

    et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000).

  108. 108.

    , , & Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

  109. 109.

    Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

  110. 110.

    et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

  111. 111.

    & DNAzyme-controlled cleavage of dimer and trimer origami tiles. Nano Lett. 16, 2867–2872 (2016).

  112. 112.

    , & Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009). A pioneering study demonstrating the construction of chiral pyramids composed of different-sized Au nanoparticles.

  113. 113.

    et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012). A fundamental study describing asymmetric pyramidal nanostructures of different constituent materials and their chiro-optical properties.

  114. 114.

    et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 10, 637–644 (2015).

  115. 115.

    , & Symmetry breaking in tetrahedral chiral plasmonic nanoparticle assemblies. ACS Photonics 1, 1189–1196 (2014).

  116. 116.

    et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135, 18629–18636 (2013).

  117. 117.

    et al. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 13, 2128–2133 (2013).

  118. 118.

    et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134, 146–149 (2012).

  119. 119.

    et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3, 1934 (2013).

  120. 120.

    , & DNA-based machines. Top. Curr. Chem. 354, 279–338 (2014).

  121. 121.

    , & Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J. Am. Chem. Soc. 138, 5172–5185 (2016).

  122. 122.

    , & DNA machines: bipedal walker and stepper. Nano Lett. 11, 304–309 (2010).

  123. 123.

    et al. Autonomous control of interfacial electron transfer and the activation of DNA machines by an oscillatory pH system. Nano Lett. 13, 4920–4924 (2013).

  124. 124.

    et al. Switchable reconfiguration of a seven-ring interlocked DNA catenane nanostructure. Nano Lett. 15, 7133–7137 (2015).

  125. 125.

    et al. Switchable reconfiguration of an interlocked DNA olympiadane nanostructure. Angew. Chem. Int. Ed. 53, 7499–7503 (2014).

  126. 126.

    et al. pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015).

  127. 127.

    , , , & A two-ring interlocked DNA catenane rotor undergoing switchable transitions across three states. Chem. Commun. 50, 4717–4720 (2014).

  128. 128.

    , & Reversible light switch for macrocycle mobility in a DNA rotaxane. J. Am. Chem. Soc. 134, 11884–11887 (2012).

  129. 129.

    et al. DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5, 417–422 (2010).

  130. 130.

    , , & Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

  131. 131.

    et al. The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells. Adv. Funct. Mater. 26, 4262–4273 (2016).

  132. 132.

    , , & Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations. ChemBioChem 9, 232–239 (2008).

  133. 133.

    , & A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015). A pioneering study highlighting the dynamic transitions of a Au nanorod walker device by means of the chiroplasmonic responses of the system.

  134. 134.

    , , & Optically resolving the dynamic walking of a plasmonic walker couple. Nano Lett. 15, 8392–8396 (2015).

  135. 135.

    et al. Pyramidal sensor platform with reversible chiroptical signals for DNA detection. Small 10, 4293–4297 (2014). A study demonstrating the application of a pyramidal Au nanoparticle structure for the chiroplasmonic detection of DNA.

  136. 136.

    et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).

  137. 137.

    et al. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 138, 13655–13663 (2016).

  138. 138.

    et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014).

  139. 139.

    , & Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

  140. 140.

    et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

  141. 141.

    & Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem. Rev. 112, 4469–4506 (2012).

  142. 142.

    et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).

Download references

Acknowledgements

L.V.B. and A.O.G. acknowledge support from the Volkswagen Foundation (Germany). The research of I.W. and A.C. is supported by the Israel Science Foundation.

Author information

Affiliations

  1. The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

    • Alessandro Cecconello
    •  & Itamar Willner
  2. Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA.

    • Lucas V. Besteiro
    •  & Alexander O. Govorov

Authors

  1. Search for Alessandro Cecconello in:

  2. Search for Lucas V. Besteiro in:

  3. Search for Alexander O. Govorov in:

  4. Search for Itamar Willner in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Itamar Willner.