Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature-inspired superwettability systems

Abstract

Superwettability is a centuries-old concept that has been rediscovered in past decades, largely owing to new understanding of the mechanisms of special wetting phenomena in nature. Combining multiscale structures and surface chemical compositions is crucial to fabricate interfacial materials with superwettability. In this Review, we detail the historical development and summarize the various combined superwetting states in superwettability systems. Nature-inspired design principles of superwettable materials are also briefly introduced. Superwettability systems can be extended from 2D surfaces to 0D nanoparticles, 1D fibres and channels, and 3D integrated materials. We discuss new phenomena and the advantages that superwettability-based systems have for chemical reactions and materials fabrication, including emerging applications that utilize single extreme wetting states or that combine two extreme wetting states. Finally, we provide our perspective for future research directions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chart of the major discoveries and developments in the field of superwettability.
Figure 2: Overview of the different wetting states (combined and individual) that are possible in superwettability systems.
Figure 3: Examples of biological surfaces with superwettability and their multiscale structures.
Figure 4: Design of superlyophilic and superlyophobic surfaces based on the intrinsic wetting threshold of the liquid.
Figure 5: Superwettability systems with different dimensionalities.
Figure 6: Superwettability-based chemistry and fabrication.

References

  1. Wang, S., Liu, K., Yao, X. & Jiang, L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115, 8230–8293 (2015).

    Article  CAS  Google Scholar 

  2. Tian, Y., Su, B. & Jiang, L. Interfacial material system exhibiting superwettability. Adv. Mater. 26, 6872–6897 (2014).

    Article  CAS  Google Scholar 

  3. Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–79 (2008).

    Article  CAS  Google Scholar 

  4. Sun, T., Feng, L., Gao, X. & Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644–652 (2005).

    Article  CAS  Google Scholar 

  5. Zhang, X., Shi, F., Niu, J., Jiang, Y. & Wang, Z. Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 621–633 (2008).

    Article  CAS  Google Scholar 

  6. Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).

    Article  Google Scholar 

  7. Liu, M., Zheng, Y., Zhai, J. & Jiang, L. Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010).

    Article  CAS  Google Scholar 

  8. Lafuma, A. & Quéré, D. Superhydrophobic states. Nat. Mater. 2, 457–460 (2003).

    Article  CAS  Google Scholar 

  9. Gao, L., McCarthy, T. J. & Zhang, X. Wetting and sruperhydrophobicity. Langmuir 25, 14100–14104 (2009).

    Article  CAS  Google Scholar 

  10. Bartell, F. E. & Shepard, J. W. The effect of surface roughness on apparent contact angles and on contact angle hysteresis. I. The system paraffin-water-air. J. Phys. Chem. 57, 211–215 (1953).

    Article  CAS  Google Scholar 

  11. Ollivier, H. Recherches sur la capillarité [French]. J. Phys. Theor. Appl. 6, 757–782 (1907).

    Article  Google Scholar 

  12. Bikerman, J. J. in Surface Chemistry 2nd edn 362–364 (Academic Press, 1958).

    Google Scholar 

  13. Langmuir, I. The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 15, 62–74 (1920).

    Article  CAS  Google Scholar 

  14. Coghill, W. H. & Anderson, C. O. Certain interfacial tension equilibria important in flotation. Tech. Pap. U. S. Bur. Mines 262, 47 (1923).

    Google Scholar 

  15. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article  CAS  Google Scholar 

  16. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article  CAS  Google Scholar 

  17. Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. Super-water-repellent fractal surfaces. Langmuir 12, 2125–2127 (1996). A synthetic superhydrophobic surface with micrometre-scale roughness was fabricated based on a ‘bottom-up’ strategy.

    Article  CAS  Google Scholar 

  18. Li, H. et al. Super-“amphiphobic” aligned carbon nanotube films. Angew. Chem. Int. Ed. 113, 1793–1796 (2001). Synthetic superamphiphobic surfaces (that is, both superhydrophobic and superoleophobic) were fabricated with the assistance of nanometre-scale roughness.

    Article  Google Scholar 

  19. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).

    Article  CAS  Google Scholar 

  20. Fogg, G. E. Diurnal fluctuation in a physical property of leaf cuticle. Nature 154, 515–515 (1944). The first paper to describe the superhydrophobic phenomenon on biological surfaces.

    Article  Google Scholar 

  21. Cassie, A. B. D. & Baxter, S. Large contact angles of plant and animal surfaces. Nature 155, 21–22 (1945).

    Article  CAS  Google Scholar 

  22. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997). The explanation for the lotus effect from the role of mono-microstructures was proposed.

    Article  CAS  Google Scholar 

  23. Feng, L. et al. Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14, 1857–1860 (2002). The first paper to illustrate that the micro- or nanohierarchical structure is key to the lotus effect.

    Article  CAS  Google Scholar 

  24. Feng, L. et al. Creation of a superhydrophobic surface from an amphiphilic polymer. Angew. Chem. Int. Ed. 42, 800–802 (2003).

    Article  CAS  Google Scholar 

  25. Deng, X., Mammen, L., Butt, H. J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012).

    Article  CAS  Google Scholar 

  26. Feng, X. J. & Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006). Four superwetting and antiwetting states in air systems were developed.

    Article  CAS  Google Scholar 

  27. Li, X. M., Reinhoudt, D. & Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36, 1350–1368 (2007).

    Article  Google Scholar 

  28. Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article  CAS  Google Scholar 

  29. Liu, T. & Kim, C. J. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

    Article  CAS  Google Scholar 

  30. Lemp, M. A., Holly, F. J., Iwata, S. & Dohlman, C. H. The precorneal tear film I. Factors in spreading and maintaining a continuous tear film over the corneal surface. Arch. Ophthalmol. 83, 89–94 (1970).

    Article  CAS  Google Scholar 

  31. Koontz, D. E., Thomas, C. O., Craft, W. H. & Amron, I. Symposium on cleaning of electronic device components and materials. Am. Soc. Test. Mater. 246, 183–194 (1959).

    Google Scholar 

  32. Wang, R. et al. Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997). A superamphiphilic surface (that is, both superhydrophilic and superoleophilic) was realized based on the photocatalytic ability of TiO2.

    Article  CAS  Google Scholar 

  33. Liu, M., Wang, S., Wei, Z., Song, Y. & Jiang, L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21, 665–669 (2009). The self-cleaning mechanism of fish scales underwater was illustrated, and the concept of designing liquid-repellent surfaces by introducing another immiscible liquid layer into solid surface structures was proposed.

    Article  CAS  Google Scholar 

  34. Lin, L. et al. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv. Mater. 22, 4826–4830 (2010).

    Article  CAS  Google Scholar 

  35. Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). The design of oleophobic and slippery surfaces by introducing a liquid layer into solid surfaces was proposed.

    Article  CAS  Google Scholar 

  36. Zhu, Z. et al. Super-amphiphilic silicon wafer surfaces and applications for uniform polymer film fabrication. Angew. Chem. Int. Ed. 56, 5720–5724 (2017).

    Article  CAS  Google Scholar 

  37. Barthlott, W. et al. The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 22, 2325–2328 (2010).

    Article  CAS  Google Scholar 

  38. Feng, L. et al. Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114–4119 (2008).

    Article  CAS  Google Scholar 

  39. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    Article  CAS  Google Scholar 

  40. Persson, B. N. J. Wet adhesion with application to tree frog adhesive toe pads and tires. J. Phys. Condens. Matter 19, 376110 (2007).

    Google Scholar 

  41. Gao, X. et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv. Mater. 19, 2213–2217 (2007).

    Article  CAS  Google Scholar 

  42. Lee, W., Jin, M. K., Yoo, W. C. & Lee, J. K. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20, 7665–7669 (2004).

    Article  CAS  Google Scholar 

  43. Cai, Y. et al. Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv. Funct. Mater. 24, 809–816 (2014).

    Article  CAS  Google Scholar 

  44. Zheng, Y., Gao, X. & Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3, 178–182 (2007).

    Article  CAS  Google Scholar 

  45. Chen, H. et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016).

    Article  CAS  Google Scholar 

  46. Gao, X. & Jiang, L. Water-repellent legs of water striders. Nature 432, 36–36 (2004).

    Article  CAS  Google Scholar 

  47. Ishii, D. et al. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces. Sci. Rep. 3, 3024 (2013).

    Article  Google Scholar 

  48. Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010). The mechanism of spider silk for water collection in air systems was illustrated and the study of superwettability systems was extended to 1D systems.

    Article  CAS  Google Scholar 

  49. Ju, J. et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012).

    Article  CAS  Google Scholar 

  50. Bhushan, B. & Jung, Y. C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011).

    Article  CAS  Google Scholar 

  51. Iturri, J. et al. Torrent frog-inspired adhesives: attachment to flooded surfaces. Adv. Funct. Mater. 25, 1499–1505 (2015).

    Article  CAS  Google Scholar 

  52. Hensel, R. et al. Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater. 5, e37 (2013).

    Article  Google Scholar 

  53. Azimi, G., Dhiman, R., Kwon, H. M., Paxson, A. T. & Varanasi, K. K. Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013).

    Article  CAS  Google Scholar 

  54. Liu, X. et al. Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv. Mater. 24, 3401–3405 (2012).

    Article  CAS  Google Scholar 

  55. Neinhuis, C. & Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997).

    Article  Google Scholar 

  56. Nosonovsky, M. & Rohatgi, P. K. Biomimetics in Materials Science: Self-Healing, Self-Lubricating, and Self-Cleaning Materials (Springer, 2011).

    Google Scholar 

  57. Bhushan, B. Biomimetic: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology 1st edn (Springer, 2012).

    Book  Google Scholar 

  58. Zhang, J. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? Soft Matter 4, 2232–2237 (2008).

    Article  CAS  Google Scholar 

  59. Sun, T., Qing, G., Su, B. & Jiang, L. Functional biointerface materials inspired from nature. Chem. Soc. Rev. 40, 2909–2921 (2011).

    Article  CAS  Google Scholar 

  60. Sun, T. et al. Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem. Int. Ed. 43, 357–360 (2004). The first superwettability switch was realized by combining stimuli-responsive polymers with rough structures.

    Article  CAS  Google Scholar 

  61. Wang, S. et al. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew. Chem. Int. Ed. 46, 3915–3917 (2007).

    Article  CAS  Google Scholar 

  62. Xia, F. & Jiang, L. Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008).

    Article  CAS  Google Scholar 

  63. Abdelaziz, R. et al. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nat. Commun. 4, 2400 (2013).

    Article  CAS  Google Scholar 

  64. Su, B., Wang, S., Song, Y. & Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 4, 266–273 (2011).

    Article  Google Scholar 

  65. Deng, X. et al. Solvent-free synthesis of microparticles on superamphiphobic surfaces. Angew. Chem. Int. Ed. 52, 11286–11289 (2013).

    Article  CAS  Google Scholar 

  66. Jiang, X. et al. Bioinspired 1D superparamagnetic magnetite arrays with magnetic field perception. Adv. Mater. 28, 6952–6958 (2016).

    Article  CAS  Google Scholar 

  67. Su, B., Wang, S., Ma, J., Song, Y. & Jiang, L. “Clinging-microdroplet” patterning upon high-adhesion, pillar-structured silicon substrates. Adv. Funct. Mater. 21, 3297–3307 (2011).

    Article  CAS  Google Scholar 

  68. Huang, Y. et al. Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 134, 17053–17058 (2012).

    Article  CAS  Google Scholar 

  69. Wu, Y., Su, B., Jiang, L. & Heeger, A. J. “Liquid–liquid–solid”-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors. Adv. Mater. 25, 6526–6533 (2013).

    Article  CAS  Google Scholar 

  70. Su, B. et al. Free-standing 1D assemblies of plasmonic nanoparticles. Adv. Mater. 25, 3968–3972 (2013).

    Article  CAS  Google Scholar 

  71. Su, B., Tian, Y. & Jiang, L. Bioinspired interfaces with superwettability: from materials to chemistry. J. Am. Chem. Soc. 138, 1727–1748 (2016). Superwettability-based interfacial chemistry was reviewed in detail in this paper.

    Article  CAS  Google Scholar 

  72. Wang, L., Zhao, Y., Tian, Y. & Jiang, L. A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes. Angew. Chem. Int. Ed. 54, 14732–14737 (2015). The design of superlyophobic and superlyophilic surfaces based on intrinsic wetting thresholds for liquids was proposed.

    Article  CAS  Google Scholar 

  73. Tian, Y. & Jiang, L. Intrinsically robust hydrophobicity. Nat. Mater. 12, 291–292 (2013).

    Article  CAS  Google Scholar 

  74. Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69–117 (1998).

    Article  CAS  Google Scholar 

  75. Wang, S. & Jiang, L. Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007). A detailed definition of superhydrophobic states that related to the adhesion on solid/liquid interfaces was introduced.

    Article  CAS  Google Scholar 

  76. Binks, B. P. Particles as surfactants — similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002).

    Article  CAS  Google Scholar 

  77. Studart, A. R., Gonzenbach, U. T., Akartuna, I., Tervoort, E. & Gauckler, L. J. Materials from foams and emulsions stabilized by colloidal particles. J. Mater. Chem. A 17, 3283–3289 (2007).

    Article  CAS  Google Scholar 

  78. Binks, B. P. & Murakami, R. Phase inversion of particle-stabilized materials from foams to dry water. Nat. Mater. 5, 865–869 (2006).

    Article  CAS  Google Scholar 

  79. Binks, B. P. & Lumsdon, S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16, 8622–8631 (2000).

    Article  CAS  Google Scholar 

  80. Binks, B. P. Macroporous silica from solid-stabilized emulsion templates. Adv. Mater. 14, 1824–1827 (2002).

    Article  CAS  Google Scholar 

  81. Studart, A. R., Gonzenbach, U. T., Tervoort, E. & Gauckler, L. J. Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89, 1771–1789 (2006).

    Article  CAS  Google Scholar 

  82. Gonzenbach, U. T., Studart, A. R., Steinlin, D., Tervoort, E. & Gauckler, L. J. Processing of particle-stabilized wet foams into porous ceramics. J. Am. Ceram. Soc. 90, 3407–3414 (2007).

    Article  CAS  Google Scholar 

  83. Aussillous, P. & Quéré, D. Liquid marbles. Nature 411, 924–927 (2001).

    Article  CAS  Google Scholar 

  84. Aussillous, P. & Quéré, D. Properties of liquid marbles. Proc. R. Soc. A. 462, 973–999 (2006).

    Article  CAS  Google Scholar 

  85. Fujii, S. et al. pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles. Soft Matter 6, 635–640 (2009).

    Article  Google Scholar 

  86. Bormashenko, E., Pogreb, R., Bormashenko, Y., Musin, A. & Stein, T. New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24, 12119–12122 (2008).

    Article  CAS  Google Scholar 

  87. Dupin, D., Armes, S. P. & Fujii, S. Stimulus-responsive liquid marbles. J. Am. Chem. Soc. 131, 5386–5387 (2009).

    Article  CAS  Google Scholar 

  88. Tian, J. F., Arbatan, T., Li, X. & Shen, W. Liquid marble for gas sensing. Chem. Commun. 46, 4734–4736 (2010).

    Article  CAS  Google Scholar 

  89. Xue, Y. H. et al. Magnetic liquid marbles: a “precise” miniature reactor. Adv. Mater. 22, 4814–4818 (2010).

    Article  CAS  Google Scholar 

  90. McHale, G. & Newton, M. I. Liquid marbles: principles and applications. Soft Matter 7, 5473–5481 (2011).

    Article  CAS  Google Scholar 

  91. Murakami, R. & Bismarck, A. Particle-stabilized materials: dry oils and (polymerized) non-aqueous foams. Adv. Funct. Mater. 20, 732–737 (2010).

    Article  CAS  Google Scholar 

  92. Bahng, J. H. et al. Anomalous dispersions of ‘hedgehog’ particles. Nature 517, 596–599 (2015).

    Article  CAS  Google Scholar 

  93. Hancock, M. J., Sekeroglu, K. & Demirel, M. C. Bioinspired directional surfaces for adhesion, wetting, and transport. Adv. Funct. Mater. 11, 2223–2234 (2012).

    Article  CAS  Google Scholar 

  94. Kuang, M., Wang, J. & Jiang, L. Bio-inspired photonic crystals with superwettability. Chem. Soc. Rev. 45, 6833–6854 (2016).

    Article  CAS  Google Scholar 

  95. Xue, L., Kovalev, A., Eichlervolf, A., Steinhart, M. & Gorb, S. N. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads. Nat. Commun. 6, 6621 (2011).

    Article  CAS  Google Scholar 

  96. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  CAS  Google Scholar 

  97. Zhang, P. et al. Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv. Mater. 26, 3131–3135 (2014).

    Article  CAS  Google Scholar 

  98. Yao, X. et al. Self-replenishable anti-waxing organogel materials. Angew. Chem., Int. Ed. 54, 8975–8979 (2015).

    Article  CAS  Google Scholar 

  99. Liu, M. & Jiang, L. Dialectics of nature in materials science: binary cooperative complementary materials. Sci. China Mater. 59, 239–246 (2016). The design of functional materials from the viewpoint of a binary cooperative complementary concept was proposed and explained in detail.

    Article  CAS  Google Scholar 

  100. Choi, W. et al. Fabrics with tunable oleophobicity. Adv. Mater. 21, 2190–2195 (2009).

    Article  CAS  Google Scholar 

  101. Tuteja, A., Choi, W., Mabry, J. M., Mckinley, G. H. & Cohen, R. E. Robust omniphobic surfaces. Proc. Natl Acad. Sci. USA 105, 18200–18205 (2008).

    Article  CAS  Google Scholar 

  102. Yao, X., Song, Y. & Jiang, L. Applications of bio-inspired special wettable surfaces. Adv. Mater. 23, 719–734 (2011).

    Article  CAS  Google Scholar 

  103. Tian, X., Hua, J., Sainio, J., Ras, R. H. A. & Ikkala, O. Droplet and fluid gating by biomimetic janus membranes. Adv. Funct. Mater. 24, 6023–6028 (2014).

    Article  CAS  Google Scholar 

  104. Wu, J. et al. Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8, 5996–5999 (2012).

    Article  CAS  Google Scholar 

  105. Zeng, C., Wang, H., Zhou, H. & Lin, T. Directional water transport fabrics with durable ultra-high one-way transport capacity. Adv. Mater. Interfaces 3, 1600036 (2016).

    Article  CAS  Google Scholar 

  106. Terlau, H. & KirchhoffIon, F. Ions Channels/Excitable Membranes 913–916 (Springer, 2006).

    Google Scholar 

  107. Hou, X. & Jiang, L. Learning from nature: building bio-inspired smart nanochannels. ACS Nano 3, 3339–3342 (2009).

    Article  CAS  Google Scholar 

  108. Xu, J. & Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666–670 (2008).

    Article  CAS  Google Scholar 

  109. Jun, G. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    Article  CAS  Google Scholar 

  110. Xiao, K. et al. A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. Adv. Mater. 26, 6560–6565 (2014).

    Article  CAS  Google Scholar 

  111. Lorenceau, E. & Quéré, D. Drops on a conical wire. J. Fluid Mech. 510, 29–45 (2004).

    Article  Google Scholar 

  112. Renvoisé, P., Bush, J. W. M., Prakash, M. & Quéré, D. Drop propulsion in tapered tubes. EPL 86, 64003–64008 (2009).

    Article  CAS  Google Scholar 

  113. Wang, Q., Su, B., Liu, H. & Jiang, L. Liquid transfer: Chinese brushes: controllable liquid transfer in ratchet conical hairs. Adv. Mater. 26, 4889–4894 (2014).

    Article  CAS  Google Scholar 

  114. Ju, J., Zheng, Y. & Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Acc. Chem. Res. 47, 2342–2352 (2014).

    Article  CAS  Google Scholar 

  115. Yu, C. et al. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones. Adv. Funct. Mater. 26, 3236–3243 (2016).

    Article  CAS  Google Scholar 

  116. Lv, J. et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).

    Article  CAS  Google Scholar 

  117. Zhao, C. et al. Superspreading-based fabrication of asymmetric porous PAA-g-PVDF membranes for efficient water flow gating. Adv. Mater. Interfaces 3, 1600615 (2016).

    Article  CAS  Google Scholar 

  118. Zhang, P. et al. Superspreading on immersed gel surfaces for the confined synthesis of thin polymer films. Angew. Chem. Int. Ed. 55, 3615–3619 (2016).

    Article  CAS  Google Scholar 

  119. Sperling, M., Velev, O. D. & Gradzielski, M. Controlling the shape of evaporating droplets by ionic strength: formation of highly anisometric silica supraparticles. Angew. Chem. Int. Ed. 53, 586–590 (2014).

    Article  CAS  Google Scholar 

  120. Wooh, S. et al. Synthesis of mesoporous supraparticles on superamphiphobic surfaces. Adv. Mater. 27, 7338–7343 (2015).

    Article  CAS  Google Scholar 

  121. Liu, F. et al. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc. 134, 16948–16950 (2012).

    Article  CAS  Google Scholar 

  122. Liu, F., Kong, W., Qi, C., Zhu, L. & Xiao, F. S. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal. 2, 565–572 (2012).

    Article  CAS  Google Scholar 

  123. Wang, L. et al. A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chem. Commun. 50, 2012–2014 (2014).

    Article  CAS  Google Scholar 

  124. Wang, L. & Xiao, F. S. The importance of catalyst wettability. ChemCatChem 6, 3048–3052 (2014).

    Article  CAS  Google Scholar 

  125. Paven, M. et al. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines. Nat. Commun. 4, 2512 (2013).

    Article  CAS  Google Scholar 

  126. Lei, Y., Sun, R., Zhang, X., Feng, X. & Jiang, L. Oxygen-rich enzyme biosensor based on superhydrophobic electrode. Adv. Mater. 28, 1477–1481 (2016).

    Article  CAS  Google Scholar 

  127. Lu, Z. et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 28, 7155–7161 (2016).

    Article  CAS  Google Scholar 

  128. Lu, Z. et al. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 27, 2361–2366 (2015).

    Article  CAS  Google Scholar 

  129. Lu, Z. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26, 2683–2687 (2014).

    Article  CAS  Google Scholar 

  130. Su, B., Wu, Y. & Jiang, L. The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev. 41, 7832–7856 (2012).

    Article  CAS  Google Scholar 

  131. Wu, Y. et al. Positioning and joining of organic single-crystalline wires. Nat. Commun. 6, 6737 (2014).

    Article  CAS  Google Scholar 

  132. Feng, J. et al. “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 28, 3732–3741 (2016).

    Article  CAS  Google Scholar 

  133. Feng, J. et al. “Capillary-bridge lithography” for patterning organic crystals toward mode-tunable microlaser arrays. Adv. Mater. 29, 1603652 (2017).

    Article  CAS  Google Scholar 

  134. Zorba, V., Chen, X. & Mao, S. S. Superhydrophilic TiO2 surfaces without photocatalytic activation. Appl. Phys. Lett. 96, 093702 (2010).

    Article  CAS  Google Scholar 

  135. Miljkovic, N. et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179–187 (2013).

    Article  CAS  Google Scholar 

  136. Chen, L. et al. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 23, 4376–4380 (2011).

    Article  CAS  Google Scholar 

  137. Piret, G. et al. Culture of mammalian cells on patterned superhydrophilic/superhydrophobic silicon nanowire arrays. Soft Matter 7, 8642–8649 (2011).

    Article  CAS  Google Scholar 

  138. Gao, L. & McCarthy, T. J. “Artificial lotus leaf” prepared using a 1945 patent and a commercial textile. Langmuir 22, 5998–6000 (2006).

    Article  CAS  Google Scholar 

  139. Guo, P. et al. Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642–2648 (2012).

    Article  CAS  Google Scholar 

  140. He, Z. et al. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2, e1600345 (2016).

    Article  Google Scholar 

  141. Wang, L. et al. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 28, 7729–7735 (2016).

    Article  CAS  Google Scholar 

  142. Hermelin, E. et al. Ultrafast electrosynthesis of high hydrophobic polypyrrole coatings on a zinc electrode: applications to the protection against corrosion. Chem. Mat. 20, 4447–4456 (2008).

    Article  CAS  Google Scholar 

  143. Nishimoto, S. et al. TiO2-based superhydrophobic–superhydrophilic patterns: fabrication via an ink-jet technique and application in offset printing. Appl. Surf. Sci. 255, 6221–6225 (2009).

    Article  CAS  Google Scholar 

  144. Xue, Z. et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23, 4270–4273 (2011).

    Article  CAS  Google Scholar 

  145. Tian, D., Song, Y. & Jiang, L. Patterning of controllable surface wettability for printing techniques. Chem. Soc. Rev. 42, 5184–5209 (2013).

    Article  CAS  Google Scholar 

  146. Feng, L. et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 43, 2012–2014 (2004).

    Article  CAS  Google Scholar 

  147. Liu, K. et al. Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 114, 10044–10094 (2014).

    Article  CAS  Google Scholar 

  148. De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 683–688 (2011).

    Article  CAS  Google Scholar 

  149. Yang, S. et al. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl Acad. Sci. USA 113, 268–273 (2016).

    Article  CAS  Google Scholar 

  150. Ramachandran, R., Kozhukhova, M., Sobolev, K. & Nosonovsky, M. Anti-icing superhydrophobic surfaces: controlling entropic molecular interactions to design novel icephobic concrete. Entropy 18, 132 (2016).

    Article  CAS  Google Scholar 

  151. Ramachandran, R. & Nosonovsky, M. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant. Phys. Chem. Chem. Phys. 17, 24988–24997 (2015).

    Article  CAS  Google Scholar 

  152. Alizadeh, A. et al. Hydrophobic surfaces for control and enhancement of water phase transitions. MRS Bull. 38, 407–411 (2013).

    Article  CAS  Google Scholar 

  153. Cho, H. J., Preston, D. J., Zhu, Y. & Wang, E. N. Nanoengineered materials for liquid–vapour phase-change heat transfer. Nat. Rev. Mater. 2, 16092 (2016).

    Article  CAS  Google Scholar 

  154. Tourkine, P. Le Merrer, M. & Quere, D. Delayed freezing on water repellent materials. Langmuir 25, 7214–7216 (2009).

    Article  CAS  Google Scholar 

  155. Mishchenko, L. et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010).

    Article  CAS  Google Scholar 

  156. Kreder, M. J., Alvarenga, J., Kim, P. & Aizenberg, J. Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).

    Article  CAS  Google Scholar 

  157. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  CAS  Google Scholar 

  158. Li, Y. et al. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. J. Mater. Chem. 19, 1806–1810 (2009).

    Article  CAS  Google Scholar 

  159. Sun, C. et al. Templated biomimetic multifunctional coatings. Appl. Phys. Lett. 92, 051107 (2008).

    Article  CAS  Google Scholar 

  160. Bravo, J. et al. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23, 7293–7298 (2007).

    Article  CAS  Google Scholar 

  161. Hao, C. et al. Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications. Small 12, 1825–1839 (2016).

    Article  CAS  Google Scholar 

  162. Liu, C. et al. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. ACS Nano 8, 1321–1329 (2014).

    Article  CAS  Google Scholar 

  163. Liu, J. et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface. Angew. Chem. Int. Ed. 55, 4265–4269 (2016).

    Article  CAS  Google Scholar 

  164. Wang, Q. et al. Self-removal of condensed water on the legs of water striders. Proc. Natl Acad. Sci. USA 112, 9247–9252 (2015).

    Article  CAS  Google Scholar 

  165. Biance, A. L., Clanet, C. & Quere, D. Leidenfrost drops. Phys. Fluids. 15, 1632–1637 (2003).

    Article  CAS  Google Scholar 

  166. Bernardin, J. D. & Mudawar, I. The Leidenfrost point: experimental study and assessment of existing models. Trans. ASME 121, 894–903 (1999).

    Article  Google Scholar 

  167. Zhang, T. et al. High-temperature wetting transition on micro- and nanostructured surfaces. Angew. Chem. Int. Ed. 50, 5311–5314 (2011).

    Article  CAS  Google Scholar 

  168. Vakarelski, I. U. et al. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    Article  CAS  Google Scholar 

  169. Wang, S. et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. 50, 3084–3088 (2011).

    Article  CAS  Google Scholar 

  170. Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).

    Article  CAS  Google Scholar 

  171. Liu, X. & Wang, S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem. Soc. Rev. 43, 2385–2401 (2014).

    Article  CAS  Google Scholar 

  172. Zhang, P. et al. Designing bioinspired anti-biofouling surfaces based on a superwettability strategy. Small 13, 1503334 (2017).

    Article  CAS  Google Scholar 

  173. Zang, D. et al. Interfacial engineering of hierarchically porous NiTi/hydrogels nanocomposites with exceptional antibiofouling surfaces. Adv. Mater. 29, 1602869 (2016).

    Article  CAS  Google Scholar 

  174. Geyer, F. L. et al. Superhydrophobic–superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays. Angew. Chem. Int. Ed. 50, 8424–8427 (2011).

    Article  CAS  Google Scholar 

  175. Ueda, E. et al. Emerging applications of superhydrophilic–superhydrophobic micropatterns. Adv. Mater. 25, 1234–1247 (2013).

    Article  CAS  Google Scholar 

  176. Efremov, A. N. et al. Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell–cell communication. Biomaterials 34, 1757–1763 (2013).

    Article  CAS  Google Scholar 

  177. Shi, Z. et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network film. Adv. Mater. 25, 2422–2427 (2013).

    Article  CAS  Google Scholar 

  178. Xue, Z. et al. Special wettable materials for oil/water separation. J. Mater. Chem. A 2, 2445–2460 (2014).

    Article  CAS  Google Scholar 

  179. Gao, S. et al. A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property. Adv. Mater. 28, 5307–5314 (2016).

    Article  CAS  Google Scholar 

  180. Zhu, J. et al. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010).

    Article  CAS  Google Scholar 

  181. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  CAS  Google Scholar 

  182. Guo, H. et al. A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6, 1501593 (2016).

    Article  CAS  Google Scholar 

  183. Schutzius, T. M. et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527, 82–85 (2015).

    Article  CAS  Google Scholar 

  184. Tian, X. et al. Moving superhydrophobic surfaces toward real-world applications. Science 352, 142–143 (2016).

    Article  CAS  Google Scholar 

  185. Liu, Y. et al. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10, 515–519 (2014).

    Article  CAS  Google Scholar 

  186. Song, M. et al. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant. Sci. Adv. 3, e1602188 (2017).

    Article  CAS  Google Scholar 

  187. Federle, W., Barnes, W. J. P., Baumgartner, W., Drechsler, P. & Smith, J. M. Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689–697 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21421061, 21425314, 21434009 and 21574004), the National Research Fund for Fundamental Key Projects (2012CB933800), the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-M03), the 111 project (B14009), the Fundamental Research Funds for the Central Universities, the National Young Thousand Talents Program, and the Top-Notch Young Talents Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat Rev Mater 2, 17036 (2017). https://doi.org/10.1038/natrevmats.2017.36

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing