2D transition metal dichalcogenides

Article metrics

Abstract

Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and electronic properties of TMCDs.
Figure 2: Correlated and topological phases of TMDCs.
Figure 3: Growth methods for the synthesis of ultrathin TMDCs.
Figure 4: Examples of synthesis of 2D TMDC lateral heterostructures.
Figure 5: Mobility in TMDC-based devices.
Figure 6: Strain engineering in TMDC-based devices.

References

  1. 1

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

  2. 2

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

  3. 3

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  4. 4

    Dickinson, R. G. & Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923).

  5. 5

    Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

  6. 6

    Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273, 69–83 (1963).

  7. 7

    Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

  8. 8

    Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444–446 (1992).

  9. 9

    Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

  10. 10

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

  11. 11

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  12. 12

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

  13. 13

    Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. & Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4837–4837 (2016).

  14. 14

    Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

  15. 15

    Andor, K. et al. k · p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 2053–1583 (2015).

  16. 16

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  17. 17

    Pulkin, A. & Yazyev, O. V. Spin- and valley-polarized transport across line defects in monolayer MoS2 . Phys. Rev. B 93, 041419 (2016).

  18. 18

    Habe, T. & Koshino, M. Spin-dependent refraction at the atomic step of transition-metal dichalcogenides. Phys. Rev. B 91, 201407 (2015).

  19. 19

    Peierls, S. R. E. Quantum Theory of Solids (Clarendon Press, 1955).

  20. 20

    Frohlich, H. On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A 223, 305 (1954).

  21. 21

    Chan, S.-K. & Heine, V. Spin density wave and soft phonon mode from nesting Fermi surfaces. J. Phys. F Met. Phys. 3, 795–809 (1973).

  22. 22

    Lomer, W. M. Electronic structure of chromium group metals. Proc. Phys. Soc. 80, 489–496 (1962).

  23. 23

    Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 37, C4-139–C4-150 (1974).

  24. 24

    Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 50, 1171–1248 (2010).

  25. 25

    Moncton, D. E., Axe, J. D. & Di Salvo, F. J. Neutron scattering study of the charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2 . Phys. Rev. B 16, 801–819 (1977).

  26. 26

    Di Salvo, J., Francis, J. & Rice, T. M. Charge-density waves in transition-metal compounds. Phys. Today 32, 32–38 (1979).

  27. 27

    Revolinsky, E., Spiering, G. A. & Beerntsen, D. J. Superconductivity in the niobium–selenium system. J. Phys. Chem. Solids 26, 1029–1034 (1965).

  28. 28

    Perfetti, L., Gloor, T. A., Mila, F., Berger, H. & Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 71, 153101 (2005).

  29. 29

    Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nat. Mater. 7, 960–965 (2008).

  30. 30

    Calandra, M. 2D materials: charge density waves go nano. Nat. Nanotechnol. 10, 737–738 (2015).

  31. 31

    Calandra, M., Mazin, I. I. & Mauri, F. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2 . Phys. Rev. B 80, 241108 (2009).

  32. 32

    Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotechnol. 10, 765–769 (2015).

  33. 33

    Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2 . Nat. Phys. 12, 92–97 (2016).

  34. 34

    Ge, Y. & Liu, A. Y. Effect of dimensionality and spin–orbit coupling on charge-density-wave transition in 2H-TaSe2 . Phys. Rev. B 86, 104101 (2012).

  35. 35

    Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 . Nat. Nanotechnol. 10, 270–276 (2015).

  36. 36

    Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). Proc. Natl Acad. Sci. USA 113, 11424 (2016).

  37. 37

    Albertini, O. R. et al. Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: detection of the commensurate charge density wave phase through Raman scattering. Phys. Rev. B 93, 214109 (2016).

  38. 38

    Sugawara, K. et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2 . ACS Nano 10, 1341–1345 (2016).

  39. 39

    Chen, P. et al. Dimensional effects on the charge density waves in ultrathin films of TiSe2 . Nano Lett. 16, 6331–6336 (2016).

  40. 40

    Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

  41. 41

    Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

  42. 42

    Guillamón, I. et al. Superconducting density of states and vortex cores of 2H-NbS2 . Phys. Rev. Lett. 101, 166407 (2008).

  43. 43

    Valla, T. et al. Charge-density-wave-induced modifications to the quasiparticle self-energy in 2H-TaSe2 . Phys. Rev. Lett. 85, 4759–4762 (2000).

  44. 44

    Nagata, S. et al. Superconductivity in the layered compound 2H-TaS2 . J. Phys. Chem. Solids 53, 1259–1263 (1992).

  45. 45

    Freitas, D. C. et al. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS2 and 2H-TaSe2 . Phys. Rev. B 93, 184512 (2016).

  46. 46

    Kusmartseva, A. F., Sipos, B., Berger, H., Forró, L. & Tutiš, E. Pressure induced superconductivity in pristine 1T-TiSe2 . Phys. Rev. Lett. 103, 236401 (2009).

  47. 47

    Morosan, E. et al. Superconductivity in CuxTiSe2 . Nat. Phys. 2, 544–550 (2006).

  48. 48

    Wagner, K. E. et al. Tuning the charge density wave and superconductivity in CuxTaS2 . Phys. Rev. B 78, 104520 (2008).

  49. 49

    Yang, J. J. et al. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2:Pd. Phys. Rev. Lett. 108, 116402 (2012).

  50. 50

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

  51. 51

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

  52. 52

    Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2 . Science 350, 1353–1357 (2015).

  53. 53

    He, W.-Y., Zhou, B. T., He, J. J., Zhang, T. & Law, K. T. Nodal topological superconductivity in monolayer NbSe2. Preprint at ArXivhttps://arxiv.org/abs/1604.02867 (2016).

  54. 54

    Sharma, G. & Tewari, S. Yu-Shiba-Rusinov states and topological superconductivity in Ising paired superconductors. Phys. Rev. B 94, 094515 (2016).

  55. 55

    Zhou, B. T., Yuan, N. F. Q., Jiang, H.-L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).

  56. 56

    Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

  57. 57

    Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).

  58. 58

    Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

  59. 59

    Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2 . Nano Lett. 15, 1197–1202 (2015).

  60. 60

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  61. 61

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  62. 62

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

  63. 63

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  64. 64

    Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

  65. 65

    Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

  66. 66

    Sabater, C. et al. Topologically protected quantum transport in locally exfoliated bismuth at room temperature. Phys. Rev. Lett. 110, 176802 (2013).

  67. 67

    Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

  68. 68

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

  69. 69

    Pletikosic´, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magnetoresistance in WTe2 . Phys. Rev. Lett. 113, 216601 (2014).

  70. 70

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

  71. 71

    Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

  72. 72

    Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2 . Phys. Rev. B 92, 161107 (2015).

  73. 73

    Bruno, F. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2 . Phys. Rev. B 94, 121112 (2016).

  74. 74

    Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2 . Phys. Rev. X 6, 031021 (2016).

  75. 75

    Huang, Y. - Preparation, S. Electrical and modulation optical properties of 2H-MoSe2 . Chin. J. Phys. 22, 43–53 (1984).

  76. 76

    Schäfer, H. Chemical transport reactions. (Academic Press, 1964).

  77. 77

    Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

  78. 78

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  79. 79

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

  80. 80

    Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

  81. 81

    Dines, M. B. Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

  82. 82

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

  83. 83

    Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

  84. 84

    Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002).

  85. 85

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

  86. 86

    Joyce, B. A. Molecular beam epitaxy. Rep. Prog. Phys. 48, 1637–1697 (1985).

  87. 87

    Koma, A. & Yoshimura, K. Ultrasharp interfaces grown with van der waals epitaxy. Surf. Sci. 174, 556–560 (1986).

  88. 88

    Ohuchi, F. S., Shimada, T., Parkinson, B. A., Ueno, K. & Koma, A. Growth of MoSe2 thin-films with Van der Waals epitaxy. J. Cryst. Growth 111, 1033–1037 (1991).

  89. 89

    Ohuchi, F. S., Parkinson, B. A., Ueno, K. & Koma, A. Van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2 . J. Appl. Phys. 68, 2168–2175 (1990).

  90. 90

    Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201–202, 236–241 (1999).

  91. 91

    Dumcenco, D. et al. Large-area epitaxial monolayer MoS2 . ACS Nano 9, 4611–4620 (2015).

  92. 92

    Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2 . ACS Nano 9, 3274–3283 (2015).

  93. 93

    Roy, A. et al. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces 8, 7396–7402 (2016).

  94. 94

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

  95. 95

    Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2 . Nat. Phys. 12, 751–756 (2016).

  96. 96

    Aretouli, K. E. et al. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 8, 23222–23229 (2016).

  97. 97

    Xenogiannopoulou, E. et al. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7, 7896–7905 (2015).

  98. 98

    Vishwanath, S. et al. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2, 024007 (2015).

  99. 99

    Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

  100. 100

    Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

  101. 101

    Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

  102. 102

    Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

  103. 103

    Najmaei, S. et al. Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nat. Mater. 12, 754–759 (2013).

  104. 104

    van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

  105. 105

    Zou, X., Liu, Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2012).

  106. 106

    Najmaei, S. et al. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8, 7930–7937 (2014).

  107. 107

    Chung, J.-W., Dai, Z. R. & Ohuchi, F. S. WS2 thin films by metal organic chemical vapor deposition. J. Cryst. Growth 186, 137–150 (1998).

  108. 108

    Dumcenco, D. et al. Large-area MoS2 grown using H2S as the sulphur source. 2D Mater. 2, 044005 (2015).

  109. 109

    Eichfeld, S. M. et al. Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS Nano 9, 2080–2087 (2015).

  110. 110

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

  111. 111

    Wang, X. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2 . ACS Nano 8, 5125–5131 (2014).

  112. 112

    Xia, J. et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949–8955 (2014).

  113. 113

    Chang, Y.-H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014).

  114. 114

    Gao, Y. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015).

  115. 115

    Kobayashi, Y. et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9, 4056–4063 (2015).

  116. 116

    McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C. & Jonker, B. T. Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6, 19159 (2016).

  117. 117

    Okada, M. et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8, 8273–8277 (2014).

  118. 118

    Tan, H. et al. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866–7873 (2016).

  119. 119

    Tanabe, I. et al. Band structure characterization of WS2 grown by chemical vapor deposition. Appl. Phys. Lett. 108, 252103 (2016).

  120. 120

    Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

  121. 121

    Chen, J. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 27, 6722–6727 (2015).

  122. 122

    Liu, B. et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015).

  123. 123

    Yoshida, M. et al. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16, 2061–2065 (2016).

  124. 124

    Keyshar, K. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 27, 4640–4648 (2015).

  125. 125

    He, X. et al. Chemical vapor deposition of high-quality and atomically layered ReS2 . Small 11, 5423–5429 (2015).

  126. 126

    Hafeez, M., Gan, L., Li, H., Ma, Y. & Zhai, T. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 26, 4551–4560 (2016).

  127. 127

    Hafeez, M., Gan, L., Li, H., Ma, Y. & Zhai, T. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28, 8296–8301 (2016).

  128. 128

    Naylor, C. H. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

  129. 129

    Zhou, J. et al. Large-area and high-quality 2D transition metal telluride. Adv. Mat. 29, 1603471 (2017).

  130. 130

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

  131. 131

    Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

  132. 132

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  133. 133

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

  134. 134

    Yu, H., Kutana, A. & Yakobson, B. I. Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides. Nano Lett. 16, 5032–5036 (2016).

  135. 135

    Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

  136. 136

    Kaasbjerg, K., Thygesen, K. S. & Jauho, A.-P. Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87, 235312 (2013).

  137. 137

    Zhang, W., Huang, Z., Zhang, W. & Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014).

  138. 138

    Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013).

  139. 139

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

  140. 140

    Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

  141. 141

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013).

  142. 142

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2 . Nano Lett. 13, 4212–4216 (2013).

  143. 143

    Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

  144. 144

    Chamlagain, B. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-c substrate. ACS Nano 8, 5079–5088 (2014).

  145. 145

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

  146. 146

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

  147. 147

    Iqbal, M. W. et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

  148. 148

    Xu, S. et al. Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016).

  149. 149

    Ovchinnikov, D., Allain, A., Huang, Y.-S., Dumcenco, D. & Kis, A. Electrical transport properties of single-layer WS2 . ACS Nano 8, 8174–8181 (2014).

  150. 150

    Fallahazad, B. et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

  151. 151

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

  152. 152

    Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067(2012).

  153. 153

    Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

  154. 154

    Krasnozhon, D., Lembke, D., Nyffeler, C., Leblebici, Y. & Kis, A. MoS2 transistors operating at gigahertz frequencies. Nano Lett. 14, 5905–5911 (2014).

  155. 155

    Krasnozhon, D., Dutta, S., Nyffeler, C., Leblebici, Y. & Kis, A. High-frequency, scaled MoS2 transistors. IEEE Int. Electron Devices Meet.http://dx.doi.org/10.1109/IEDM.2015.7409781 (2015).

  156. 156

    Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

  157. 157

    Chang, H.-Y. et al. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28, 1818–1823 (2015).

  158. 158

    Sun, L. et al. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010).

  159. 159

    Wang, C. et al. Self-aligned, extremely high frequency III–V metal–oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett. 12, 4140–4145 (2012).

  160. 160

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

  161. 161

    Ni, Z. H. et al. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

  162. 162

    Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

  163. 163

    Johari, P. & Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6, 5449–5456 (2012).

  164. 164

    Yue, Q. et al. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376, 1166–1170 (2012).

  165. 165

    Shi, H., Pan, H., Zhang, Y.-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev. B 87, 155304 (2013).

  166. 166

    Dong, L., Namburu, R. R., O’Regan, T. P., Dubey, M. & Dongare, A. M. Theoretical study on strain-induced variations in electronic properties of monolayer MoS2 . J. Mater. Sci. 49, 6762–6771 (2014).

  167. 167

    Ghorbani-Asl, M., Borini, S., Kuc, A. & Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013).

  168. 168

    Harada, N., Sato, S. & Yokoyama, N. Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel. J. Appl. Phys. 115, 034505 (2014).

  169. 169

    Horzum, S. et al. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 . Phys. Rev. B 87, 125415 (2013).

  170. 170

    Lu, P., Wu, X., Guo, W. & Zeng, X. C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13035–13040 (2012).

  171. 171

    Scalise, E., Houssa, M., Pourtois, G., Afanas′ev, V. V. & Stesmans, A. First-principles study of strained 2D MoS2 . Phys. E 56, 416–421 (2014).

  172. 172

    Wang, L., Kutana, A. & Yakobson, B. I. Many-body and spin–orbit effects on direct-indirect band gap transition of strained monolayer MoS2 and WS2: direct-indirect band gap transition in strained monolayer MoS2 and WS2 . Ann. Phys. 526, L7–L12 (2014).

  173. 173

    Kumar, A. & Ahluwalia, P. K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B (Amsterdam, Neth.) 419, 66–75 (2013).

  174. 174

    Bhattacharyya, S., Pandey, T. & Singh, A. K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2 . Nanotechnology 25, 465701 (2014).

  175. 175

    Zhu, L. et al. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size-dependent reduction rate. Nanotechnology 26, 465707 (2015).

  176. 176

    Rostami, H., Roldán, R., Cappelluti, E., Asgari, R. & Guinea, F. Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 92, 195402 (2015).

  177. 177

    Cheiwchanchamnangij, T., Lambrecht, W. R. L., Song, Y. & Dery, H. Strain effects on the spin–orbit-induced band structure splittings in monolayer MoS2 and graphene. Phys. Rev. B 88, 155404 (2013).

  178. 178

    Koskinen, P., Fampiou, I. & Ramasubramaniam, A. Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2 . Phys. Rev. Lett. 112, 186802 (2014).

  179. 179

    Sengupta, A., Ghosh, R. K. & Mahapatra, S. Performance analysis of strained monolayer MoS2 MOSFET. IEEE Trans. Electron. Devices 60, 2782–2787 (2013).

  180. 180

    Mohammad Tabatabaei, S., Noei, M., Khaliji, K., Pourfath, M. & Fathipour, M. A first-principles study on the effect of biaxial strain on the ultimate performance of monolayer MoS2-based double gate field effect transistor. J. Appl. Phys. 113, 163708 (2013).

  181. 181

    Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).

  182. 182

    Kumar, H., Er, D., Dong, L., Li, J. & Shenoy, V. B. Elastic deformations in 2D van der waals heterostructures and their impact on optoelectronic properties: predictions from a multiscale computational approach. Sci. Rep. 5, 10872 (2015).

  183. 183

    Sharma, M., Kumar, A., Ahluwalia, P. K. & Pandey, R. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides. J. Appl. Phys. 116, 063711 (2014).

  184. 184

    Yu, S. et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer. Appl. Phys. Lett. 108, 191901 (2016).

  185. 185

    Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2 . Nano Lett. 15, 5330–5335 (2015).

  186. 186

    Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotechnol. 10, 151–155 (2015).

  187. 187

    Lloyd, D. et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2 . Nano Lett. 16, 5836–5841 (2016).

  188. 188

    Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

  189. 189

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).

  190. 190

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

  191. 191

    Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 . Phys. Rev. B 88, 121301 (2013).

  192. 192

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

  193. 193

    Plechinger, G. et al. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2, 015006 (2015).

  194. 194

    Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

  195. 195

    Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

  196. 196

    Rice, C. et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 . Phys. Rev. B 87, 081307 (2013).

  197. 197

    Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2 . Nano Lett. 14, 4592–4597 (2014).

  198. 198

    Island, J. O. et al. Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8, 2589–2593 (2016).

  199. 199

    Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

  200. 200

    Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab-initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

  201. 201

    Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

  202. 202

    Kanda, Y. Piezoresistance effect of silicon. Sens. Actuators Phys. 28, 83–91 (1991).

  203. 203

    Smith, A. D. et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13, 3237–3242 (2013).

  204. 204

    Huang, M., Pascal, T. A., Kim, H., Goddard, W. A. & Greer, J. R. Electronic—mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 11, 1241–1246 (2011).

  205. 205

    Petersen, K. E. Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

  206. 206

    Solomon, P. M. et al. Pathway to the piezoelectronic transduction logic device. Nano Lett. 15, 2391–2395 (2015).

  207. 207

    Newns, D., Elmegreen, B., Liu, X. H. & Martyna, G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 111, 084509 (2012).

  208. 208

    Wu, W. et al. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28, 8463–8468 (2016).

  209. 209

    Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

  210. 210

    Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

  211. 211

    Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

  212. 212

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

  213. 213

    Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

  214. 214

    Pu, J. et al. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl. Phys. Lett. 103, 023505 (2013).

  215. 215

    Shen, T., Penumatcha, A. V. & Appenzeller, J. Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10, 4712–4718 (2016).

  216. 216

    Tsai, M.-Y. et al. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 7, 12850–12855 (2015).

  217. 217

    Pu, J. et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).

  218. 218

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

  219. 219

    Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

  220. 220

    Schmidt, H. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014).

Download references

Acknowledgements

This work was financially supported by the European Research Council (Grant Nos. 682332 and 306504), Swiss National Science Foundation (Grant No. 153298), funding from the Single Nanometre Manufacturing project under the European Union's Seventh Framework Programme FP7/2007-2013 (Grant Agreement No. 318804), Marie Curie ITN network ‘MoWSeS’ (Grant No. 317451). We acknowledge funding by the European Commission under the Graphene Flagship (Grant Agreement No. 604391).

Author information

Correspondence to Andras Kis.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manzeli, S., Ovchinnikov, D., Pasquier, D. et al. 2D transition metal dichalcogenides. Nat Rev Mater 2, 17033 (2017) doi:10.1038/natrevmats.2017.33

Download citation

Further reading