Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic skyrmions: advances in physics and potential applications


Magnetic skyrmions are small swirling topological defects in the magnetization texture. Their stabilization and dynamics depend strongly on their topological properties. In most cases, they are induced by chiral interactions between atomic spins in non-centrosymmetric magnetic compounds or in thin films with broken inversion symmetry. Skyrmions can be extremely small, with diameters in the nanometre range, and behave as particles that can be moved, created and annihilated, which makes them suitable for ‘abacus’-type applications in information storage and logic technologies. Until recently, skyrmions had been observed only at low temperature and, in most cases, under large applied magnetic fields. An intense research effort has led to the identification of thin-film and multilayer structures in which skyrmions are now stable at room temperature and can be manipulated by electrical currents. The development of skyrmion-based topological spintronics holds promise for applications in the mid-term furure, even though many challenges, such as the achievement of writing, processing and reading functionalities at room temperature and in all-electrical manipulation schemes, still lie ahead.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Magnetic texture of skyrmions.
Figure 2: Dzyaloshinskii–Moriya interactions.
Figure 3: Experimental observation of skyrmions in magnetic multilayers.
Figure 4: Current-induced motion of skyrmions.
Figure 5: Observations of the motion of skyrmions.
Figure 6: Techniques for skyrmion nucleation.
Figure 7: Techniques for skyrmion detection.
Figure 8: Skyrmions for applications.


  1. 1

    Dzyaloshinskii, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  Google Scholar 

  2. 2

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  3. 3

    Bogdanov, A. N. & Röβler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001). First theoretical prediction and description of magnetic skyrmions in thin films.

    Article  CAS  Google Scholar 

  4. 4

    Röβler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic materials. Nature 442, 797–801 (2006).

    Article  CAS  Google Scholar 

  5. 5

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  6. 6

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  7. 7

    Rohart, S., Miltat, J. & Thiaville, A. Path to collapse for an isolated Néel skyrmion. Phys. Rev. B 93, 214412 (2016).

    Article  CAS  Google Scholar 

  8. 8

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  CAS  Google Scholar 

  9. 9

    Yu, X.-Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  10. 10

    Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011). First observation of skyrmions in thin magnetic films.

    Article  CAS  Google Scholar 

  11. 11

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  12. 12

    Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  CAS  Google Scholar 

  13. 13

    Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  14. 14

    Fert, A. Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum 59–60, 439–480 (1990).

    Google Scholar 

  15. 15

    Kubetzka, A., Bode, M., Pietzch, O. & Wiesendanger, R. Spin-polarized scanning tunneling microscope with antiferromagnetic probe tips. Phys. Rev. Lett. 88, 057201 (2002).

    Article  CAS  Google Scholar 

  16. 16

    Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  CAS  Google Scholar 

  17. 17

    Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008).

    Article  CAS  Google Scholar 

  18. 18

    Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014).

    Article  CAS  Google Scholar 

  19. 19

    Belabbes, A., Bihlmayer, G., Bechstedt, F., Blügel, S. & Manchon, A. Hund's rule-driven Dzyaloshinskii–Moriya interaction at 3d–5d interfaces. Phys. Rev. Lett. 117, 247202 (2016).

    Article  CAS  Google Scholar 

  20. 20

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  CAS  Google Scholar 

  21. 21

    Yang, H. Boulle, O., Cros, V., Fert, A. & Chshiev, M. Controlling Dzyaloshinskii–Moriya interaction via chirality dependent layer stacking, insulator capping and electric field. Preprint at arXiv (2016).

  22. 22

    Belabbes, A. et al. Oxygen-enabled control of Dzyaloshinskii–Moriya interaction in ultra-thin magnetic films. Sci. Rep. 6, 24634 (2016).

    Article  CAS  Google Scholar 

  23. 23

    Di, K. et al. Direct observation of the Dzyaloshinskii–Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015).

    Article  CAS  Google Scholar 

  24. 24

    Belmeguenai, M. et al. Interfacial Dzyaloshinskii–Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405 (2015).

    Article  CAS  Google Scholar 

  25. 25

    Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).

    Article  CAS  Google Scholar 

  26. 26

    Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402(R) (2014).

    Article  CAS  Google Scholar 

  27. 27

    Lavrijsen, M. et al. Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering. Phys. Rev. B 91, 104414 (2015).

    Article  CAS  Google Scholar 

  28. 28

    Pizzini, S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Soucaille, R. et al. Probing the Dzyaloshinskii–Moriya interaction in CoFeB ultrathin films using domain wall creep and Brillouin light spectroscopy. Phys. Rev. B 94, 104431 (2016).

    Article  CAS  Google Scholar 

  30. 30

    Cho, J. et al. Thickness dependence of the interfacial broken systems. Nat. Commun. 6, 7635 (2015).

    Article  Google Scholar 

  31. 31

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  32. 32

    Soumyanarayanan, A. et al. Tunable room temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Preprint at arXiv (2016).

  33. 33

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  34. 34

    Yu, G. et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981–1988 (2016).

    Article  CAS  Google Scholar 

  35. 35

    Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    Article  CAS  Google Scholar 

  36. 36

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015). First report on the creation of skyrmions (skyrmionic bubbles) by current.

    Article  CAS  Google Scholar 

  37. 37

    Chen, G., Mascaraque, A., N’Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

    Article  CAS  Google Scholar 

  38. 38

    Gilbert, D. A. et al. Realization of ground-state artificial skyrmion lattices at room temperature. Nat. Commun. 6, 8462 (2015).

    Article  CAS  Google Scholar 

  39. 39

    Nandy, A. K., Kiselev, N. & Blügel, S. Interlayer exchange coupling: a general scheme turning chiral magnets into magnetic multilayers carrying atomic-scale skyrmions. Phys. Rev. Lett. 116, 177202 (2016).

    Article  CAS  Google Scholar 

  40. 40

    Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010). First demonstration of the interaction between skyrmions and currents.

    Article  CAS  Google Scholar 

  41. 41

    Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  43. 43

    Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article  CAS  Google Scholar 

  44. 44

    Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  45. 45

    Evenschor-Sitte, K., Garst, M., Duine, R. A. & Rosch, A. Current-induced rotational torques in the skyrmion lattice phase of chiral magnets. Phys. Rev. B 84, 064401 (2011).

    Article  CAS  Google Scholar 

  46. 46

    Thiele, A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Article  Google Scholar 

  47. 47

    Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    Article  CAS  Google Scholar 

  48. 48

    Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    Article  CAS  Google Scholar 

  49. 49

    Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Preprint at arXiv (2016).

  50. 50

    Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current–velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).

    Article  CAS  Google Scholar 

  51. 51

    Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article  CAS  Google Scholar 

  52. 52

    Reichhardt, C. & Olson Reichhardt, C. J. Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems. New J. Phys. 18, 095005 (2016).

    Article  Google Scholar 

  53. 53

    Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and dynamics of a driven skyrmion. Phys. Rev. B 90, 174434 (2014).

    Article  CAS  Google Scholar 

  54. 54

    Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016).

    Article  CAS  Google Scholar 

  55. 55

    Jin, C., Song, C., Wang, J. & Liu, Q. Dynamics of antiferromagntic skyrmion driven by spin Hall effect. Appl. Phys. Lett. 109, 182404 (2016).

    Article  CAS  Google Scholar 

  56. 56

    Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett, 116, 147203 (2016).

    Article  CAS  Google Scholar 

  57. 57

    Kong, L. & Zang, J. Dynamics of an insulating skyrmion under a temperature gradient. Phys. Rev. Lett. 111, 067203 (2013).

    Article  CAS  Google Scholar 

  58. 58

    Mochizuki, M. et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat. Mater. 13, 241–246 (2014).

    Article  CAS  Google Scholar 

  59. 59

    Thiaville, A., Rohart, S., Jué, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  CAS  Google Scholar 

  60. 60

    Khvalkovskiy, A. et al. Matching domain-wall configuration and spin–orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402(R) (2013).

    Article  CAS  Google Scholar 

  61. 61

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  62. 62

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  63. 63

    Heinonen, O., Jiang, W., Somaily, H., te Velthuis, S. G. E. & Hoffmann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016).

    Article  CAS  Google Scholar 

  64. 64

    Yu, G. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2016).

    Article  CAS  Google Scholar 

  65. 65

    Zhou, Y. & Ezawa, M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, 8 (2014).

    Google Scholar 

  66. 66

    Finazzi, M. et al. Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013).

    Article  CAS  Google Scholar 

  67. 67

    Hsu, P.-J. et al. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 12, 123–126 (2017).

    Article  CAS  Google Scholar 

  68. 68

    Crum, D. M. et al. Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015).

    Article  CAS  Google Scholar 

  69. 69

    Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    Article  CAS  Google Scholar 

  70. 70

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    Article  Google Scholar 

  71. 71

    Hamamoto, K., Ezawa, E. & Nagaosa, N. Purely electrical detection of a skyrmion in constricted geometry. Appl. Phys. Lett. 108, 112401 (2016).

    Article  CAS  Google Scholar 

  72. 72

    Lee, M. et al. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009).

    Article  CAS  Google Scholar 

  73. 73

    Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  74. 74

    Kanazawa, N. et al. Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91, 041122(R) (2015).

    Article  CAS  Google Scholar 

  75. 75

    Wang, K., Huang, Y., Zhang, X. & Zhao, W. Skyrmion-electronics: an overview and outlook. Proc. IEEE 140, 2040 (2016).

    Google Scholar 

  76. 76

    Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015).

    Article  CAS  Google Scholar 

  77. 77

    Kang, W. et al. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 6, 23164 (2016).

    Article  CAS  Google Scholar 

  78. 78

    Koshibae, W. et al. Memory functions for magnetic skyrmions. Jpn. J. Appl. Phys. 54, 053001 (2015).

    Article  CAS  Google Scholar 

  79. 79

    Zhang, X. et al. Skyrmion–skyrmion and skyrmion–edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).

    Article  CAS  Google Scholar 

  80. 80

    Zhang, X., Zhou, Y., Ezawa, M., Zhao, G. P. & Zhao, W. Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack. Sci. Rep. 5, 11369 (2015).

    Article  Google Scholar 

  81. 81

    Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article  CAS  Google Scholar 

  82. 82

    Schott, M. et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric switch. Nano Lett. 17, 3006–3012 (2017).

    Article  CAS  Google Scholar 

  83. 83

    Ma, F., Zhou, Y., Braun, H. B. & Lew, W. S. Skyrmion-based dynamic magnonic crystal. Nano Lett. 15, 4029–4036 (2015).

    Article  CAS  Google Scholar 

  84. 84

    Roldan-Molina, A., Nunez, A. S. & Fernández-Rossier, J. Topological spin waves in the atomic-scale magnetic skyrmion crystal. New J. Phys. 18, 045015 (2016).

    Article  CAS  Google Scholar 

  85. 85

    Kim, J.-V. et al. Breathing modes of confined skyrmions in ultrathin magnetic dots. Phys. Rev. B 90, 064410 (2014).

    Article  CAS  Google Scholar 

  86. 86

    Carpentieri, M. et al. Topological, non-topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya interaction. Sci. Rep. 5, 16184 (2015).

    Article  CAS  Google Scholar 

  87. 87

    Finocchio, G. et al. Skyrmion based microwave detectors and harvesting. Appl. Phys. Lett. 107, 262401 (2015).

    Article  CAS  Google Scholar 

  88. 88

    Garcia-Sanchez, F., Reyren, N., Sampaio, J., Cros, V. & Kim, J.-V. A skyrmion-based spin-torque nano-oscillator. New J. Phys. 18, 075011 (2016).

    Article  CAS  Google Scholar 

  89. 89

    Huang, Y. et al. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).

    Article  Google Scholar 

  90. 90

    Pinna, D. et al. Skyrmion gas manipulation for probabilistic computing. Preprint at arXiv (2017).

  91. 91

    Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  CAS  Google Scholar 

  92. 92

    Siemens, A., Zhang, Y., Hagemeister, J., Vedmedenko, E. Y. & Wiesendanger, R. Minimal radius of magnetic skyrmions: statics and dynamics. New J. Phys. 18, 045021 (2016).

    Article  CAS  Google Scholar 

  93. 93

    Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rossler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D 44, 392001 (2011).

    Article  CAS  Google Scholar 

  94. 94

    Everschor, K. Current-Induced Dynamics of Chiral Magnetic Structures: Skyrmions, Emergent Electrodynamics and Spin-Transfer Torques. Thesis, Univ. zu Köln (2012).

  95. 95

    Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).

    Article  CAS  Google Scholar 

  96. 96

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge K. Bouzehouane, S. Collin, K. Garcia, W. Legrand, D. Maccariello and C. Moreau-Luchaire for their participation in ongoing studies on skyrmions, and C. Panagopoulos, S. Rohart, J. Sampaio, A. Thiaville as well as all the partners involved in the MAGicSky consortium for discussions. Financial support from the European Union grant MAGicSky (No. FET-Open-665095.103) and L’Agence nationale de la reserche Ultrasky project (ANR-14-CE26-0012) is acknowledged.

Author information



Corresponding authors

Correspondence to Albert Fert or Nicolas Reyren or Vincent Cros.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat Rev Mater 2, 17031 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing