Functional carbon nitride materials — design strategies for electrochemical devices

Abstract

In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of ‘post-silicon electronics’.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthetic pathways to carbon- and nitrogen-containing molecules and extended carbon nitride materials.
Figure 2: Summary of modification strategies of polymeric carbon nitride.
Figure 3: Overview of the different nanostructures of carbon nitride photocatalysts40,86,91,106,115,181183.
Figure 4: Applications of polymeric carbon nitride in catalytic and electronic devices

References

  1. 1

    International Telecommunication Union. The world in 2014: ICT facts and figures. ITUhttp://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf (2014).

  2. 2

    Nevius, M. S. et al. Semiconducting graphene from highly ordered substrate interactions. Phys. Rev. Lett. 115, 136802 (2015).

    Article  CAS  Google Scholar 

  3. 3

    Liu, A. Y. & Cohen, M. L. Prediction of new low compressibility solids. Science 245, 841–842 (1989).

    Article  CAS  Google Scholar 

  4. 4

    Lotsch, B. V. & Schnick, W. New light on an old story: formation of melam during thermal condensation of melamine. Chem. Eur. J. 13, 4956–4968 (2007).

    Article  CAS  Google Scholar 

  5. 5

    Algara-Siller, G. et al. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew. Chem. Int. Ed. 53, 7450–7455 (2014).

    Article  CAS  Google Scholar 

  6. 6

    Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  Google Scholar 

  7. 7

    Zhang, G. G., Lan, Z. A., Lin, L. H., Lin, S. & Wang, X. C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    Article  CAS  Google Scholar 

  8. 8

    Liu, J. et al. Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  Google Scholar 

  9. 9

    Kroke, E. et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 26, 508–512 (2002).

    Article  CAS  Google Scholar 

  10. 10

    Liebig, J. V. Ueber einige Stickstoff-Verbindungen [German]. Ann. Pharm. 10, 1–47 (1834).

    Article  Google Scholar 

  11. 11

    Diem, H. & Matthias, G. in Ullmann's Encyclopedia of Industrial Chemistry Vol. A2 (ed. Gerhartz, W. ) 115–141 (VCH, 1985).

    Google Scholar 

  12. 12

    Jurgens, B., Hoppe, H. A., Irran, E. & Schnick, W. Transformation of ammonium dicyanamide into dicyandiamide in the solid. Inorg. Chem. 41, 4849–4851 (2002).

    Article  CAS  Google Scholar 

  13. 13

    Lotsch, B. V. & Schnick, W. Towards novel C–N materials: crystal structures and thermal properties of two polymorphs of guanidinium dicyanamide and their thermal conversion into melamine. New J. Chem. 28, 1129–1136 (2004).

    Article  CAS  Google Scholar 

  14. 14

    Weil, E. D. Fire-protective and flame-retardant coatings — a state-of-the-art review. J. Fire Sci. 29, 259–296 (2011).

    Article  CAS  Google Scholar 

  15. 15

    Weil, E. D. & Levchik, S. V. Flame retardants in commercial use or development for textiles. J. Fire Sci. 26, 243–281 (2009).

    Article  CAS  Google Scholar 

  16. 16

    Jürgens, B. et al. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffraction, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 125, 10288–10300 (2003).

    Article  CAS  Google Scholar 

  17. 17

    Wirnhier, E., Mesch, M. B., Senker, J. & Schnick, W. Formation and characterization of melam, melam hydrate, and a melam–melem adduct. Chem. Eur. J. 19, 2041–2049 (2013).

    Article  CAS  Google Scholar 

  18. 18

    May, H. Pyrolysis of melamine. J. Appl. Chem. 9, 340–344 (1959).

    Article  CAS  Google Scholar 

  19. 19

    Holst, J. R. & Gillan, E. G. From triazines to heptazines: deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. J. Am. Chem. Soc. 130, 7373–7379 (2008).

    Article  CAS  Google Scholar 

  20. 20

    Miller, D. R., Swenson, D. C. & Gillan, E. G. Synthesis and structure of 2,5,8-triazido-s-heptazine: an energetic and luminescent precursor to nitrogen-rich carbon nitrides. J. Am. Chem. Soc. 126, 5372–5373 (2004).

    Article  CAS  Google Scholar 

  21. 21

    Shahbaz, M. et al. Tri-s-triazine: synthesis, chemical behavior, and spectroscopic and theoretical probes of valence orbital structure. J. Am. Chem. Soc. 106, 2805–2811 (1984).

    Article  CAS  Google Scholar 

  22. 22

    Sattler, A. et al. Melamine–melem adduct phases: investigating the thermal condensation of melamine. Chem. Eur. J. 15, 13161–13170 (2009).

    Article  CAS  Google Scholar 

  23. 23

    Seyfarth, L. & Senker, J. An NMR crystallographic approach for the determination of the hydrogen substructure of nitrogen bonded protons. Phys. Chem. Chem. Phys. 11, 3522–3531 (2009).

    Article  CAS  Google Scholar 

  24. 24

    Liebig, J. V. Ueber Mellon und Mellonverbindungen [German]. Justus Liebigs Ann. Chem. 50, 337–363 (1844).

    Article  Google Scholar 

  25. 25

    Seyfarth, L., Seyfarth, J., Lotsch, B. V., Schnick, W. & Senker, J. Tackling the stacking disorder of melon — structure elucidation in a semicrystalline material. Phys. Chem. Chem. Phys. 12, 2227–2237 (2010).

    Article  CAS  Google Scholar 

  26. 26

    Zhang, X. D. et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2013).

    Article  CAS  Google Scholar 

  27. 27

    Doblinger, M. et al. Structure elucidation of polyheptazine imide by electron diffraction — a templated 2D carbon nitride network. Chem. Commun. 2009, 1541–1543 (2009).

    Article  CAS  Google Scholar 

  28. 28

    Sundermeyer, W. Fused salts and their use as reaction media. Angew. Chem. Int. Ed. Engl. 4, 222–238 (1965).

    Article  Google Scholar 

  29. 29

    Sundermeyer, W. Chemische Reaktionen in geschmolzenen Salzen [German]. Chem. Unserer Zeit 1, 150–157 (1967).

    Article  CAS  Google Scholar 

  30. 30

    Stenzel, J. & Sundermeyer, W. Chemische reaktionen in salzschmelzen, XIV. Über die darstellung von bis-trimethylsilyl-carbodiimid und bis-trimethylsilyl-acetylen [German]. Chem. Ber. 100, 3368–3370 (1967).

    Article  CAS  Google Scholar 

  31. 31

    Sundermeyer, W. Chemische reaktionen in salzschmelzen. IV. Neue darstellungsmethode von cyaniden, cyanaten und thiocyanaten des siliciums und kohlenstoffs [German]. Z. Anorg. Allg. Chem. 313, 290–295 (1962).

    Article  Google Scholar 

  32. 32

    Verbeek, W. & Sunderme, W. Preparation of carbonyl and fluorocarbonyl pseudohalides in molten salts. Angew. Chem. Int. Ed. Engl. 6, 871–872 (1967).

    Article  CAS  Google Scholar 

  33. 33

    Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  34. 34

    Bojdys, M. J., Jeromenok, J., Thomas, A. & Antonietti, M. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater. 22, 2202–2205 (2010).

    Article  CAS  Google Scholar 

  35. 35

    Bojdys, M. J., Wohlgemuth, S. A., Thomas, A. & Antonietti, M. Ionothermal route to layered two-dimensional polymer-frameworks based on heptazine linkers. Macromolecules 43, 6639–6645 (2010).

    Article  CAS  Google Scholar 

  36. 36

    Kuhn, P., Forget, A., Su, D., Thomas, A. & Antonietti, M. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J. Am. Chem. Soc. 130, 13333–13337 (2008).

    Article  CAS  Google Scholar 

  37. 37

    Kuhn, P., Thomas, A. & Antonietti, M. Toward tailorable porous organic polymer networks: a high-temperature dynamic polymerization scheme based on aromatic nitriles. Macromolecules 42, 319–326 (2009).

    Article  CAS  Google Scholar 

  38. 38

    Bojdys, M. J., Müller, J. O., Antonietti, M. & Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14, 8177–8182 (2008).

    Article  CAS  Google Scholar 

  39. 39

    Wirnhier, E. et al. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1 − x)3·LiCl]: a crystalline 2D carbon nitride network. Chem. Eur. J. 17, 3213–3221 (2011).

    Article  CAS  Google Scholar 

  40. 40

    Schwinghammer, K. et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730–1733 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Schwinghammer, K. et al. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem. Int. Ed. 52, 2435–2439 (2013).

    Article  CAS  Google Scholar 

  42. 42

    McDermott, E. J. et al. Band gap tuning in poly(triazine imide), a nonmetallic photocatalyst. J. Phys. Chem. C 117, 8806–8812 (2013).

    Article  CAS  Google Scholar 

  43. 43

    Bojdys, M. J. et al. Exfoliation of crystalline 2D carbon nitride: thin sheets, scrolls and bundles via mechanical and chemical routes. Macromol. Rapid Commun. 34, 850–854 (2013).

    Article  CAS  Google Scholar 

  44. 44

    Chong, S. Y. et al. Tuning of gallery heights in a crystalline 2D carbon nitride network. J. Mater. Chem. A 1, 1102–1107 (2013).

    Article  CAS  Google Scholar 

  45. 45

    Fettkenhauer, C., Weber, J., Antonietti, M. & Dontsova, D. Novel carbon nitride composites with improved visible light absorption synthesized in ZnCl2-based salt melts. RSC Adv. 4, 40803–40811 (2014).

    Article  CAS  Google Scholar 

  46. 46

    Fettkenhauer, C., Clavel, G., Kailasam, K., Antoniettia, M. & Dontsova, D. Facile synthesis of new, highly efficient SnO2/carbon nitride composite photocatalysts for the hydrogen evolution reaction. Green Chem. 17, 3350–3361 (2015).

    Article  CAS  Google Scholar 

  47. 47

    Fettkenhauer, C., Wang, X. C., Kailasam, K., Antonietti, M. & Dontsova, D. Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl2 eutectics. J. Mater. Chem. A 3, 21227–21232 (2015).

    Article  CAS  Google Scholar 

  48. 48

    Ren, S. et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 24, 2357–2361 (2012).

    Article  CAS  Google Scholar 

  49. 49

    Liu, A. Y. & Wentzcovitch, R. M. Stability of carbon nitride solids. Phys. Rev. B 50, 10362–10365 (1994).

    Article  CAS  Google Scholar 

  50. 50

    Teter, D. M. & Hemley, R. J. Low-compressibility carbon nitrides. Science 271, 53–55 (1996).

    Article  CAS  Google Scholar 

  51. 51

    Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    Article  CAS  Google Scholar 

  52. 52

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  53. 53

    Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  54. 54

    Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  CAS  Google Scholar 

  55. 55

    Zheng, Y., Lin, L., Wang, B. & Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Zhang, J. et al. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem. Int. Ed. 51, 3183–3187 (2012).

    Article  CAS  Google Scholar 

  57. 57

    Zhang, J. et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49, 441–444 (2010).

    Article  CAS  Google Scholar 

  58. 58

    Ho, W. et al. Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4 . ACS Appl. Mater. Interfaces 7, 5497–5505 (2015).

    Article  CAS  Google Scholar 

  59. 59

    Lin, Z. & Wang, X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 52, 1735–1738 (2013).

    Article  CAS  Google Scholar 

  60. 60

    Zhang, G. et al. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014).

    Article  CAS  Google Scholar 

  61. 61

    Ding, Z., Chen, X., Antonietti, M. & Wang, X. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem 4, 274–281 (2011).

    CAS  Google Scholar 

  62. 62

    Ran, J., Ma, T. Y., Gao, G., Du, X.-W. & Qiao, S. Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production Energy Environ. Sci. 8, 3708–3717 (2015).

    Article  CAS  Google Scholar 

  63. 63

    Wang, X., Chen, X., Thomas, A., Fu, X. & Antonietti, M. Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Adv. Mater. 21, 1609–1612 (2009).

    Article  CAS  Google Scholar 

  64. 64

    Takanabe, K. et al. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys. 12, 13020–13025 (2010).

    Article  CAS  Google Scholar 

  65. 65

    Min, S. X. & Lu, G. X. Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J. Phys. Chem. C 116, 19644–19652 (2012).

    Article  CAS  Google Scholar 

  66. 66

    Wang, Y. B., Hong, J. D., Zhang, W. & Xu, R. Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal. Sci. Technol. 3, 1703–1711 (2013).

    Article  CAS  Google Scholar 

  67. 67

    Xu, J. Y., Li, Y. X. & Peng, S. Q. Photocatalytic hydrogen evolution over erythrosin B-sensitized graphitic carbon nitride with in situ grown molybdenum sulfide cocatalyst. Int. J. Hydrogen Energy 40, 353–362 (2015).

    Article  CAS  Google Scholar 

  68. 68

    Groenewolt, M. & Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17, 1789–1792 (2005).

    Article  CAS  Google Scholar 

  69. 69

    Chen, X. F. et al. Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 21, 4093–4095 (2009).

    Article  CAS  Google Scholar 

  70. 70

    Jiang, G. F. et al. Controllable preparation of graphitic carbon nitride nanosheets via confined interlayer nanospace of layered clays. Mater. Lett. 64, 2718–2721 (2010).

    Article  CAS  Google Scholar 

  71. 71

    Li, X. H. et al. Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chem. Mater. 23, 4344–4348 (2011).

    Article  CAS  Google Scholar 

  72. 72

    Liu, J. & Antonietti, M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy Environ. Sci. 6, 1486–1493 (2013).

    Article  CAS  Google Scholar 

  73. 73

    Zhang, J., Zhang, M., Yang, C. & Wang, X. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Zheng, Y., Lin, L., Ye, X., Guo, F. & Wang, X. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed. 53, 11926–11930 (2014).

    Article  CAS  Google Scholar 

  75. 75

    Jun, Y.-S., Hong, W. H., Antonietti, M. & Thomas, A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 21, 4270–4274 (2009).

    Article  CAS  Google Scholar 

  76. 76

    Hollmann, D. et al. Structure–activity relationships in bulk polymeric and sol–gel-derived carbon nitrides during photocatalytic hydrogen production. Chem. Mater. 26, 1727–1733 (2014).

    Article  CAS  Google Scholar 

  77. 77

    Kailasam, K., Epping, J. D., Thomas, A., Losse, S. & Junge, H. Mesoporous carbon nitride-silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 4, 4668–4674 (2011).

    Article  CAS  Google Scholar 

  78. 78

    Wang, Y., Wang, X., Antonietti, M. & Zhang, Y. Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem 3, 435–439 (2010).

    Article  CAS  Google Scholar 

  79. 79

    Yan, H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 48, 3430–3432 (2012).

    Article  CAS  Google Scholar 

  80. 80

    Wang, Y., Zhang, J., Wang, X., Antonietti, M. & Li, H. Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew. Chem. Int. Ed. Engl. 49, 3356–3359 (2010).

    Article  CAS  Google Scholar 

  81. 81

    Zhang, L. G. et al. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater. Res. Bull. 48, 3485–3491 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Lin, Z. & Wang, X. Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. ChemSusChem 7, 1547–1550 (2014).

    Article  CAS  Google Scholar 

  83. 83

    Liang, Q. H., Li, Z., Huang, Z. H., Kang, F. Y. & Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885–6892 (2015).

    Article  CAS  Google Scholar 

  84. 84

    Niu, P., Yin, L. C., Yang, Y. Q., Liu, G. & Cheng, H. M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 26, 8046–8052 (2014).

    Article  CAS  Google Scholar 

  85. 85

    Kang, Y. et al. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27, 4572–4577 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Jun, Y. S. et al. From melamine–cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661–3667 (2013).

    Article  CAS  Google Scholar 

  87. 87

    Shalom, M., Inal, S., Fettkenhauer, C., Neher, D. & Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 135, 7118–7121 (2013).

    Article  CAS  Google Scholar 

  88. 88

    Jun, Y. S. et al. Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 11083–11087 (2013).

    Article  CAS  Google Scholar 

  89. 89

    Chen, Y., Wang, B., Lin, S., Zhang, Y. & Wang, X. Activation of nπ * transitions in two-dimensional conjugated polymers for visible light photocatalysis. J. Phys. Chem. C 118, 29981–29989 (2014).

    Article  CAS  Google Scholar 

  90. 90

    Li, H. J., Qian, D. J. & Chen, M. Templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 7, 25162–25170 (2015).

    Article  CAS  Google Scholar 

  91. 91

    Yang, S. et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013).

    Article  CAS  Google Scholar 

  92. 92

    Niu, P., Zhang, L. L., Liu, G. & Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763–4770 (2012).

    Article  CAS  Google Scholar 

  93. 93

    Qiu, P. X. et al. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J. Mater. Chem. A 3, 24237–24244 (2015).

    Article  CAS  Google Scholar 

  94. 94

    Wang, W., Yu, J. C., Shen, Z., Chan, D. K. & Gu, T. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem. Commun. 50, 10148–10150 (2014).

    Article  CAS  Google Scholar 

  95. 95

    Song, Z. et al. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. Int. Ed. 55, 2773–2777 (2016).

    Article  CAS  Google Scholar 

  96. 96

    Cui, Q. et al. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew. Chem. Int. Ed. 55, 3672–3676 (2016).

    Article  CAS  Google Scholar 

  97. 97

    Schröder, M. et al. Impact of the reaction conditions on the photocatalytic reduction of water on mesoporous polymeric carbon nitride under sunlight irradiation. Int. J. Hydrogen Energy 39, 10108–10120 (2014).

    Article  CAS  Google Scholar 

  98. 98

    Zhang, J., Zhang, M., Sun, R. Q. & Wang, X. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 51, 10145–10149 (2012).

    Article  CAS  Google Scholar 

  99. 99

    Cao, S., Low, J., Yu, J. & Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015).

    Article  CAS  Google Scholar 

  100. 100

    Li, H., Liu, Y., Gao, X., Fu, C. & Wang, X. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors. ChemSusChem 8, 1189–1196 (2015).

    Article  CAS  Google Scholar 

  101. 101

    Zheng, D., Pang, C. & Wang, X. The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chem. Commun. 51, 17467–17470 (2015).

    Article  CAS  Google Scholar 

  102. 102

    Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  CAS  Google Scholar 

  103. 103

    He, Y., Zhang, L., Teng, B. & Fan, M. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 49, 649–656 (2015).

    Article  CAS  Google Scholar 

  104. 104

    Zhang, S. W. et al. Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. J. Mater. Chem. A 3, 10119–10126 (2015).

    Article  CAS  Google Scholar 

  105. 105

    Schröder, M. et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3, 1014–1017 (2015).

    Article  CAS  Google Scholar 

  106. 106

    Zhang, J., Zhang, M., Lin, L. & Wang, X. Sol processing of conjugated carbon nitride powders for thin-film fabrication. Angew. Chem. Int. Ed. 54, 6297–6301 (2015).

    Article  CAS  Google Scholar 

  107. 107

    Hou, Y. et al. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 52, 3621–3625 (2013).

    Article  CAS  Google Scholar 

  108. 108

    Zhang, G. G., Li, G. S. & Wang, X. C. Surface modification of carbon nitride polymers by core–shell nickel/nickel oxide cocatalysts for hydrogen evolution photocatalysis. ChemCatChem 7, 2864–2870 (2015).

    Article  CAS  Google Scholar 

  109. 109

    Yang, X. et al. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Appl. Mater. Interfaces 7, 15285–15293 (2015).

    Article  CAS  Google Scholar 

  110. 110

    Yang, X., Tang, H., Xu, J., Antonietti, M. & Shalom, M. Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. ChemSusChem 8, 1350–1358 (2015).

    Article  CAS  Google Scholar 

  111. 111

    Nayak, S., Mohapatra, L. & Parida, K. Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 3, 18622–18635 (2015).

    Article  CAS  Google Scholar 

  112. 112

    Wang, D., Zhang, Y. & Chen, W. A novel nickel–thiourea–triethylamine complex adsorbed on graphitic C3N4 for low-cost solar hydrogen production. Chem. Commun. 50, 1754–1756 (2014).

    Article  CAS  Google Scholar 

  113. 113

    Song, X. W. et al. Efficient photocatalytic hydrogen evolution with end-group-functionalized cobaloxime catalysts in combination with graphite-like C3N4 . RSC Adv. 4, 18853–18861 (2014).

    Article  CAS  Google Scholar 

  114. 114

    Caputo, C. A. et al. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem. Int. Ed. 53, 11538–11542 (2014).

    Article  CAS  Google Scholar 

  115. 115

    Sun, J. H. et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 3, 1139 (2012).

    Article  CAS  Google Scholar 

  116. 116

    Zhang, G. G., Zang, S. H. & Wang, X. C. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal. 5, 941–947 (2015).

    Article  CAS  Google Scholar 

  117. 117

    Zhang, G. G. et al. Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. J. Mater. Chem. A 3, 17946–17950 (2015).

    Article  CAS  Google Scholar 

  118. 118

    Zhang, J. S. et al. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4, 675–678 (2011).

    Article  CAS  Google Scholar 

  119. 119

    Chu, S. et al. Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catal. 3, 912–919 (2013).

    Article  CAS  Google Scholar 

  120. 120

    Martin, D. J., Reardon, P. J., Moniz, S. J. & Tang, J. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136, 12568–12571 (2014).

    Article  CAS  Google Scholar 

  121. 121

    Yan, J. Q. et al. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B 191, 130–137 (2016).

    Article  CAS  Google Scholar 

  122. 122

    Zhao, G. X., Huang, X. B., Fina, F., Zhang, G. & Irvine, J. T. S. Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light. Catal. Sci. Technol. 5, 3416–3422 (2015).

    Article  CAS  Google Scholar 

  123. 123

    Qin, J. N., Wang, S. B., Ren, H., Hou, Y. D. & Wang, X. C. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B 179, 1–8 (2015).

    Article  CAS  Google Scholar 

  124. 124

    Kuriki, R., Sekizawa, K., Ishitani, O. & Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 54, 2406–2409 (2015).

    Article  CAS  Google Scholar 

  125. 125

    Lin, J. L., Pan, Z. M. & Wang, X. C. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustain. Chem. Eng. 2, 353–358 (2014).

    Article  CAS  Google Scholar 

  126. 126

    Ye, X. J., Cui, Y. J., Qiu, X. Q. & Wang, X. C. Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation. Appl. Catal. B 152, 383–389 (2014).

    Article  CAS  Google Scholar 

  127. 127

    Li, H., Gan, S., Wang, H., Han, D. & Niu, L. Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 27, 6906–6913 (2015).

    Article  CAS  Google Scholar 

  128. 128

    Shi, L., Wang, T., Zhang, H. B., Chang, K. & Ye, J. H. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25, 5360–5367 (2015).

    Article  CAS  Google Scholar 

  129. 129

    Cui, Y. et al. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 14, 1455–1462 (2012).

    Article  CAS  Google Scholar 

  130. 130

    Chen, S. F., Hu, Y. F., Meng, S. G. & Fu, X. L. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 . Appl. Catal. B 150, 564–573 (2014).

    Article  CAS  Google Scholar 

  131. 131

    Zhang, Z. Y., Huang, J. D., Zhang, M. Y., Yuan, L. & Dong, B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B 163, 298–305 (2015).

    Article  CAS  Google Scholar 

  132. 132

    Yang, Y. et al. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard Mater. 271, 150–159 (2014).

    Article  CAS  Google Scholar 

  133. 133

    Sano, T. et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 1, 6489–6496 (2013).

    Article  CAS  Google Scholar 

  134. 134

    Dong, F., Wang, Z., Li, Y., Ho, W. K. & Lee, S. C. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 48, 10345–10353 (2014).

    Article  CAS  Google Scholar 

  135. 135

    Wang, W., Yu, J. C., Xia, D., Wong, P. K. & Li, Y. Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47, 8724–8732 (2013).

    Article  CAS  Google Scholar 

  136. 136

    Huang, J., Ho, W. & Wang, X. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem. Commun. 50, 4338–4340 (2014).

    Article  CAS  Google Scholar 

  137. 137

    Gong, Y. T., Li, M. M., Li, H. R. & Wang, Y. Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 17, 715–736 (2015).

    Article  CAS  Google Scholar 

  138. 138

    Goettmann, F., Fischer, A., Antonietti, M. & Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467–4471 (2006).

    Article  CAS  Google Scholar 

  139. 139

    Hong, Y. et al. In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl. Catal. B 180, 663–673 (2016).

    Article  CAS  Google Scholar 

  140. 140

    Goettmann, F., Thomas, A. & Antonietti, M. Metal-free activation of CO2 by mesoporous graphitic carbon nitride. Angew. Chem. Int. Ed. 46, 2717–2720 (2007).

    Article  CAS  Google Scholar 

  141. 141

    Su, F. et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299–16301 (2010).

    Article  CAS  Google Scholar 

  142. 142

    Long, B., Ding, Z. & Wang, X. Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. ChemSusChem 6, 2074–2078 (2013).

    Article  CAS  Google Scholar 

  143. 143

    Su, F. et al. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed. 50, 657–660 (2011).

    Article  CAS  Google Scholar 

  144. 144

    Chen, X., Zhang, J., Fu, X., Antonietti, M. & Wang, X. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009).

    Article  CAS  Google Scholar 

  145. 145

    Zhang, P. F., Gong, Y. T., Li, H. R., Chen, Z. R. & Wang, Y. Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Adv. 3, 5121–5126 (2013).

    Article  CAS  Google Scholar 

  146. 146

    Ye, X., Cui, Y. & Wang, X. Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light. ChemSusChem 7, 738–742 (2014).

    Article  CAS  Google Scholar 

  147. 147

    Merschjann, C. et al. Complementing graphenes: 1D interplanar charge transport in polymeric graphitic carbon nitrides. Adv. Mater. 27, 7993–7999 (2015).

    Article  CAS  Google Scholar 

  148. 148

    Mistry, H., Varela, A. S., Kuhl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    Article  CAS  Google Scholar 

  149. 149

    Ma, T. Y., Cao, J. L., Jaroniec, M. & Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016).

    Article  CAS  Google Scholar 

  150. 150

    Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014).

    Article  CAS  Google Scholar 

  151. 151

    Zhao, Y. et al. Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 53, 13934–13939 (2014).

    Article  CAS  Google Scholar 

  152. 152

    Liang, J. et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012).

    Article  CAS  Google Scholar 

  153. 153

    Zheng, Y. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133, 20116–20119 (2011).

    Article  CAS  Google Scholar 

  154. 154

    Hou, Y., Zuo, F., Dagg, A. P., Liu, J. & Feng, P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26, 5043–5049 (2014).

    Article  CAS  Google Scholar 

  155. 155

    Shalom, M. et al. Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 53, 3654–3658 (2014).

    Article  CAS  Google Scholar 

  156. 156

    Xu, J. et al. Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with Voc exceeding 1 V. J. Am. Chem. Soc. 136, 13486–13489 (2014).

    Article  CAS  Google Scholar 

  157. 157

    Duan, J., Chen, S., Jaroniec, M. & Qiao, S. Z. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9, 931–940 (2015).

    Article  CAS  Google Scholar 

  158. 158

    Zhao, F. et al. Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. Sci. Rep. 4, 5882 (2014).

    Article  CAS  Google Scholar 

  159. 159

    Li, H., Wang, Z., Chen, L. & Huang, X. Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009).

    Article  CAS  Google Scholar 

  160. 160

    Zhong, D. Y. et al. Lithium storage in polymerized carbon nitride nanobells. Appl. Phys. Lett. 79, 3500 (2001).

    Article  CAS  Google Scholar 

  161. 161

    Li, X. et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J. Power Sources 197, 238–245 (2012).

    Article  CAS  Google Scholar 

  162. 162

    Guerard, D. & Herold, A. Intercalation of lithium into graphite and other carbons. Carbon 13, 337–345 (1975).

    Article  CAS  Google Scholar 

  163. 163

    Veith, G. M. et al. Electrochemical and solid-state lithiation of graphitic C3N4 . Chem. Mater. 25, 503–508 (2013).

    Article  CAS  Google Scholar 

  164. 164

    Jorge, A. B., Cora, F., Sella, A., McMillan, P. F. & Brett, D. J. L. Electrochemical properties of graphitic carbon nitrides. Int. J. Nanotechnol. 11, 737–746 (2014).

    Article  CAS  Google Scholar 

  165. 165

    Mansor, N. et al. Graphitic carbon nitride supported catalysts for polymer electrolyte fuel cells. J. Phys. Chem. C 118, 6831–6838 (2014).

    Article  CAS  Google Scholar 

  166. 166

    Zhang, Y., Mori, T., Ye, J. & Antonietti, M. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132, 6294–6295 (2010).

    Article  CAS  Google Scholar 

  167. 167

    Pankove, J. I. Optical Processes in Semiconductors (Dover Publications, 1975).

    Google Scholar 

  168. 168

    Tyborski, T. et al. Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation. J. Phys. Condens. Matter 24, 162201 (2012).

    Article  CAS  Google Scholar 

  169. 169

    Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008).

    Article  CAS  Google Scholar 

  170. 170

    Wolf, H. C. The Electronic Spectra of Aromatic Molecular Crystals (New York: Academic, 1959).

    Google Scholar 

  171. 171

    Merschjann, C. et al. Photophysics of polymeric carbon nitride: an optical quasimonomer. Phys. Rev. B 87, 205204 (2013).

    Article  CAS  Google Scholar 

  172. 172

    Beljonne, D., Cornil, J., Silbey, R., Millie, P. & Bredas, J. L. Interchain interactions in conjugated materials: the exciton model versus the supermolecular approach. J. Chem. Phys. 112, 4749–4758 (2000).

    Article  CAS  Google Scholar 

  173. 173

    Zhang, H., Chen, Y., Lu, R., Li, R. & Yu, A. Charge carrier kinetics of carbon nitride colloid: a femtosecond transient absorption spectroscopy study. Phys. Chem. Chem. Phys. 18, 14904–14910 (2016).

    Article  CAS  Google Scholar 

  174. 174

    Shalom, M., Inal, S., Neher, D. & Antonietti, M. SiO2/carbon nitride composite materials: the role of surfaces for enhanced photocatalysis. Catal. Today 225, 185–190 (2014).

    Article  CAS  Google Scholar 

  175. 175

    Zhang, H. & Yu, A. Photophysics and photocatalysis of carbon nitride synthesized at different temperatures. J. Phys. Chem. C 118, 11628–11635 (2014).

    Article  CAS  Google Scholar 

  176. 176

    Wei, W. & Jacob, T. Electronic and optical properties of fluorinated graphene: a many-body perturbation theory study. Phys. Rev. B 87, 115431 (2013).

    Article  CAS  Google Scholar 

  177. 177

    Meek, G. A., Baczewski, A. D., Little, D. J. & Levine, B. G. Polaronic relaxation by three-electron bond formation in graphitic carbon nitrides. J. Phys. Chem. C 118, 4023–4032 (2014).

    Article  CAS  Google Scholar 

  178. 178

    Huda, M. N. & Turner, J. A. Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: a case study. J. Appl. Phys. 107, 123703 (2010).

    Article  CAS  Google Scholar 

  179. 179

    Amorim, C. A. et al. Determination of carrier mobility in MEH-PPV thin-films by stationary and transient current techniques. J. Non Cryst. Solids 358, 484–491 (2012).

    Article  CAS  Google Scholar 

  180. 180

    Yan, Z., Sun, Z., Liu, X., Jia, H. & Du, P. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale 8, 4748–4756 (2016).

    Article  CAS  Google Scholar 

  181. 181

    Cui, Y., Ding, Z., Fu, X. & Wang, X. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed. 51, 11814–11818 (2012).

    Article  CAS  Google Scholar 

  182. 182

    Han, Q., Wang, B., Zhao, Y., Hu, C. & Qu, L. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 54, 11433–11437 (2015).

    Article  CAS  Google Scholar 

  183. 183

    Liang, Q. et al. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 27, 4634–4639 (2015).

    Article  CAS  Google Scholar 

  184. 184

    Finkel'shtein, A. I. & Spiridonova, N. V. Chemical properties and molecular structure of derivatives of sym-heptazine [1,3,4,6,7,9,9b-heptaazaphenalene, tri-1,3,5-triazine]. Russ. Chem. Rev. 33, 400–405 (1964).

    Article  Google Scholar 

  185. 185

    Zhang, X., Peng, B., Zhang, S. & Peng, T. Robust wide visible-light-responsive photoactivity for H2 production over a polymer/polymer heterojunction photocatalyst: the significance of sacrificial reagent. ACS Sustain. Chem. Eng. 3, 1501–1509 (2015).

    Article  CAS  Google Scholar 

  186. 186

    Wang, X. X., Chen, J., Guan, X. J. & Guo, L. J. Enhanced efficiency and stability for visible light driven water splitting hydrogen production over Cd0.5Zn0.5S/g-C3N4 composite photocatalyst. Int. J. Hydrogen Energy 40, 7546–7552 (2015).

    Article  CAS  Google Scholar 

  187. 187

    Martin, D. J. et al. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014).

    Article  CAS  Google Scholar 

  188. 188

    Liu, G. et al. Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew. Chem. Int. Ed. 54, 13561–13565 (2015).

    Article  CAS  Google Scholar 

  189. 189

    Bhunia, M. K. et al. Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity. Chem. Mater. 27, 8237–8247 (2015).

    Article  CAS  Google Scholar 

  190. 190

    Xu, J., Li, Y., Peng, S., Lu, G. & Li, S. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys. Chem. Chem. Phys. 15, 7657–7665 (2013).

    Article  CAS  Google Scholar 

  191. 191

    Bhunia, M. K., Yamauchi, K. & Takanabe, K. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 53, 11001–11005 (2014).

    Article  CAS  Google Scholar 

  192. 192

    Zhang, M. W. & Wang, X. C. Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 7, 1902–1906 (2014).

    Article  CAS  Google Scholar 

  193. 193

    Hu, S. Z. et al. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014).

    Article  CAS  Google Scholar 

  194. 194

    Huang, Z. F. et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 12, 646–656 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Thomas, P. F. McMillan, E. Kroke and B. V. Lotsch for illuminating discussions. M.J.B. thanks the Czech Science Foundation (GA CR) for junior grant funding (CAMs–16-21151Y) and the European Research Council (ERC) for funding under the Starting Grant scheme (BEGMAT–678462). X.C.W thanks the National Basic Research Program of China (2013CB632405), the National Natural Science Foundation of China (21425309) and the 111 Project for financial support. C.M. thanks the Deutsche Forschungsgemeinschaft (Grant No. ME 4387/1-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bojdys.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kessler, F., Zheng, Y., Schwarz, D. et al. Functional carbon nitride materials — design strategies for electrochemical devices. Nat Rev Mater 2, 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30

Download citation

Further reading