Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering charge transport by heterostructuring solution-processed semiconductors

Abstract

Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electronic properties of organic semiconductors, quantum dots and perovskites.
Figure 2: Recombination mechanisms.
Figure 3: Charge extraction in heterostructured materials.
Figure 4: Heterostructured materials with spatial confinement of carriers for efficient luminescence.

References

  1. 1

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x . J. Chem. Soc. Chem. Commun. 1977, 578–580 (1977). The discovery of electrically conducting polymers that started the organic electronics era.

    Article  Google Scholar 

  3. 3

    Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990). One of the first demonstrations of organic LEDs.

    CAS  Article  Google Scholar 

  4. 4

    Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995). One of the earliest demonstrations of the BHJ concept that resulted in a breakthrough in polymer solar cell efficiency.

    CAS  Article  Google Scholar 

  6. 6

    Aizawa, N. et al. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nat. Commun. 5, 5756 (2014).

    Article  Google Scholar 

  7. 7

    Li, M. et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11, 85–90 (2016).

    Article  CAS  Google Scholar 

  8. 8

    Alexander Efros, L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982).

    Google Scholar 

  9. 9

    Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    CAS  Article  Google Scholar 

  10. 10

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Hines, M. A. & Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844–1849 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Micic, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R. & Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98, 4966–4969 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Dabbousi, B. O. et al. (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Nozik, A. Quantum dot solar cells. Phys. E (Amsterdam, Neth.) 14, 115–120 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 9, 891–895 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Liu, M. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2016).

    Article  CAS  Google Scholar 

  18. 18

    Diedenhofen, S. L., Kufer, D., Lasanta, T. & Konstantatos, G. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses. Light Sci. Appl. 4, e234 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). This work opened the door to new solution-processed materials (perovskites) that a decade later started a revolution in solution-processed photovoltaics and lighting.

    CAS  Article  Google Scholar 

  20. 20

    Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 . Appl. Phys. Lett. 65, 676–678 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Article  Google Scholar 

  26. 26

    Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108–115 (2017).

    CAS  Article  Google Scholar 

  27. 27

    Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    CAS  Article  Google Scholar 

  28. 28

    Yuan, Y. et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Evers, W. H. et al. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nat. Commun. 6, 8195 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557–563 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Dou, L. et al. 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642–6671 (2013). A comprehensive review of the current state-of-the-art organic photovoltaics.

    CAS  Article  Google Scholar 

  32. 32

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Salim, T. et al. Solvent additives and their effects on blend morphologies of bulk heterojunctions. J. Mater. Chem. 21, 242–250 (2010).

    Article  Google Scholar 

  34. 34

    Liu, X., Huettner, S., Rong, Z., Sommer, M. & Friend, R. H. Solvent additive control of morphology and crystallization in semiconducting polymer blends. Adv. Mater. 24, 669–674 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Gelinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Guo, X. et al. Polymer solar cells with enhanced fill factors. Nat. Photonics 7, 825–833 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Sun, Y. et al. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 11, 44–48 (2011).

    Article  CAS  Google Scholar 

  38. 38

    Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297–302 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9, 190–198 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Rath, A. K. et al. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nat. Photonics 6, 529–534 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Rath, A. K. et al. Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells. Adv. Mater. 26, 4741–4747 (2014).

    CAS  Article  Google Scholar 

  42. 42

    Tan, F. et al. Interpenetrated inorganic hybrids for efficiency enhancement of PbS quantum dot solar cells. Adv. Energy Mater. 4, 1400512 (2014).

    Article  CAS  Google Scholar 

  43. 43

    Liu, Z. et al. High-efficiency hybrid solar cells based on polymer/PbSxSe1 − x nanocrystals benefiting from vertical phase segregation. Adv. Mater. 25, 5772–5778 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).

    CAS  Article  Google Scholar 

  45. 45

    Rath, A. K., Bernechea, M., Martinez, L. & Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 23, 3712–3717 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Saha, S. K., Bera, A. & Pal, A. J. Improvement in PbS-based hybrid bulk-heterojunction solar cells through band alignment via bismuth doping in the nanocrystals. ACS Appl. Mater. Interfaces 7, 8886–8893 (2015).

    CAS  Article  Google Scholar 

  47. 47

    Choi, J. J. et al. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 10, 1805–1811 (2010). This work explores the role of ligand length on the interplay between exciton binding energy and mobility in quantum dot solids, the possibility of exciton dissociation, and thus the key difference between nanocrystalline and organic photovoltaics.

    CAS  Article  Google Scholar 

  48. 48

    Zhitomirsky, D. et al. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat. Commun. 5, 3803 (2014). This work explores the limiting factors for nanocrystal photovoltaic performance, showing the importance of electronic traps as opposed to carrier mobility.

    CAS  Article  Google Scholar 

  49. 49

    Ip, A. H. et al. Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano 9, 8833–8842 (2015).

    CAS  Article  Google Scholar 

  50. 50

    Carey, G. H., Levina, L., Comin, R., Voznyy, O. & Sargent, E. H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv. Mater. 27, 3325–3330 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Yang, Z. et al. Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 15, 7539–7543 (2015).

    CAS  Article  Google Scholar 

  52. 52

    Neo, D. C. J. et al. Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 26, 4004–4013 (2014).

    CAS  Article  Google Scholar 

  53. 53

    Scheele, M., Brütting, W. & Schreiber, F. Coupled organic–inorganic nanostructures (COIN). Phys. Chem. Chem. Phys. 17, 97–111 (2014).

    Article  CAS  Google Scholar 

  54. 54

    Scheele, M. et al. PbS nanoparticles capped with tetrathiafulvalenetetracarboxylate: utilizing energy level alignment for efficient carrier transport. ACS Nano 8, 2532–2540 (2014).

    CAS  Article  Google Scholar 

  55. 55

    André, A. et al. Toward conductive mesocrystalline assemblies: PbS nanocrystals cross-linked with tetrathiafulvalene dicarboxylate. Chem. Mater. 27, 8105–8115 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009). The first demonstration of a solution-phase ligand exchange to small molecular and atomic ligands, expanding the library of solvents for quantum dots and allowing for much enhanced electrical conductivity of quantum dot solids.

    CAS  Article  Google Scholar 

  57. 57

    Ning, Z., Dong, H., Zhang, Q., Voznyy, O. & Sargent, E. H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 8, 10321–10327 (2014).

    CAS  Article  Google Scholar 

  58. 58

    Fischer, A. et al. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Adv. Mater. 25, 5742–5749 (2013).

    CAS  Article  Google Scholar 

  59. 59

    Zhang, H., Jang, J., Liu, W. & Talapin, D. V. Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands. ACS Nano 8, 7359–7369 (2014).

    CAS  Article  Google Scholar 

  60. 60

    Kramer, I. J. et al. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv. Mater. 24, 2315–2319 (2012).

    CAS  Article  Google Scholar 

  61. 61

    Lan, X. et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013).

    CAS  Article  Google Scholar 

  62. 62

    Jean, J. et al. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv. Mater. 25, 2790–2796 (2013).

    CAS  Article  Google Scholar 

  63. 63

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  CAS  Google Scholar 

  64. 64

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    CAS  Article  Google Scholar 

  65. 65

    Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

    CAS  Article  Google Scholar 

  66. 66

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Article  Google Scholar 

  67. 67

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). The first solution-processed single-crystal lead halide perovskites with electronic properties approaching those of ultrahigh purity conventional bulk semiconductors.

    CAS  Article  Google Scholar 

  68. 68

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    CAS  Article  Google Scholar 

  69. 69

    Wang, Z. et al. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv. Mater. 29, 1604186 (2016).

    Article  CAS  Google Scholar 

  70. 70

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Article  Google Scholar 

  71. 71

    Saran, R., Stolojan, V. & Curry, R. J. Ultrahigh performance C60 nanorod large area flexible photoconductor devices via ultralow organic and inorganic photodoping. Sci. Rep. 4, 5041 (2014).

    CAS  Article  Google Scholar 

  72. 72

    García de Arquer, F. P. et al. Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2016).

    Article  CAS  Google Scholar 

  73. 73

    Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015). One of the first demonstrations of a truly hybrid material in which two disparate materials, lead sulfide and perovskite, are intimately matched to form light-emissive quantum dots inside a conductive matrix.

    CAS  Article  Google Scholar 

  74. 74

    Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015).

    Article  CAS  Google Scholar 

  75. 75

    Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011).

    CAS  Article  Google Scholar 

  76. 76

    Lee, C. W. & Lee, J. Y. High quantum efficiency in solution and vacuum processed blue phosphorescent organic light emitting diodes using a novel benzofuropyridine-based bipolar host material. Adv. Mater. 25, 596–600 (2013).

    CAS  Article  Google Scholar 

  77. 77

    Perumal, A. et al. High-efficiency, solution-processed, multilayer phosphorescent organic light-emitting diodes with a copper thiocyanate hole-injection/hole-transport layer. Adv. Mater. 27, 93–100 (2015).

    CAS  Article  Google Scholar 

  78. 78

    Feng, Y. et al. A novel bipolar phosphorescent host for highly efficient deep-red OLEDs at a wide luminance range of 1000–10,000 cd m−2. Chem. Commun. 51, 12544–12547 (2015).

    CAS  Article  Google Scholar 

  79. 79

    Yook, K. S. & Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 26, 4218–4233 (2014).

    CAS  Article  Google Scholar 

  80. 80

    Li, W., Li, J. & Wang, M. Organic host materials for solution-processed phosphorescent organic light-emitting diodes. Isr. J. Chem. 54, 867–884 (2014).

    CAS  Article  Google Scholar 

  81. 81

    Ho, S., Liu, S., Chen, Y. & So, F. Review of recent progress in multilayer solution-processed organic light-emitting diodes. J. Photonics Energy 5, 057611 (2015).

    Article  CAS  Google Scholar 

  82. 82

    Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9, 259–266 (2015).

    CAS  Article  Google Scholar 

  83. 83

    Supran, G. J. et al. High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 27, 1437–1442 (2015).

    CAS  Article  Google Scholar 

  84. 84

    Tessler, N. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    Article  Google Scholar 

  85. 85

    Kang, B.-H. et al. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Opt. Express 18, 18303–18311 (2010).

    CAS  Article  Google Scholar 

  86. 86

    Greenham, N. C., Peng, X. & Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996).

    CAS  Article  Google Scholar 

  87. 87

    Kovalenko, M. V., Schaller, R. D., Jarzab, D., Loi, M. A. & Talapin, D. V. Inorganically functionalized PbS–CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 134, 2457–2460 (2012).

    CAS  Article  Google Scholar 

  88. 88

    Moroz, P. et al. Infrared emitting PbS nanocrystal solids through matrix encapsulation. Chem. Mater. 26, 4256–4264 (2014).

    CAS  Article  Google Scholar 

  89. 89

    Kyu Kim, J. et al. Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes. Sci. Rep. 5, 11032 (2015).

    Article  CAS  Google Scholar 

  90. 90

    Ngo, T. T., Suarez, I., Sanchez, R. S., Martinez-Pastor, J. P. & Mora-Sero, I. Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots. Nanoscale 8, 14379–14383 (2016).

    CAS  Article  Google Scholar 

  91. 91

    Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10, 253–257 (2016).

    CAS  Article  Google Scholar 

  92. 92

    Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    CAS  Article  Google Scholar 

  93. 93

    Sapori, D., Kepenekian, M., Pedesseau, L., Katan, C. & Even, J. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic–inorganic perovskites. Nanoscale 8, 6369–6378 (2016).

    CAS  Article  Google Scholar 

  94. 94

    Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444–449 (2015).

    CAS  Article  Google Scholar 

  95. 95

    Li, H., Wu, Z., Zhou, T., Sellinger, A. & Lusk, M. T. Double superexchange in quantum dot mesomaterials. Energy Environ. Sci. 7, 1023–1028 (2014).

    Article  CAS  Google Scholar 

  96. 96

    Dasgupta, U., Bera, A. & Pal, A. J. pn-Junction nanorods in a polymer matrix: a paradigm shift from conventional hybrid bulk-heterojunction solar cells. Sol. Energy Mater. Sol. Cells 143, 319–325 (2015).

    CAS  Article  Google Scholar 

  97. 97

    Brown, P. R. et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863–5872 (2014).

    CAS  Article  Google Scholar 

  98. 98

    Dolzhnikov, D. S. et al. Composition-matched molecular ‘solders’ for semiconductors. Science 347, 425–428 (2015).

    CAS  Article  Google Scholar 

  99. 99

    Panthani, M. G. et al. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett. 14, 670–675 (2014).

    CAS  Article  Google Scholar 

  100. 100

    Di, D. et al. Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix. J. Phys. Chem. Lett. 6, 446–450 (2015).

    CAS  Article  Google Scholar 

  101. 101

    Jemli, K. et al. Two-dimensional perovskite activation with an organic luminophore. ACS Appl. Mater. Interfaces 7, 21763–21769 (2015).

    CAS  Article  Google Scholar 

  102. 102

    Jasim, K. E. in Solar Cells — New Approaches and Reviews Ch. 11 (ed. Kosyachenko, L. A. ) (InTech, 2015).

    Google Scholar 

  103. 103

    Köhler, A. Organic semiconductors: no more breaks for electrons. Nat. Mater. 11, 836–837 (2012).

    Article  CAS  Google Scholar 

  104. 104

    Kraner, S., Scholz, R., Koerner, C. & Leo, K. Design proposals for organic materials exhibiting a low exciton binding energy. J. Phys. Chem. C 119, 22820–22825 (2015).

    CAS  Article  Google Scholar 

  105. 105

    Yazdani, N., Bozyigit, D., Yarema, O., Yarema, M. & Wood, V. Hole mobility in nanocrystal solids as a function of constituent nanocrystal size. J. Phys. Chem. Lett. 5, 3522–3527 (2014).

    CAS  Article  Google Scholar 

  106. 106

    Meulenberg, R. W. et al. Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 3, 325–330 (2009).

    CAS  Article  Google Scholar 

  107. 107

    Leijtens, T. et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147–7155 (2014).

    CAS  Article  Google Scholar 

  108. 108

    Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voznyy, O., Sutherland, B., Ip, A. et al. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat Rev Mater 2, 17026 (2017). https://doi.org/10.1038/natrevmats.2017.26

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing