Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rethinking cancer nanotheranostics

Abstract

Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau ‘nanotheranostics’. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle–tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Historical timeline of key advances in cancer nanotheranostics.
Figure 2: Nanotheranostics for cancer diagnosis.
Figure 3: Applications of nanotheranostics in cancer therapy.
Figure 4: Tumour characteristics that affect the intratumoural fates of nanotheranostics.
Figure 5: Nanotheranostics for drug-release monitoring.

References

  1. 1

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). This perspective stimulates an interesting discussion on the efficiency of nanoparticle delivery to tumours.

    Article  CAS  Google Scholar 

  2. 2

    Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  3. 3

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  4. 4

    Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4, 81–89 (2013).

    Article  CAS  Google Scholar 

  5. 5

    Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    Article  CAS  Google Scholar 

  6. 6

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  Google Scholar 

  7. 7

    Rajora, A. K., Ravishankar, D., Osborn, H. M. I. & Greco, F. Impact of the enhanced permeability and retention (EPR) effect and cathepsins levels on the activity of polymer–drug conjugates. Polymers 6, 2186–2220 (2014).

    Article  CAS  Google Scholar 

  8. 8

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). A noteworthy and comprehensive review on cancer nanomedicine development.

    Article  CAS  Google Scholar 

  9. 9

    Kim, T. H., Lee, S. & Chen, X. Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn. 13, 257–269 (2013).

    Article  CAS  Google Scholar 

  10. 10

    Mura, S. & Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64, 1394–1416 (2012).

    Article  CAS  Google Scholar 

  11. 11

    Kunjachan, S., Ehling, J., Storm, G., Kiessling, F. & Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem. Rev. 115, 10907–10937 (2015).

    Article  CAS  Google Scholar 

  12. 12

    Melancon, M. P., Stafford, R. J. & Li, C. Challenges to effective cancer nanotheranostics. J. Control. Release 164, 177–182 (2012).

    Article  CAS  Google Scholar 

  13. 13

    Mura, S. & Couvreur, P. Nanotheranostics for Personalized Medicine (World Scientific, 2016).

    Book  Google Scholar 

  14. 14

    Karathanasis, E. et al. Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250, 398–406 (2009).

    Article  Google Scholar 

  15. 15

    Hansen, A. E. et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9, 6985–6995 (2015).

    Article  CAS  Google Scholar 

  16. 16

    Harrington, K. J. et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res. 7, 243–254 (2001).

    CAS  Google Scholar 

  17. 17

    Seymour, L. W. et al. Phase II studies of polymer–doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629–1636 (2009). A clinical study showing that a radiolabelled polymer–drug formulation, which is essentially a nanotheranostic, can be used to predict patient responses to nanoparticle therapy.

    Article  CAS  Google Scholar 

  18. 18

    Arrieta, O. et al. First-line chemotherapy with liposomal doxorubicin plus cisplatin for patients with advanced malignant pleural mesothelioma: phase II trial. Br. J. Cancer 106, 1027–1032 (2012).

    Article  CAS  Google Scholar 

  19. 19

    Arrieta, O. et al. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with (99m)Tc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal doxorubicin and cisplatin. Cancer Chemother. Pharmacol. 74, 211–215 (2014).

    Article  CAS  Google Scholar 

  20. 20

    Hamburg, M. A. & Collins, F. S. The path to personalized medicine. N. Engl. J. Med. 363, 301–304 (2010).

    Article  CAS  Google Scholar 

  21. 21

    Weissleder, R., Schwaiger, M. C., Gambhir, S. S. & Hricak, H. Imaging approaches to optimize molecular therapies. Sci. Transl. Med. 8, 355ps16 (2016).

    Article  CAS  Google Scholar 

  22. 22

    Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7, 314ra183 (2015). This study demonstrates the use of a clinically used nanoparticle formulation as a probe to accurately predict tumour accumulation and treatment efficacy of a range of nanotherapeutics.

    Article  Google Scholar 

  23. 23

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01770353 (2017).

  24. 24

    Pérez-Medina, C. et al. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat. Commun. 7, 11838 (2016).

    Article  CAS  Google Scholar 

  25. 25

    Miao, L. & Huang, L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat. Res. 166, 193–226 (2015).

    Article  CAS  Google Scholar 

  26. 26

    Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  27. 27

    Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9, 223–243 (2014).

    Article  CAS  Google Scholar 

  28. 28

    Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    Article  CAS  Google Scholar 

  29. 29

    Nakamura, Y., Mochida, A., Choyke, P. L. & Kobayashi, H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27, 2225–2238 (2016).

    Article  CAS  Google Scholar 

  30. 30

    Lee, J., Abdeen, A. A., Wycislo, K. L., Fan, T. M. & Kilian, K. A. Interfacial geometry dictates cancer cell tumorigenicity. Nat. Mater. 15, 856–862 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Manzoor, A. A. et al. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 72, 5566–5575 (2012).

    Article  CAS  Google Scholar 

  32. 32

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT00617981 (2017).

  33. 33

    Smith, B. R. et al. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 9, 481–487 (2014).

    Article  CAS  Google Scholar 

  34. 34

    Matsumoto, Y. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 11, 533–538 (2016).

    Article  CAS  Google Scholar 

  35. 35

    Huang, J. et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater. 26, 3818–3836 (2016).

    Article  CAS  Google Scholar 

  36. 36

    Kaida, S. et al. Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res. 70, 7031–7041 (2010).

    Article  CAS  Google Scholar 

  37. 37

    Viglianti, B. L. et al. Chemodosimetry of in vivo tumor liposomal drug concentration using MRI. Magn. Reson. Med. 56, 1011–1018 (2006).

    Article  CAS  Google Scholar 

  38. 38

    Ponce, A. M. et al. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J. Natl Cancer Inst. 99, 53–63 (2007).

    Article  CAS  Google Scholar 

  39. 39

    Wang, D. et al. Novel dexamethasone–HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 9, R2 (2007).

    Article  Google Scholar 

  40. 40

    Kaittanis, C. et al. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 5, 3384 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Zhao, Z. et al. Real-time monitoring of arsenic trioxide release and delivery by activatable T1 imaging. ACS Nano 9, 2749–2759 (2015).

    Article  CAS  Google Scholar 

  42. 42

    Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014).

    Article  CAS  Google Scholar 

  43. 43

    Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  44. 44

    Gasselhuber, A. et al. Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivo validation. Int. J. Hyperthermia 28, 337–348 (2012).

    Article  CAS  Google Scholar 

  45. 45

    Hsiao, Y. H., Kuo, S. J., Tsai, H. D., Chou, M. C. & Yeh, G. P. Clinical application of high-intensity focused ultrasound in cancer therapy. J. Cancer 7, 225–231 (2016).

    Article  CAS  Google Scholar 

  46. 46

    You, Y. et al. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale 8, 4324–4339 (2016).

    Article  CAS  Google Scholar 

  47. 47

    Onuki, Y., Jacobs, I., Artemov, D. & Kato, Y. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique. Biomaterials 31, 7132–7138 (2010).

    Article  CAS  Google Scholar 

  48. 48

    Langereis, S. et al. A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J. Am. Chem. Soc. 131, 1380–1381 (2009).

    Article  CAS  Google Scholar 

  49. 49

    Zhu, X. et al. Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc. Natl Acad. Sci. USA 112, 7779–7784 (2015).

    Article  CAS  Google Scholar 

  50. 50

    Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  Google Scholar 

  51. 51

    Kormann, M. S. D. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article  CAS  Google Scholar 

  52. 52

    Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    Article  CAS  Google Scholar 

  53. 53

    Lecaros, R. L., Huang, L., Lee, T. C. & Hsu, Y. C. Nanoparticle delivered VEGF-A siRNA enhances photodynamic therapy for head and neck cancer treatment. Mol. Ther. 24, 106–116 (2016).

    Article  CAS  Google Scholar 

  54. 54

    Muhanna, N. et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models. Theranostics 5, 1428–1443 (2015).

    Article  CAS  Google Scholar 

  55. 55

    Jin, C. S. et al. Nanoparticle-enabled selective destruction of prostate tumor using MRI-guided focal photothermal therapy. Prostate 76, 1169–1181 (2016).

    Article  CAS  Google Scholar 

  56. 56

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02680535 (2016).

  57. 57

    Muhanna, N. et al. Multimodal image-guided surgical and photodynamic interventions in head and neck cancer: from primary tumor to metastatic drainage. Clin. Cancer Res. 22, 961–970 (2016).

    Article  CAS  Google Scholar 

  58. 58

    Lin, J. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013).

    Article  CAS  Google Scholar 

  59. 59

    Lin, J. et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection. Adv. Mater. 28, 3273–3279 (2016).

    Article  CAS  Google Scholar 

  60. 60

    Lu, W. et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 71, 6116–6121 (2011).

    Article  CAS  Google Scholar 

  61. 61

    Kim, J. W., Galanzha, E. I., Shashkov, E. V., Moon, H. M. & Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 4, 688–694 (2009).

    Article  CAS  Google Scholar 

  62. 62

    Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012).

    Article  CAS  Google Scholar 

  63. 63

    Strom, H. H. et al. Concurrent palliative chemoradiation leads to survival and quality of life benefits in poor prognosis stage III non-small-cell lung cancer: a randomised trial by the Norwegian lung cancer study group. Br. J. Cancer 109, 1467–1475 (2013).

    Article  CAS  Google Scholar 

  64. 64

    Lukianova-Hleb, E. Y. et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med. 20, 778–784 (2014).

    Article  CAS  Google Scholar 

  65. 65

    Begg, A. C., Stewart, F. A. & Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 11, 239–253 (2011).

    Article  CAS  Google Scholar 

  66. 66

    Adams, S. R. et al. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat. Commun. 7, 13019 (2016).

    Article  CAS  Google Scholar 

  67. 67

    Strom, T. J. et al. Increased acute mortality with chemoradiotherapy for locally advanced head and neck cancer in patients ≥70 years. J. Geriatr. Oncol. 8, 50–55 (2017).

    Article  Google Scholar 

  68. 68

    Koukourakis, M. I. et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol. 17, 3512–3521 (1999).

    Article  CAS  Google Scholar 

  69. 69

    Eblan, M. J. & Wang, A. Z. Improving chemoradiotherapy with nanoparticle therapeutics. Transl Cancer Res. 2, 320–329 (2013).

    CAS  Google Scholar 

  70. 70

    Werner, M. E. et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 86, 463–468 (2013).

    Article  CAS  Google Scholar 

  71. 71

    Wang, E. C. et al. Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials 51, 208–215 (2015).

    Article  CAS  Google Scholar 

  72. 72

    Caster, J. M. et al. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale 7, 2805–2811 (2015).

    Article  CAS  Google Scholar 

  73. 73

    Karve, S. et al. Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc. Natl Acad. Sci. USA 109, 8230–8235 (2012).

    Article  Google Scholar 

  74. 74

    Baumann, M. et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 16, 234–249 (2016).

    Article  CAS  Google Scholar 

  75. 75

    Kunjachan, S. et al. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett. 15, 7488–7496 (2015).

    Article  CAS  Google Scholar 

  76. 76

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02379845?term (2017).

  77. 77

    Bonvalot, S. et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 23, 908–917 (2017). A first-in-human study which uses hafnium oxide nanoparticles (NBTXR3) as radiosensitizers to aid cancer therapy.

    Article  CAS  Google Scholar 

  78. 78

    Kotb, S. et al. Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics 6, 418–427 (2016).

    Article  CAS  Google Scholar 

  79. 79

    Detappe, A. et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J. Control. Release 238, 103–113 (2016).

    Article  CAS  Google Scholar 

  80. 80

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02820454 (2016).

  81. 81

    Chen, W. & Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 6, 1159–1166 (2006).

    Article  CAS  Google Scholar 

  82. 82

    Pogue, B. W. et al. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 63, 1025–1033 (2003).

    CAS  Google Scholar 

  83. 83

    Bulin, A. L. et al. X-Ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J. Phys. Chem. C 117, 21583–21589 (2013).

    Article  CAS  Google Scholar 

  84. 84

    Tang, Y. G., Hu, J., Elmenoufy, A. H. & Yang, X. L. Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Appl. Mater. Interfaces 7, 12261–12269 (2015).

    Article  CAS  Google Scholar 

  85. 85

    Chen, H. et al. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett. 15, 2249–2256 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Wang, G. D. et al. X-Ray induced photodynamic therapy: a combination of radiotherapy and photodynamic therapy. Theranostics 6, 2295–2305 (2016).

    Article  CAS  Google Scholar 

  87. 87

    Kotagiri, N., Sudlow, G. P., Akers, W. J. & Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 10, 370–379 (2015).

    Article  CAS  Google Scholar 

  88. 88

    Lukianova-Hleb, E. Y. et al. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol. 11, 525–532 (2016).

    Article  CAS  Google Scholar 

  89. 89

    Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI–photoacoustic–Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    Article  CAS  Google Scholar 

  90. 90

    Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014).

    Article  CAS  Google Scholar 

  91. 91

    Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  CAS  Google Scholar 

  92. 92

    Brindle, K. New approaches for imaging tumour responses to treatment. Nat. Rev. Cancer 8, 94–107 (2008).

    Article  CAS  Google Scholar 

  93. 93

    Shuhendler, A. J. et al. Molecular magnetic resonance imaging of tumor response to therapy. Sci. Rep. 5, 14759 (2015).

    Article  CAS  Google Scholar 

  94. 94

    Bussink, J., Kaanders, J. H., van der Graaf, W. T. & Oyen, W. J. PET–CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat. Rev. Clin. Oncol. 8, 233–242 (2011).

    Article  Google Scholar 

  95. 95

    Jorgensen, J. T. et al. Single particle and PET-based platform for identifying optimal plasmonic mano-heaters for photothermal cancer therapy. Sci. Rep. 6, 30076 (2016).

    Article  CAS  Google Scholar 

  96. 96

    Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Mi, P. et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11, 724–730 (2016).

    Article  CAS  Google Scholar 

  98. 98

    Lee, S., Xie, J. & Chen, X. Activatable molecular probes for cancer imaging. Curr. Top. Med. Chem. 10, 1135–1144 (2010).

    Article  CAS  Google Scholar 

  99. 99

    Guo, J. et al. 18F-alfatide ii and 18F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J. Nucl. Med. 55, 154–160 (2014).

    Article  CAS  Google Scholar 

  100. 100

    Sun, X. et al. 18F-FPPRGD2 and 18F-FDG PET of response to abraxane therapy. J. Nucl. Med. 52, 140–146 (2011).

    Article  Google Scholar 

  101. 101

    Notohamiprodjo, M. et al. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma. Acad. Radiol. 20, 685–693 (2013).

    Article  Google Scholar 

  102. 102

    Mittra, E. S. et al. Pilot pharmacokinetic and dosimetric studies of 18F-FPPRGD2: a PET radiopharmaceutical agent for imaging αvβ3 integrin levels. Radiology 260, 182–191 (2011).

    Article  Google Scholar 

  103. 103

    Park, S. Y. et al. Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur. J. Radiol. 83, 2114–2121 (2014).

    Article  Google Scholar 

  104. 104

    Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

    Article  CAS  Google Scholar 

  105. 105

    Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    Article  CAS  Google Scholar 

  106. 106

    Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  Google Scholar 

  107. 107

    Taurin, S., Nehoff, H. & Greish, K. Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J. Control. Release 164, 265–275 (2012).

    Article  CAS  Google Scholar 

  108. 108

    Toy, R. et al. Multimodal in vivo imaging exposes the voyage of nanoparticles in tumor microcirculation. ACS Nano 7, 3118–3129 (2013). A good example of using multiple imaging methods to comprehensively characterize tumours and understand the impact of individual factors on nanoparticle–tumour interactions.

    Article  CAS  Google Scholar 

  109. 109

    Ullrich, R. T. et al. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice. PLoS ONE 6, e19592 (2011).

    Article  CAS  Google Scholar 

  110. 110

    Theek, B. et al. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J. Control. Release 182, 83–89 (2014).

    Article  CAS  Google Scholar 

  111. 111

    Chen, B. et al. Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clin. Cancer Res. 12, 917–923 (2006).

    Article  CAS  Google Scholar 

  112. 112

    Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    Article  CAS  Google Scholar 

  113. 113

    Jain, R. Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed. 26, 1042–1049 (2013).

    Article  Google Scholar 

  114. 114

    Goyen, M. Gadofosveset-enhanced magnetic resonance angiography. Vasc. Health Risk Manag. 4, 1–9 (2008).

    Article  CAS  Google Scholar 

  115. 115

    Niu, G. et al. In vivo labeling of serum albumin for PET. J. Nucl. Med. 55, 1150–1156 (2014).

    Article  CAS  Google Scholar 

  116. 116

    Zhang, J. et al. Clinical translation of an albumin-binding PET radiotracer 68Ga-NEB. J. Nucl. Med. 56, 1609–1614 (2015).

    Article  CAS  Google Scholar 

  117. 117

    Zhang, W. et al. Potential applications of using 68Ga-Evans blue PET/CT in the evaluation of lymphatic disorder: preliminary observations. Clin. Nucl. Med. 41, 302–308 (2016).

    Article  Google Scholar 

  118. 118

    Stapleton, S. et al. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors. PLoS ONE 8, e81157 (2013).

    Article  CAS  Google Scholar 

  119. 119

    Wong, A. D., Ye, M., Ulmschneider, M. B. & Searson, P. C. Quantitative analysis of the enhanced permeation and retention (EPR) effect. PLoS ONE 10, e0123461 (2015).

    Article  CAS  Google Scholar 

  120. 120

    Tang, L. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl Acad. Sci. USA 111, 15344–15349 (2014).

    Article  CAS  Google Scholar 

  121. 121

    Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011). A systematic study that compared the accumulation and therapeutic efficacy of different-sized, long-circulating, drug-loaded polymeric micelles. The study was conducted in animals bearing tumours of either high or low permeability.

    Article  CAS  Google Scholar 

  122. 122

    Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    Article  CAS  Google Scholar 

  123. 123

    Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles–cell association based on corona proteins and physicochemical properties. Nanoscale 7, 9664–9675 (2015).

    Article  CAS  Google Scholar 

  124. 124

    Wu, W. et al. Tumor-targeted aggregation of pH-sensitive nanocarriers for enhanced retention and rapid intracellular drug release. Polymer Chem. 5, 5668–5679 (2014).

    Article  CAS  Google Scholar 

  125. 125

    Zhang, D. et al. In situ formation of nanofibers from purpurin 18–peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 27, 6125–6130 (2015).

    Article  CAS  Google Scholar 

  126. 126

    Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011).

    Article  Google Scholar 

  127. 127

    Li, H. J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    Article  CAS  Google Scholar 

  128. 128

    Xu, R. et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol. 34, 414–418 (2016).

    Article  CAS  Google Scholar 

  129. 129

    Lee, C. G. et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60, 5565–5570 (2000).

    CAS  Google Scholar 

  130. 130

    Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  CAS  Google Scholar 

  131. 131

    Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004).

    Article  CAS  Google Scholar 

  132. 132

    Heist, R. S. et al. Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer. Proc. Natl Acad. Sci. USA 112, 1547–1552 (2015).

    Article  CAS  Google Scholar 

  133. 133

    Pham, E. et al. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res. 76, 4493–4503 (2016).

    Article  CAS  Google Scholar 

  134. 134

    Nehoff, H., Parayath, N. N., Domanovitch, L., Taurin, S. & Greish, K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int. J. Nanomed. 9, 2539–2555 (2014).

    Google Scholar 

  135. 135

    Snyder, J. W., Greco, W. R., Bellnier, D. A., Vaughan, L. & Henderson, B. W. Photodynamic therapy: a means to enhanced drug delivery to tumors. Cancer Res. 63, 8126–8131 (2003).

    CAS  Google Scholar 

  136. 136

    Zhen, Z. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 8, 6004–6013 (2014).

    Article  CAS  Google Scholar 

  137. 137

    Carpentier, A. et al. Clinical trial of blood–brain barrier disruption by pulsed ultrasound. Sci. Transl Med. 8, 343re2 (2016). A first-in-human trial showing initial successes on disrupting the blood–brain barrier with ultrasound.

    Article  CAS  Google Scholar 

  138. 138

    Leinenga, G. & Gotz, J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Sci. Transl. Med. 7, 278ra33 (2015).

    Article  CAS  Google Scholar 

  139. 139

    Kobayashi, H. et al. Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin. Cancer Res. 10, 7712–7720 (2004).

    Article  CAS  Google Scholar 

  140. 140

    Sano, K., Nakajima, T., Choyke, P. L. & Kobayashi, H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 7, 717–724 (2013).

    Article  CAS  Google Scholar 

  141. 141

    Suzuki, M., Hori, K., Abe, I., Saito, S. & Sato, H. A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin ii. J. Natl Cancer Inst. 67, 663–669 (1981).

    CAS  Google Scholar 

  142. 142

    Li, C. J., Miyamoto, Y., Kojima, Y. & Maeda, H. Augmentation of tumour delivery of macromolecular drugs with reduced bone marrow delivery by elevating blood pressure. Br. J. Cancer 67, 975–980 (1993).

    Article  CAS  Google Scholar 

  143. 143

    Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen i synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    Article  Google Scholar 

  144. 144

    Buckway, B., Frazier, N., Gormley, A. J., Ray, A. & Ghandehari, H. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer–90Y conjugates in treatment of prostate tumors. Nucl. Med. Biol. 41, 282–289 (2014).

    Article  CAS  Google Scholar 

  145. 145

    Tamarov, K. P. et al. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci. Rep. 4, 7034 (2014).

    Article  CAS  Google Scholar 

  146. 146

    Yin, D. et al. Convection-enhanced delivery improves distribution and efficacy of tumor-selective retroviral replicating vectors in a rodent brain tumor model. Cancer Gene Ther. 20, 336–341 (2013).

    Article  CAS  Google Scholar 

  147. 147

    Perlstein, B. et al. Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring. Neuro Oncol. 10, 153–161 (2008).

    Article  CAS  Google Scholar 

  148. 148

    McNeil, S. E. Evaluation of nanomedicines: stick to the basics. Nat. Rev. Mater. 1, 16073 (2016).

    Article  Google Scholar 

  149. 149

    Lammers, T. et al. Cancer nanomedicine: is targeting our target? Nat. Rev. Mater. 1, 16069 (2016).

    Article  CAS  Google Scholar 

  150. 150

    Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    Article  CAS  Google Scholar 

  151. 151

    Scuffham, P. A. et al. Using N-of-1 trials to improve patient management and save costs. J. Gen. Intern. Med. 25, 906–913 (2010).

    Article  Google Scholar 

  152. 152

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02116621 (2015).

  153. 153

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02142036 (2017).

  154. 154

    Irvine, D. J. Materializing the future of vaccines and immunotherapy. Nat. Rev. Mater. 1, 15008 (2016).

    Article  CAS  Google Scholar 

  155. 155

    Hubbell, J. A., Thomas, S. N. & Swartz, M. A. Materials engineering for immunomodulation. Nature 462, 449–460 (2009).

    Article  CAS  Google Scholar 

  156. 156

    Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  Google Scholar 

  157. 157

    Rosenberg, S. A. Raising the bar: the curative potential of human cancer immunotherapy. Sci. Transl Med. 4, 127ps8 (2012).

    Article  CAS  Google Scholar 

  158. 158

    Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med. 19, 465–472 (2013).

    Article  CAS  Google Scholar 

  159. 159

    Moon, J. J., Huang, B. & Irvine, D. J. Engineering nano- and microparticles to tune immunity. Adv. Mater. 24, 3724–3746 (2012).

    Article  CAS  Google Scholar 

  160. 160

    Irvine, D. J., Hanson, M. C., Rakhra, K. & Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115, 11109–11146 (2015).

    Article  CAS  Google Scholar 

  161. 161

    Zhu, G. et al. DNA–inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale 8, 6684–6692 (2016).

    Article  CAS  Google Scholar 

  162. 162

    Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    Article  CAS  Google Scholar 

  163. 163

    Nguyen, D. N. et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl Acad. Sci. USA 109, E797–E803 (2012).

    Article  Google Scholar 

  164. 164

    Jeanbart, L. & Swartz, M. A. Engineering opportunities in cancer immunotherapy. Proc. Natl Acad. Sci. USA 112, 14467–14472 (2015).

    Article  CAS  Google Scholar 

  165. 165

    Shao, K. et al. Nanoparticle-based immunotherapy for cancer. ACS Nano 9, 16–30 (2015).

    Article  CAS  Google Scholar 

  166. 166

    Radovic-Moreno, A. F. et al. Immunomodulatory spherical nucleic acids. Proc. Natl Acad. Sci. USA 112, 3892–3897 (2015).

    Article  CAS  Google Scholar 

  167. 167

    Koshy, S. T., Cheung, A. S., Gu, L., Graveline, A. R. & Mooney, D. J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosystems 1, 1600013 (2017).

    Article  CAS  Google Scholar 

  168. 168

    Hanson, M. C. et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J. Clin. Invest. 125, 2532–2546 (2015).

    Article  Google Scholar 

  169. 169

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  CAS  Google Scholar 

  170. 170

    Guo, Y. et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 9, 6918–6933 (2015).

    Article  CAS  Google Scholar 

  171. 171

    Fang, R. H. et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14, 2181–2188 (2014).

    Article  CAS  Google Scholar 

  172. 172

    Cheung, A. S., Koshy, S. T., Stafford, A. G., Bastings, M. M. C. & Mooney, D. J. Adjuvant-loaded subcellular vesicles derived from disrupted cancer cells for cancer vaccination. Small 12, 2321–2333 (2016).

    Article  CAS  Google Scholar 

  173. 173

    Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  Google Scholar 

  174. 174

    Guermonprez, P. et al. ER–phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  Google Scholar 

  175. 175

    Burgdorf, S., Schölz, C., Kautz, A., Tampé, R. & Kurts, C. Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat. Immunol. 9, 558–566 (2008).

    Article  CAS  Google Scholar 

  176. 176

    Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–420 (2013).

    Article  CAS  Google Scholar 

  177. 177

    Schlake, T., Thess, A., Fotin-Mleczek, M. & Kallen, K.-J. Developing mRNA-vaccine technologies. RNA Biol. 9, 1319–1330 (2012).

    Article  CAS  Google Scholar 

  178. 178

    Benteyn, D., Heirman, C., Bonehill, A., Thielemans, K. & Breckpot, K. mRNA-based dendritic cell vaccines. Expert Rev. Vaccines 14, 161–176 (2014).

    Article  CAS  Google Scholar 

  179. 179

    Sahin, U., Karikó, K. & Türeci, Ö . mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  Google Scholar 

  180. 180

    Li, J. et al. Structurally programmed assembly of translation initiation nanoplex for superior mRNA delivery. ACS Nano 11, 2531–2544 (2017).

    Article  CAS  Google Scholar 

  181. 181

    Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  CAS  Google Scholar 

  182. 182

    Kreiter, S. et al. Mutant MHC class ii epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  Google Scholar 

  183. 183

    Mitragotri, S. et al. Drug delivery research for the future: expanding the nano horizons and beyond. J. Control. Release 246, 183–184 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. S. Eden for critically reading the manuscript. This work was supported in part by the Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, US National Institutes of Health (NIH); and by the Department of Defense (CDMRP grant CA140666), National Science Foundation (CAREER grant NSF1552617), University of Georgia–Georgia Regents University (seed grant) and NIH (R01 grants R01EB022596 and R01NS093314).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jin Xie or Xiaoyuan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, W., Zhu, G. et al. Rethinking cancer nanotheranostics. Nat Rev Mater 2, 17024 (2017). https://doi.org/10.1038/natrevmats.2017.24

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing