Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Energy harvesting and storage in 1D devices

Abstract

Power systems and electronic devices that are bulky and rigid are not practical for use in wearable applications that require flexibility and breathability. To address this, a range of 1D energy harvesting and storage devices have been fabricated that show promise for such applications compared with their 2D and 3D counterparts. These 1D devices are based on fibres that are flexible and can accommodate deformation, for example, by twisting and stretching. The fibres can be woven into textiles and fabrics that breathe freely or can be integrated into different materials that fit the curved surface of the human body. In this Review, the development of fibre-based energy harvesting and storage devices is presented, focusing on dye-sensitized solar cells, lithium-ion batteries, supercapacitors and their integrated devices. An emphasis is placed on the interface between the active materials and the electrodes or electrolyte in the 1D devices. The differing properties of these interfaces compared with those in 2D and 3D devices are derived from the curved surface and long charge transport path in 1D electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of energy harvesting and storage devices from 3D to 1D.
Figure 2: Timeline of developments in 1D energy harvesting and storage.
Figure 3: 1D solar cells.
Figure 4: Fibre-based piezoelectric and triboelectric nanogenerators.
Figure 5: 1D supercapacitors and lithium-ion batteries.
Figure 6: Assembly and integration of 1D energy harvesting and storage devices.
Figure 7: Interfaces within 1D DSSCs and aligned MWCNT fibres.

Similar content being viewed by others

References

  1. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  CAS  Google Scholar 

  2. Bauer, S. Flexible electronics: sophisticated skin. Nat. Mater. 12, 871–872 (2013).

    Article  CAS  Google Scholar 

  3. Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013).

    Article  CAS  Google Scholar 

  4. Goldstine, H. H. & Goldstine, A. The electronic numerical integrator and computer (ENIAC). IEEE Ann. Hist. Comput. 18, 10–16 (1982).

    Article  Google Scholar 

  5. Gibney, E. The inside story on wearable electronics. Nature 528, 26–28 (2015).

    Article  CAS  Google Scholar 

  6. Lee, C. H., Kim, D. R. & Zheng, X. Transfer printing methods for flexible thin film solar cells: basic concepts and working principles. ACS Nano 8, 8746–8756 (2014).

    Article  CAS  Google Scholar 

  7. Wen, L., Li, F. & Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28, 4306–4337 (2016).

    Article  CAS  Google Scholar 

  8. Sun, H., Fu, X., Xie, S., Jiang, Y. & Peng, H. Electrochemical capacitors with high output voltages that mimic electric eels. Adv. Mater. 28, 2070–2076 (2016).

    Article  CAS  Google Scholar 

  9. Yang, Z., Deng, J., Sun, X., Li, H. & Peng, H. Stretchable, wearable dye-sensitized solar cells. Adv. Mater. 26, 2643–2647 (2014).

    Article  CAS  Google Scholar 

  10. Huang, Y. et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9, 4766–4775 (2015).

    Article  CAS  Google Scholar 

  11. Kim, K. N. et al. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9, 6394–6400 (2015).

    Article  CAS  Google Scholar 

  12. Zhang, N. et al. A wearable all-solid photovoltaic textile. Adv. Mater. 28, 263–269 (2016).

    Article  CAS  Google Scholar 

  13. Baps, B., Eber-Koyuncu, M. & Koyuncu, M. Ceramic based solar cells in fiber form. Key Eng. Mater. 206213, 937–940 (2002).

    Google Scholar 

  14. Liu, J., Namboothiry, M. A. G. & Carroll, D. L. Optical geometries for fiber-based organic photovoltaics. Appl. Phys. Lett. 90, 133515 (2007).

    Article  CAS  Google Scholar 

  15. Chen, X. et al. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25, 6436–6441 (2013).

    Article  CAS  Google Scholar 

  16. Liu, D. et al. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6, 11027–11034 (2012).

    Article  CAS  Google Scholar 

  17. Sun, H., You, X., Yang, Z., Deng, J. & Peng, H. Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 1, 12422–12425 (2013).

    Article  CAS  Google Scholar 

  18. Qiu, L., Deng, J., Lu, X., Yang, Z. & Peng, H. Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53, 10425–10428 (2014).

    Article  CAS  Google Scholar 

  19. Sun, H. et al. Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 2, 345–349 (2014).

    Article  CAS  Google Scholar 

  20. Fan, X. et al. Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20, 592–595 (2008).

    Article  CAS  Google Scholar 

  21. Chen, T. et al. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 12, 2568–2572 (2012).

    Article  CAS  Google Scholar 

  22. Dalton, A. B. et al. Super-tough carbon-nanotube fibres. Nature 423, 703–703 (2003).

    Article  CAS  Google Scholar 

  23. Yang, Z., Deng, J., Chen, X., Ren, J. & Peng, H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52, 13453–13457 (2013).

    Article  CAS  Google Scholar 

  24. Yu, D. et al. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555–562 (2014).

    Article  CAS  Google Scholar 

  25. Yang, Z. et al. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015).

    Article  CAS  Google Scholar 

  26. Sun, H. et al. Self-healable electrically conducting wires for wearable microelectronics. Angew. Chem. Int. Ed. 53, 9526–9531 (2014).

    Article  CAS  Google Scholar 

  27. Chen, X. et al. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26, 8126–8132 (2014).

    Article  CAS  Google Scholar 

  28. Deng, J. et al. A shape-memory supercapacitor fiber. Angew. Chem. Int. Ed. 54, 15419–15423 (2015).

    Article  CAS  Google Scholar 

  29. Chen, T. et al. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977–11980 (2012).

    Article  CAS  Google Scholar 

  30. Yang, Z. et al. Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26, 7038–7042 (2014).

    Article  CAS  Google Scholar 

  31. Qin, Y., Wang, X. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

    Article  CAS  Google Scholar 

  32. Li, X. et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8, 10674–10681 (2014).

    Article  CAS  Google Scholar 

  33. Le, V. T. et al. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7, 5940–5947 (2013).

    Article  CAS  Google Scholar 

  34. Ren, J. et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25, 1155–1159 (2013).

    Article  CAS  Google Scholar 

  35. Xu, Y. et al. Flexible, stretchable, and rechargeable fiber-shaped zinc–air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54, 15390–15394 (2015).

    Article  CAS  Google Scholar 

  36. Fang, X., Weng, W., Ren, J. & Peng, H. A cable-shaped lithium sulfur battery. Adv. Mater. 28, 491–496 (2016).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. High-performance lithium–air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55, 4487–4491 (2016).

    Article  CAS  Google Scholar 

  38. Xu, Y. et al. An all-solid-state fiber-shaped aluminum–air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem. Int. Ed. 128, 8111–8114 (2016).

    Article  Google Scholar 

  39. Sun, H. et al. Photovoltaic wire with high efficiency attached onto and detached from a substrate using a magnetic field. Angew. Chem. Int. Ed. 52, 8276–8280 (2013).

    Article  CAS  Google Scholar 

  40. Kou, L. et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014).

    Article  CAS  Google Scholar 

  41. Hu, Y. et al. All-in-one graphene fiber supercapacitor. Nanoscale 6, 6448–6451 (2014).

    Article  CAS  Google Scholar 

  42. Pan, S. et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J. Am. Chem. Soc. 135, 10622–10625 (2013).

    Article  CAS  Google Scholar 

  43. Sun, H. et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26, 2868–2873 (2014).

    Article  CAS  Google Scholar 

  44. Jiang, Y., Sun, H. & Peng, H. Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Sci. China Mater. 58, 289–293 (2015).

    Article  CAS  Google Scholar 

  45. Chen, T., Qiu, L., Kia, H. G., Yang, Z. & Peng, H. Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv. Mater. 24, 4623–4628 (2012).

    Article  CAS  Google Scholar 

  46. Xue, Y. et al. Rationally designed graphene–nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 1, 1400198 (2015).

    Article  CAS  Google Scholar 

  47. Liu, L., Yu, Y., Yan, C., Li, K. & Zheng, Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat. Commun. 6, 7260 (2015).

    Article  CAS  Google Scholar 

  48. Zhou, Q., Jia, C., Ye, X., Tang, Z. & Wan, Z. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. J. Power Sources 327, 365–373 (2016).

    Article  CAS  Google Scholar 

  49. Yang, Z. et al. Photovoltaic wire derived from graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed. 52, 7545–7548 (2013).

    Article  CAS  Google Scholar 

  50. Cai, Z. et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1, 258–261 (2013).

    Article  CAS  Google Scholar 

  51. Wang, B. et al. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv. Mater. 27, 7854–7860 (2015).

    Article  CAS  Google Scholar 

  52. Chen, T. et al. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem. Int. Ed. 50, 1815–1819 (2011).

    Article  CAS  Google Scholar 

  53. Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 1145–1154 (2011).

    Google Scholar 

  54. Li, H., Guo, J., Sun, H., Fang, X. & Peng, H. Stable hydrophobic ionic liquid gel electrolyte for stretchable fiber-shaped dye-sensitized solar cell. ChemNanoMat 1, 399–402 (2015).

    Article  CAS  Google Scholar 

  55. Li, H. et al. Stable wire-shaped dye-sensitized solar cells based on eutectic melts. J. Mater. Chem. A 2, 3841–3846 (2014).

    Article  CAS  Google Scholar 

  56. Pan, C., Li, Z., Guo, W., Zhu, J. & Wang, Z. L. Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angew. Chem. Int. Ed. 50, 11192–11196 (2011).

    Article  CAS  Google Scholar 

  57. Li, Z. & Wang, Z. L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 23, 84–89 (2011).

    Article  CAS  Google Scholar 

  58. Wang, J. et al. A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015).

    Article  CAS  Google Scholar 

  59. Zhang, L. et al. A high-reliability Kevlar fiber–ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Adv. Funct. Mater. 25, 5794–5798 (2015).

    Article  CAS  Google Scholar 

  60. Guo, H. et al. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10, 10580–10588 (2016).

    Article  CAS  Google Scholar 

  61. Bae, J. et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011).

    Article  CAS  Google Scholar 

  62. Xiao, X. et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012).

    Article  CAS  Google Scholar 

  63. Lee, J. A. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013).

    Article  CAS  Google Scholar 

  64. Meng, Y. et al. All-graphene core–sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013).

    Article  CAS  Google Scholar 

  65. Wang, K., Meng, Q., Zhang, Y., Wei, Z. & Miao, M. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25, 1494–1498 (2013).

    Article  CAS  Google Scholar 

  66. Choi, C. et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 26, 2059–2065 (2014).

    Article  CAS  Google Scholar 

  67. Yu, D. et al. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density. Adv. Mater. 26, 6790–6797 (2014).

    Article  CAS  Google Scholar 

  68. Qu, G. et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28, 3646–3652 (2016).

    Article  CAS  Google Scholar 

  69. Wang, X. et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53, 1849–1853 (2014).

    Article  CAS  Google Scholar 

  70. Yu, M. et al. Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 128, 6874–6878 (2016).

    Article  Google Scholar 

  71. Ren, J. et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 126, 7998–8003 (2014).

    Article  Google Scholar 

  72. Lin, H. et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217–1222 (2014).

    Article  CAS  Google Scholar 

  73. Weng, W. et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14, 3432–3438 (2014).

    Article  CAS  Google Scholar 

  74. Zhang, Y. et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 126, 14792–14796 (2014).

    Article  Google Scholar 

  75. Zhang, Y. et al. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 4, 9002–9008 (2016).

    Article  CAS  Google Scholar 

  76. Meng, Q. et al. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv. Mater. 26, 4100–4106 (2014).

    Article  CAS  Google Scholar 

  77. Choi, C. et al. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 5, 9387 (2015).

    Article  CAS  Google Scholar 

  78. Xu, P. et al. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9, 6088–6096 (2015).

    Article  CAS  Google Scholar 

  79. Choi, C. et al. Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv. Energy Mater. 6, 1502119 (2016).

    Article  CAS  Google Scholar 

  80. Li, X. et al. Large-area flexible core–shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes. Adv. Funct. Mater. 23, 4862–4869 (2013).

    CAS  Google Scholar 

  81. Liang, Y. et al. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 3, 2547–2551 (2015).

    Article  CAS  Google Scholar 

  82. Lima, M. D. et al. Biscrolling nanotube sheets and functional guests into yarns. Science 331, 51–55 (2011).

    Article  CAS  Google Scholar 

  83. Zhang, Z. et al. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 27, 356–362 (2015).

    Article  CAS  Google Scholar 

  84. Wang, H. et al. Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 28, 4998–5007 (2016).

    Article  CAS  Google Scholar 

  85. Zhong, J., Meng, J., Yang, Z., Poulin, P. & Koratkar, N. Shape memory fiber supercapacitors. Nano Energy 17, 330–338 (2015).

    Article  CAS  Google Scholar 

  86. Huang, Y. et al. Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015).

    Article  CAS  Google Scholar 

  87. Yu, Z. & Jayan, T. Energy storing electrical cables: integrating energy storage and electrical conduction. Adv. Mater. 26, 4279–4285 (2014).

    Article  CAS  Google Scholar 

  88. Zhang, Y. et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem. Int. Ed. 54, 11177–11182 (2015).

    Article  CAS  Google Scholar 

  89. Pan, S. et al. Novel wearable energy devices based on aligned carbon nanotube fiber textiles. Adv. Energy Mater. 5, 1401438 (2015).

    Article  CAS  Google Scholar 

  90. Fu, Y. et al. Integrated power fiber for energy conversion and storage. Energ. Environ. Sci. 6, 805–812 (2013).

    Article  CAS  Google Scholar 

  91. Sun, H. et al. Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. J. Mater. Chem. A 4, 7601–7605 (2016).

    Article  CAS  Google Scholar 

  92. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (ii/iii)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    Article  CAS  Google Scholar 

  93. Zhu, K., Neale, N. R., Miedaner, A. & Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69–74 (2007).

    Article  CAS  Google Scholar 

  94. Fu, Y. et al. Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energ. Environ. Sci. 4, 3379–3383 (2011).

    Article  CAS  Google Scholar 

  95. Hou, S. Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode. J. Mater. Chem. 21, 13776–13779 (2011).

    Article  CAS  Google Scholar 

  96. Hu, H. et al. Fiber-shaped perovskite solar cells with 5.3% efficiency. J. Mater. Chem. A 4, 3901–3906 (2016).

    Article  CAS  Google Scholar 

  97. Qiu, L., He, S., Yang, J., Deng, J. & Peng, H. Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12, 2419–2424 (2016).

    Article  CAS  Google Scholar 

  98. Yang, D. et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv. Mater. 28, 5206–5213 (2016).

    Article  CAS  Google Scholar 

  99. Sun, H., Deng, J., Qiu, L., Fang, X. & Peng, H. Recent progress in solar cells based on one-dimensional nanomaterials. Energ. Environ. Sci. 8, 1139–1159 (2015).

    Article  CAS  Google Scholar 

  100. Xu, Z., Sun, H., Zhao, X. & Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 188–193 (2013).

    Article  CAS  Google Scholar 

  101. Peng, H., Jain, M., Peterson, D. E., Zhu, Y. & Jia, Q. Composite carbon nanotube/silica fibers with improved mechanical strengths and electrical conductivities. Small 4, 1964–1967 (2008).

    Article  CAS  Google Scholar 

  102. Peng, H. et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat. Nanotechnol. 4, 738–741 (2009).

    Article  CAS  Google Scholar 

  103. Wang, J. N., Luo, X. G., Wu, T. & Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 5, 3848 (2014).

    Article  CAS  Google Scholar 

  104. Di, J. et al. Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv. Mater. 28, 6598–6605 (2016).

    Article  CAS  Google Scholar 

  105. Li, Q. W. et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18, 3160–3163 (2006).

    Article  CAS  Google Scholar 

  106. Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    Article  CAS  Google Scholar 

  107. Jiang, K., Li, Q. & Fan, S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419, 801 (2002).

    Article  CAS  Google Scholar 

  108. Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).

    Article  CAS  Google Scholar 

  109. Li, Y.-L., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).

    Article  CAS  Google Scholar 

  110. Dong, Z. et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24, 1856–1861 (2012).

    Article  CAS  Google Scholar 

  111. Xin, G. et al. Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

    Article  CAS  Google Scholar 

  112. Xu, Z. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28, 6449–6456 (2016).

    Article  CAS  Google Scholar 

  113. Min, K. S. et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 19596–19600 (2012).

    Google Scholar 

  114. Sun, X., Chen, T., Yang, Z. & Peng, H. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 46, 539–549 (2013).

    Article  CAS  Google Scholar 

  115. Sun, H. et al. A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. Angew. Chem. Int. Ed. 126, 6782–6786 (2014).

    Article  Google Scholar 

  116. Pan, S. et al. Carbon nanostructured fibers as counter electrodes in wire-shaped dye-sensitized solar cells. J. Phys. Chem. C 118, 16419–16425 (2013).

    Article  CAS  Google Scholar 

  117. Zhang, Y. et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2, 11054–11059 (2014).

    Article  CAS  Google Scholar 

  118. Chen, T., Hao, R., Peng, H. & Dai, L. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. Int. Ed. 54, 618–622 (2015).

    CAS  Google Scholar 

  119. Deng, J. et al. Elastic perovskite solar cells. J. Mater. Chem. A 3, 21070–21076 (2015).

    Article  CAS  Google Scholar 

  120. Zhai, S. et al. All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Mater. Horiz. 2, 598–605 (2015).

    Article  CAS  Google Scholar 

  121. Pu, X. et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28, 98–105 (2016).

    Article  CAS  Google Scholar 

  122. Pan, S. et al. Wearable solar cells by stacking textile electrodes. Angew. Chem. Int. Ed. 53, 6110–6114 (2014).

    Article  CAS  Google Scholar 

  123. Huang, Y. et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015).

    Article  CAS  Google Scholar 

  124. Huang, Y. et al. Highly integrated supercapacitor–sensor systems via material and geometry design. Small 12, 3393–3399 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0203302), National Natural Science Foundation of China (21634003, 51573027, 51403038, 51673043, 21604012) and the Science and Technology Commission of Shanghai Municipality (16JC1400702, 15XD1500400, 15JC1490200). This work was supported in part by the Samsung Advanced Institute of Technology (SAIT) Global Research Outreach (GRO) Program (IO140919-02248-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Sun or Huisheng Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhang, Y., Zhang, J. et al. Energy harvesting and storage in 1D devices. Nat Rev Mater 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing