Transport of ions and electrons in nanostructured liquid crystals

Abstract

The nanosegregated structures of columnar, smectic and bicontinuous cubic liquid crystals can provide well-organized, nano- and sub-nanosized 1D, 2D and 3D channels capable of ion and electron transport. The molecular shape, intermolecular interactions and nanosegregation of the molecular structures can influence their self-assembly into a range of functional liquid-crystalline nanostructures. The formation of stable and soft liquid-crystalline materials leads to their application as electrolytes for batteries and photovoltaics, semiconductors, electroluminescence and electrochemical devices. In addition, electrochemical devices are obtained by using redox-active liquid crystals. In this Review, we focus on the design of liquid-crystalline phases, the resultant self-assembled structures, the transport mechanisms, and the fabrication, function and future development of devices incorporating nanostructured liquid crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A timeline of the molecular design of liquid crystals.
Figure 2: A timeline of the development of liquid crystals for transport.
Figure 3: Dimension control of ion conduction channels.
Figure 4: Orientation control of smectic liquid-crystalline domains.
Figure 5: Orientation control of columnar liquid-crystal domains.
Figure 6: The design of charge-transport (electron or hole) liquid crystals.
Figure 7: The design of charge-transport (electron or hole) smectic and nematic liquid crystals and their chiral derivatives.
Figure 8: Organic electronic devices using charge-transport liquid crystals.
Figure 9: Redox-active liquid-crystalline materials.

References

  1. 1

    Goodby, J. W. et al. (eds) Handbook of Liquid Crystals 2nd edn (Wiley, 2014).

  2. 2

    de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn (Oxford Univ. Press, 1993).

  3. 3

    Mizoshita, N., Kishimoto, K. & Kato, T. Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006).

  4. 4

    Tschierske, C. Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 52, 8828–8878 (2013).

  5. 5

    Sergeyev, S., Pisula, W. & Geerts, Y. H. Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007).

  6. 6

    Rosen, B. M. et al. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009).

  7. 7

    Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

  8. 8

    Sagara, Y. & Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009).

  9. 9

    Armand, M. et al. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

  10. 10

    Takimiya, K., Shinamura, S., Osaka, I. & Miyazaki, E. Thienoacene-based organic semiconductors. Adv. Mater. 23, 4347–4370 (2011).

  11. 11

    Lehn, J.-M. Perspectives in chemistry — steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

  12. 12

    Nakanishi, T. (ed.) Supramolecular Soft Matter: Applications in Materials and Organic Electronics (Wiley, 2011).

  13. 13

    Bates, F. S. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

  14. 14

    Ikkala, O. & ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

  15. 15

    Yu, Y., Nakano, M. & Ikeda, T. Directed bending of a polymer film by light. Nature 425, 145 (2003).

  16. 16

    Schadt, M. Nematic liquid crystals and twisted-nematic LCDs. Liq. Cryst. 42, 646–652 (2015).

  17. 17

    Gray, G. W. Harrison, K. J. & Nash, J. A. New family of nematic liquid crystals for displays. Electron. Lett. 9, 130–131 (1973).

  18. 18

    Kwolek, S. L. & Morgan, P. W. Process for the production of a highly orientable, crystallizable, filament forming polyamide. US Patent 3287323 (1966).

  19. 19

    Reinitzer, F. Beiträge zur kenntniss des cholesterins. Monatsh. Chem. 9, 421–441 (1888).

  20. 20

    Vorländer, D. Verhalten der salze organischer säuren beim schmelzen. Ber. Dtsch. Chem. Ges. 43, 3120–3135 (1910).

  21. 21

    Binnemans, K. Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005).

  22. 22

    Ober, C. K. Jin, J.-I. & Lenz, R. W. Liquid crystal polymers with flexible spacers in the main chain. Adv. Polym. Sci. 59, 103–146 (1985).

  23. 23

    Finkelmann, H., Ringsdorf, H. & Wendorff, J. H. Model considerations and examples of enantiotropic liquid crystalline polymers. Makromol. Chem. 179, 273–276 (1978).

  24. 24

    Bushby, R. J. & Kawata, K. Liquid crystals that affected the world: discotic liquid crystals. Liq. Cryst. 38, 1415–1426 (2011).

  25. 25

    Yoshio, M. & Kato, T. in Handbook of Liquid Crystals Vol. 8 Ch. 23 (eds Goodby, J et al.) (Wiley, 2014).

  26. 26

    Sakuda, J. et al. Liquid-crystalline electrolytes for lithium-ion batteries: ordered assemblies of a mesogen-containing carbonate and a lithium salt. Adv. Funct. Mater. 25, 1206–1212 (2015).

  27. 27

    Kerr, R. L. et al. Effect of varying the composition and nanostructure of organic carbonate-containing lyotropic liquid crystal polymer electrolytes on their ionic conductivity. Polym. J. 48, 635–643 (2016).

  28. 28

    Yamanaka, N. et al. Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem. Commun. 740–742 (2005).

  29. 29

    Costa, R. D. et al. Beneficial effects of liquid crystalline phases in solid-state dye-sensitized solar cells. Adv. Energy Mater. 3, 657–665 (2013).

  30. 30

    Högberg, D. et al. Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chem. Mater. 26, 6496–6502 (2014).

  31. 31

    Högberg, D. et al. Liquid-crystalline dye-sensitized solar cells: design of two-dimensional molecular assemblies for efficient ion transport and thermal stability. Chem. Mater. 28, 6493–6500 (2016).

  32. 32

    Beginn, U. et al. Membranes containing oriented supramolecular transport channels. Adv. Mater. 12, 513–516 (2000).

  33. 33

    Henmi, M. et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation. Adv. Mater. 24, 2238–2241 (2012).

  34. 34

    Zhou, M. et al. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J. Am. Chem. Soc. 129, 9574–9575 (2007).

  35. 35

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 625–657 (2008).

  36. 36

    Kalhoff, J. et al. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8, 2154–2175 (2015).

  37. 37

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

  38. 38

    Wright, P. V. Developments in polymer electrolytes for lithium batteries. MRS Bull. 27, 597–602 (2002).

  39. 39

    Piechocki, C., Simon, J., Skoulios, A., Guillon, D. & Weber, P. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J. Am. Chem. Soc. 104, 5245–5247 (1982).

  40. 40

    Kato, T. From nanostructured liquid crystals to polymer-based electrolytes. Angew. Chem. Int. Ed. 49, 7847–7848 (2010).

  41. 41

    Boden, N. et al. One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152, 94–99 (1988).

  42. 42

    Adam, D. et al. Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70, 457–460 (1993).

  43. 43

    Adam, D. et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994).

  44. 44

    Garnier, F. et al. Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 10, 3334–3339 (1998).

  45. 45

    Facchetti, A. et al. Tuning of the semiconducting properties of sexithiophene by α, ω-substitution— α-ω-diperfluorohexylsexithiophene: the first n-type sexithiophene for thin-film transistors. Angew. Chem. Int. Ed. 39, 4547–4551 (2000).

  46. 46

    Pisula, W. & Müllen, K. in Handbook of Liquid Crystals Vol. 8 Ch. 20 (eds Goodby, J. et al.) (Wiley, 2014).

  47. 47

    O'Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

  48. 48

    Kato, T. & Fréchet, J. M. J. New approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures. J. Am. Chem. Soc. 111, 8533–8534 (1989).

  49. 49

    Kato, T., Mizoshita, N. & Kanie, K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol. Rapid Commun. 22, 797–814 (2001).

  50. 50

    Ungar, G. et al. Structure and conductivity of liquid crystal channel-like ionic complexes of taper-shaped compounds. Adv. Mater. Opt. Electron. 4, 303–313 (1994).

  51. 51

    Percec, V. et al. Molecular recognition directed self -assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-l, 4,7,10,l3-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate. J. Chem. Soc., Perkin Trans. 1 1411–1420 (1993).

  52. 52

    Kimura, K., Hirao, M. & Yokoyama, M. Synthesis of a crowned azobenzene liquid crystal and its application to thermoresponsive ion-conducting films. J. Mater. Chem. 1, 293–294 (1991).

  53. 53

    Unwin, N. The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676 (1989).

  54. 54

    Sakai, N. & Matile, S. Synthetic ion channels. Langmuir 29, 9031–9040 (2013).

  55. 55

    Song, J. Y., Wang, Y. Y. & Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183–197 (1999).

  56. 56

    Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

  57. 57

    van Nostrum, C. F. et al. Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines: toward molecular wires and molecular ionoelectronics. J. Am. Chem. Soc. 117, 9957–9965 (1995).

  58. 58

    Percec, V. et al. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J. Chem. Soc., Perkin Trans. 2 31–44 (1994).

  59. 59

    Ohtake, T. et al. Liquid-crystalline complexes of a lithium salt with twin oligomers containing oxyethylene spacers. An approach to anisotropic ion conduction. Polym. J. 31, 1155–1158 (1999).

  60. 60

    Ohtake, T. et al. Liquid-crystalline complexes of mesogenic dimers containing oxyethylene moieties with LiCF3SO3: self-organized ion conductive materials. Chem. Mater. 12, 782–789 (2000).

  61. 61

    Yoshio, M. et al. Layered ionic liquids: anisotropic ion conduction in new self-organized liquid-crystalline materials. Adv. Mater. 14, 351–354 (2002).

  62. 62

    Shimura, H. et al. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals. J. Am. Chem. Soc. 130, 1759–1765 (2008).

  63. 63

    Goossens, K., Lava, K., Bielawski, C. W. & Binnemans, K. Ionic liquid crystals: versatile materials. Chem. Rev. 116, 4643–4807 (2016).

  64. 64

    Kato, T. & Yoshio, M. in Electrochemical Aspects of Ionic Liquids 1st edn (ed. Ohno, H. ) 307–320 (Wiley, 2005).

  65. 65

    Mansueto, M. & Laschat, S. in Handbook of Liquid Crystals Vol. 6 Ch. 8 (eds Goodby, J. et al.) (Wiley, 2014).

  66. 66

    Yoshio, M. et al. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc. 126, 994–995 (2004).

  67. 67

    Yoshio, M. et al. Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivity. Bull. Chem. Soc. Jpn 80, 1836–1841 (2007).

  68. 68

    Yoshio, M. et al. in Ionic Liquids IV: Not Just Solvents Anymore ACS Symp. Ser. Vol. 975 161–171 (American Chemical Society, 2007).

  69. 69

    Yoshio, M. et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of liquid crystals. J. Am. Chem. Soc. 128, 5570–5577 (2006).

  70. 70

    Ichikawa, T. et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc. 129, 10662–10663 (2007).

  71. 71

    Frise, A. E. et al. Ion conductive behaviour in a confined nanostructure: NMR observation of self-diffusion in a liquid-crystalline bicontinuous cubic phase. Chem. Commun. 46, 728–730 (2010).

  72. 72

    Ichikawa, T. et al. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J. Am. Chem. Soc. 133, 2163–2169 (2011).

  73. 73

    Ichikawa, T. et al. Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts. J. Am. Chem. Soc. 134, 2634–2643 (2012).

  74. 74

    Soberats, B. et al. Ionic switch induced by a rectangular-hexagonal phase transition in benzenammonium columnar liquid crystals. J. Am. Chem. Soc. 137, 13212–13215 (2015).

  75. 75

    Ueda, S. et al. Anisotropic proton-conductive materials formed by the self-organization of phosphonium-type zwitterions. Adv. Mater. 23, 3071–3074 (2011).

  76. 76

    Soberats, B. et al. 3D anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid. J. Am. Chem. Soc. 135, 15286–15289 (2013).

  77. 77

    Hammond, S. R. et al. Synthesis and lyotropic liquid crystalline behaviour of a taper-shaped phosphonic acid amphiphile. Liq. Cryst. 29, 1151–1159 (2002).

  78. 78

    Chow, C. F. et al. Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid. J. Mater. Chem. 20, 6245–6249 (2010).

  79. 79

    Hubbard, H. V. St. A., Sills, S. A., Davies, G. R., McIntyre, J. E. & Ward, I. M. Anisotropic ionic conduction in a magnetically aligned liquid crystalline polymer electrolyte. Electrochim. Acta 43, 1239–1245 (1998).

  80. 80

    Imrie, C. T., Ingram, M. D. & McHattie, G. S. Ion transport in glassy side-group liquid crystalline polymer electrolytes. Adv. Mater. 11, 832–834 (1999).

  81. 81

    Abate, A. et al. Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications. J. Mater. Chem. A 1, 6572–6578 (2013).

  82. 82

    Yamanaka, N. et al. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J. Phys. Chem. B 111, 4763–4769 (2007).

  83. 83

    O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

  84. 84

    Hagfeldt, A. et al. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

  85. 85

    Ichikawa, T. et al. Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid-crystalline bicontinuous cubic phases. Chem. Sci. 3, 2001–2008 (2012).

  86. 86

    Ichikawa, T. et al. Designer lyotropic liquid-crystalline systems containing amino acid ionic liquids as self-organisation media of amphiphiles. Chem. Commun. 49, 11746–11748 (2013).

  87. 87

    Yamashita, A. et al. Columnar nanostructured polymer films containing ionic liquids in supramolecular one-dimensional nanochannels. J. Polym. Sci. A Polym. Chem. 53, 366–371 (2014).

  88. 88

    Sakuda, J. et al. 2D assemblies of ionic liquid crystals based on imidazolium moieties: formation of ion-conductive layers. New J. Chem. 39, 4471–4477 (2015).

  89. 89

    Cho, B.-K. et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

  90. 90

    Cho, B.-K. Spontaneous bulk organization of molecular assemblers based on aliphatic polyether and/or poly(benzyl ether) dendrons. Polym. J. 44, 475–489 (2012).

  91. 91

    Cho, B.-K. Nanostructured organic electrolytes. RSC Adv. 4, 395–405 (2014).

  92. 92

    Kerr, R. L., Miller, S. A., Shoemaker, R. K., Elliot, B. J. & Gin, D. L. New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. J. Am. Chem. Soc. 131, 15972–15973 (2009).

  93. 93

    Iinuma, Y. et al. Uniaxially parallel alignment of a smectic A liquid-crystalline rod–coil molecule and its lithium salt complexes using rubbed polyimides. Macromolecules 40, 4874–4878 (2007).

  94. 94

    Soberats, B. et al. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J. Am. Chem. Soc. 136, 9552–9555 (2014).

  95. 95

    Li, J. et al. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromolecules 40, 8125–8128 (2007).

  96. 96

    Uchida, Y. et al. Ion conductive properties in ionic liquid crystalline phases confined in a porous membrane. J. Mater. Chem. C 3, 6144–6147 (2015).

  97. 97

    Shimura, H. et al. Electric-field-responsive lithium-ion conductors of propylenecarbonate-based columnar liquid crystals. Adv. Mater. 21, 1591–1594 (2009).

  98. 98

    Feng, X. et al. Scalable fabrication of polymer membranes with vertically aligned 1-nm pores by magnetic field directed self-assembly. ACS Nano 8, 11977–11986 (2014).

  99. 99

    Feng, X. et al. Thin polymer films with continuous vertically aligned 1 nm pores fabricated by soft confinement. ACS Nano 10, 150–158 (2016).

  100. 100

    Kishimoto, K. et al. Nanostructured anisotropic ion-conductive films. J. Am. Chem. Soc. 125, 3196–3197 (2003).

  101. 101

    Kishimoto, K. et al. A nano-segregated polymeric film exhibiting high ionic conductivities. J. Am. Chem. Soc. 127, 15618–15623 (2005).

  102. 102

    Hoshino, K. et al. Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J. Polym. Sci. A Polym. Chem. 41, 3486–3492 (2003).

  103. 103

    Zhang, H. et al. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes. Adv. Mater. 25, 3543–3548 (2013).

  104. 104

    Ichikawa, T. Kato, T. & Ohno, H. 3D continuous water nanosheet as a gyroid minimal surface formed by bicontinuous cubic liquid-crystalline zwitterions. J. Am. Chem. Soc. 134, 11354–11357 (2012).

  105. 105

    Mukai, T. et al. Self-assembled N-alkylimidazolium perfluorooctanesulfonates. Chem. Lett. 34, 442–443 (2005).

  106. 106

    Xu, F., Matsumoto, K. & Hagiwara, R. Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals. Chem. Eur. J. 16, 12970–12976 (2010).

  107. 107

    Xu, F., Matsumoto, K. & Hagiwara, R. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)n F, n = 1.0–2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes. J. Phys. Chem. B 116, 10106–10112 (2012).

  108. 108

    Tan, S. et al. Syntheses, characterizations and electrochemical properties of mesomorphic 4-(4′-alkoxy-(1,1′-biphenyl)-4-oxy)butane-1-sulfonic acids. J. Mol. Struct. 1045, 15–19 (2013).

  109. 109

    Basak, D. et al. Proton conduction in discotic mesogens. Chem. Commun. 47, 5566–5568 (2011).

  110. 110

    Tunkara, E. et al. Highly proton conductive phosphoric acid–non ionic surfactant lyotropic liquid crystalline mesophases and applications in graphene optical modulators. ACS Nano 8, 11007–11012 (2014).

  111. 111

    Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science. 332, 674–676 (2011).

  112. 112

    Hatakeyama, E. S. et al. Water filtration performance of a lyotropic liquid crystal polymer membrane with uniform, sub-1-nm pores. J. Membr. Sci. 366, 62–72 (2011).

  113. 113

    Yamamoto, T. et al. Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide). Adv. Funct. Mater. 21, 918–926 (2011).

  114. 114

    Pisula, W. et al. Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons. Chem. Mater. 17, 4296–4303 (2005).

  115. 115

    van de Craats, A. M., Warman, J. M., Müllen, K., Geerts, Y. & Brand, J. D. Rapid charge transport along self-assembling graphitic nanowires. Adv. Mater. 10, 36–38 (1998).

  116. 116

    Park, L. Y., Hamilton, D. G., McGehee, E. A. & McMenimen, K. A. Complementary C3-symmetric donor–acceptor components: cocrystal structure and control of mesophase stability. J. Am. Chem. Soc. 125, 10586–10590 (2003).

  117. 117

    Feng, X. et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater. 8, 421–426 (2009).

  118. 118

    Hirai, Y. et al. Enhanced hole transporting behavior of discotic liquid-crystalline physical gels. Adv. Funct. Mater. 18, 1668–1675 (2008).

  119. 119

    Yasuda, T., Shimizu, T., Liu, F., Ungar, G. & Kato, T. Electro-functional octupolar π -conjugated columnar liquid crystals. J. Am. Chem. Soc. 133, 13437–13444 (2011).

  120. 120

    Kushida, T., Shuto, A., Yoshio, M., Kato, T. & Yamaguchi, S. A planarized triphenylborane mesogen: discotic liquid crystals with ambipolar charge-carrier transport properties. Angew. Chem. Int. Ed. 54, 6922–6925 (2015).

  121. 121

    Schouten, P. G., Warman, J. M., de Haas, M. P., Fox, M. A. & Pan, H.-L. Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353, 736–737 (1991).

  122. 122

    Shimizu, Y. et al. Novel photocurrent rectification behaviour for a photoconductive cell using the mesogenic 5,10,15,20-tetrakis(4-n-pentadecylphenyl)porphyrin. J. Chem. Soc., Chem. Commun. 656–658 (1993).

  123. 123

    Tanaka, S. et al. Toward ultralow-bandgap liquid crystalline semiconductors: use of triply fused metalloporphyrin trimer–pentamer as extra-large π-extended mesogenic motifs. Chem. Eur. J. 18, 10554–10561 (2012).

  124. 124

    Sakurai, T. et al. Electron- or hole-transporting nature selected by side-chain-directed π-stacking geometry: liquid crystalline fused metalloporphyrin dimers. J. Am. Chem. Soc. 133, 6537–6540 (2011).

  125. 125

    Yasuda, T. et al. π-Conjugated oligothiophene-based polycatenar liquid crystals: self-organization and photoconductive, luminescent, and redox properties. Adv. Funct. Mater. 19, 411–419 (2009).

  126. 126

    An, Z. et al. High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater. 17, 2580–2583 (2005).

  127. 127

    Funahashi, M., Yamaoka, M., Takenami, K. & Sonoda, A. Liquid-crystalline perylene tetracarboxylic bisimide derivatives bearing cyclotetrasiloxane moieties. J. Mater. Chem. C 1, 7872–7878 (2013).

  128. 128

    Funahashi, M. & Sonoda, A. Electron transport characteristics in nanosegregated columnar phases of perylene tetracarboxylic bisimide derivatives bearing oligosiloxane chains. Phys. Chem. Chem. Phys. 16, 7754–7763 (2014).

  129. 129

    Funahashi, M., Takeuchi, N. & Sonoda, A. A liquid-crystalline perylene tetracarboxylic bisimide derivative bearing trisiloxan-2-yl moieties: influence on mesomorphic property and electron transport. RSC Adv. 6, 18703–18710 (2016).

  130. 130

    Funahashi, M. & Hanna, J. Fast ambipolar carrier transport in smectic phases of phenylnaphthalene liquid crystal. Appl. Phys. Lett. 71, 602–604 (1997).

  131. 131

    Funahashi, M. & Hanna, J. High ambipolar carrier mobility in self-organizing terthiophene derivative. Appl. Phys. Lett. 76, 2574–2576 (2000).

  132. 132

    Funahashi, M. & Hanna, J. High carrier mobility up to 0.1 cm2 V−1 s−1 at ambient temperatures in thiophene-based smectic liquid crystals. Adv. Mater. 17, 594–598 (2005).

  133. 133

    Zhang, F., Funahashi, M. & Tamaoki, N. Flexible field-effect transistors from a liquid crystalline semiconductor by solution processes. Org. Electron. 11, 363–368 (2010).

  134. 134

    Zhang, H. et al. A thiophene liquid crystal as a novel π-conjugated dye for photo-manipulation of molecular alignment. Adv. Mater. 12, 1336–1339 (2000).

  135. 135

    van Breemen, A. J. J. M. et al. Large area liquid crystal monodomain field-effect transistors. J. Am. Chem. Soc. 128, 2336–2345 (2006).

  136. 136

    Oikawa, K. et al. High carrier mobility of organic field-effect transistors with a thiophene–naphthalene mesomorphic semiconductor. Adv. Mater. 19, 1864–1868 (2007).

  137. 137

    Iino, H. & Hanna, J. Availability of liquid crystallinity in solution processing for polycrystalline thin films. Adv. Mater. 23, 1748–1751 (2011).

  138. 138

    Iino, H., Usui, T. & Hanna, J. Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 6828 (2015).

  139. 139

    Aldred, M. P. et al. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).

  140. 140

    Sun, K. et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6, 6013 (2015).

  141. 141

    Woon, K. L. et al. Electronic charge transport in extended nematic liquid crystals. Chem. Mater. 18, 2311–2317 (2006).

  142. 142

    Tokunaga, K., Takayashiki, Y., Iino, H. & Hanna, J. Electronic conduction in nematic phase of small molecules. Phys. Rev. B 79, 033201 (2009).

  143. 143

    Nuita, M., Sakuda, J., Hirai, Y., Funahashi, M. & Kato, T. Hole transport of a liquid-crystalline phenylterthiophene derivative exhibiting the nematic phase at ambient temperature. Chem. Lett. 40, 412–413 (2011).

  144. 144

    Funahashi, M. & Tamaoki, N. Effect of pretransitional organization in chiral nematic of oligothiophene derivatives on their carrier transport characteristics. Chem. Mater. 19, 608–617 (2007).

  145. 145

    Funahashi, M. & Tamaoki, N. Electronic conduction in the chiral nematic phase of an oligothiophene derivative. ChemPhysChem 7, 1193–1197 (2006).

  146. 146

    Funahashi, M. & Tamaoki, N. Organic semiconductors with helical structure based on oligothiophene derivatives exhibiting chiral nematic phase. Mol. Cryst. Liq. Cryst. 475, 123–135 (2007).

  147. 147

    Hamamoto, T. & Funahashi, M. Circularly polarized light emission from a chiral nematic phenylterthiophene dimer exhibiting ambipolar carrier transport. J. Mater. Chem. C 3, 6891–6900 (2015).

  148. 148

    Lemieux, R. P. Chirality transfer in ferroelectric liquid crystals. Acc. Chem. Res. 34, 845–853 (2001).

  149. 149

    Funatsu, Y., Sonoda, A. & Funahashi, M. Ferroelectric liquid-crystalline semiconductors based on a phenylterthiophene skeleton: effect of the introduction of oligosiloxane moieties and photovoltaic effect. J. Mater. Chem. C 3, 1982–1993 (2015).

  150. 150

    Anetai, H. et al. Fluorescent ferroelectrics of hydrogen-bonded pyrene derivatives. J. Phys. Chem. Lett. 6, 1813–1818 (2015).

  151. 151

    Köhler, A. & Bässler, H. Electronic Processes in Organic Semiconductors: An Introduction (Wiley, 2015).

  152. 152

    Mei, J. et al. Integrated materials design of organic semiconductors for field effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

  153. 153

    Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).

  154. 154

    Roncali, J. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009).

  155. 155

    Funahashi, M., Zhang, F. & Tamaoki, N. High ambipolar mobility in a highly ordered smectic phase of a dialkylphenylterthiophene derivative that can be applied to solution-processed organic field-effect transistors. Adv. Mater. 19, 353–358 (2007).

  156. 156

    Pisula, W. et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv. Mater. 17, 684–689 (2005).

  157. 157

    van de Craats, A. M. et al. Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 15, 495–499 (2003).

  158. 158

    Tracz, A. et al. Uniaxial alignment of the columnar super-structure of a hexa (alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J. Am. Chem. Soc. 125, 1682–1683 (2003).

  159. 159

    Shklyarevskiy, I. O. et al. High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005).

  160. 160

    Iino, H. & Hanna, J. Availability of liquid crystalline molecules for polycrystalline organic semiconductor thin films. Jpn J. Appl. Phys. 45, L867–L870 (2006).

  161. 161

    Izawa, T., Miyazaki, E. & Takimiya, K. Solution-processible organic semiconductors based on selenophene-containing heteroarenes, 2,7-dialkyl[1] benzoselenopheno[3,2-b ][1]benzoselenophenes (Cn-BSBSs): syntheses, properties, molecular arrangements, and field-effect transistor characteristics. Chem. Mater. 21, 903–912 (2009).

  162. 162

    Nakayama, K. et al. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv. Mater. 23, 1626–1629 (2011).

  163. 163

    Mitsui, C. et al. Naphtho[2,1-b:6,5-b′]difuran: a versatile motif available for solution-processed single-crystal organic field-effect transistors with high hole mobility. J. Am. Chem. Soc. 134, 5448–5451 (2012).

  164. 164

    Cristadoro, A., Lieser, G., Räder, H. J. & Müllen, K. Field force alignment of disc-type π systems. ChemPhysChem. 8, 586–591 (2007).

  165. 165

    McCulloch, I. et al. Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. J. Mater. Chem. 13, 2436–2444 (2003).

  166. 166

    McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

  167. 167

    Palenberg, M. A., Silbey, R. J., Malagoli, M. & Brédas, J.-L. Almost temperature independent charge carrier mobilities in liquid crystals. J. Chem. Phys. 112, 1541–1546 (2000).

  168. 168

    Kreouzis, T. et al. Temperature-independent hole mobility in discotic liquid crystals. J. Chem. Phys. 114, 1797–1802 (2001).

  169. 169

    Bleyl, I., Erdelen, C., Schmidt, H.-W. & Haarer, D. One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Phil. Mag. B 79, 463–475 (1999).

  170. 170

    Funahashi, M., Ishii, T. & Sonoda, A. Temperature-independent hole mobility of a smectic liquid-crystalline semiconductor based on band-like conduction. ChemPhysChem 14, 2750–2758 (2013).

  171. 171

    Lamarra, M., Muccioli, L., Orlandi, S. & Zannoni, C. Temperature dependence of charge mobility in model discotic liquid crystals. Phys. Chem. Chem. Phys. 14, 5368–5375 (2012).

  172. 172

    Idé, J. et al. Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Am. Chem. Soc. 136, 2911–2920 (2014).

  173. 173

    Xu, Z. & Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011).

  174. 174

    Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

  175. 175

    Lydon, J. in Handbook of Liquid Crystals Vol. 6 Ch. 14 (eds Goodby, J. et al.) (Wiley, 2014).

  176. 176

    Guo, F., Mukhopadhyay, A., Sheldon, B. W. & Hurt, R. H. Vertically aligned graphene layer arrays from chromonic liquid crystal precursors. Adv. Mater. 23, 508–513 (2011).

  177. 177

    Goh, M., Matsushita, S. & Akagi, K. From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonisation. Chem. Soc. Rev. 39, 2466–2476 (2010).

  178. 178

    Matushita, S. et al. Helical carbon and graphite films prepared from helical poly(3,4-ethylenedioxythiophene) films synthesized by electrochemical polymerization in chiral nematic liquid crystals. Angew. Chem. Int. Ed. 53, 1659–1663 (2014).

  179. 179

    Heuer, H. W., Wehrmann, R. & Kirchmeyer, S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate). Adv. Funct. Mater. 12, 89–94 (2002).

  180. 180

    Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

  181. 181

    Isoda, K., Yasuda, T., Funahashi, M. & Kato, T. in Handbook of Liquid Crystals Vol. 8 Ch. 24 (eds Goodby, J. et al.) (Wiley, 2014).

  182. 182

    Tabushi, I., Yamamura, K. & Kominami, K. Electric stimulus-response behavior of liquid-crystalline viologen. J. Am. Chem. Soc. 108, 6409–6410 (1986).

  183. 183

    Yamamura, K., Okada, Y., Ono, S., Kominami, K. & Tabushi, I. New liquid crystalline viologens exhibiting electric stimulus-response behavior. Tetrahedron Lett. 28, 6475–6478 (1987).

  184. 184

    Tanabe, K., Yasuda, T., Yoshio, M. & Kato, T. Viologen-based redox-active ionic liquid crystals forming columnar phases. Org. Lett. 9, 4271–4274 (2007).

  185. 185

    Chang, H.-C. et al. A redox-active columnar metallomesogen and its cyclic voltammetric responses. J. Mater. Chem. 17, 4136–4138 (2007).

  186. 186

    Yazaki, S., Funahashi, M. & Kato, T. An electrochromic nanostructured liquid crystal consisting of π -conjugated and ionic moieties. J. Am. Chem. Soc. 130, 13206–13207 (2008).

  187. 187

    Yazaki, S., Funahashi, M., Kagimoto, J., Ohno, H. & Kato, T. Nanostructured liquid crystals combining ionic and electronic functions. J. Am. Chem. Soc. 132, 7702–7708 (2010).

  188. 188

    Beneduci, A., Cospito, S., La Deda, M., Veltri, L. & Chidichimo, G. Electrofluorochromism in π -conjugated ionic liquid crystals. Nat. Commun. 5, 3105 (2014).

  189. 189

    Cospito, S., Beneduci, A., Veltri, L., Salamonczyk, M. & Chidichimo, G. Mesomorphism and electrochemistry of thienoviologen liquid crystals. Phys. Chem. Chem. Phys. 17, 17670–17678 (2015).

  190. 190

    Matsushita, S., Jeong, Y. S. & Akagi, K. Electrochromism-driven linearly and circularly polarised dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity. Chem. Commun. 49, 1883–1890 (2013).

  191. 191

    Jeong, Y. S. & Akagi, K. Liquid crystalline PEDOT derivatives exhibiting reversible anisotropic electrochromism and linearly and circularly polarized dichroism. J. Mater. Chem. 21, 10472–10481 (2011).

  192. 192

    Goto, H. An optically active polythiophene exhibiting electrochemically driven light-interference modulation. Adv. Funct. Mater. 19, 1335–1342 (2009).

  193. 193

    Aprahamian, I. et al. A liquid-crystalline bistable [2]rotaxane. Angew. Chem. Int. Ed. 46, 4675–4679 (2007).

  194. 194

    Yasuda, T. et al. A redox-switchable [2]rotaxane in a liquid-crystalline state. Chem. Commun. 46, 1224–1226 (2010).

  195. 195

    Ohtake, T., Tanaka, H., Matsumoto, T., Ohta, A. & Kimura, M. Deformation of redox-active polymer gel based on polysiloxane backbone and bis(benzodithiolyl)bithienyl scaffold. Langmuir 30, 14680–14685 (2014).

  196. 196

    Ohtake, T., Tanaka, H., Matsumoto, T., Kimura, M. & Ohta, A. Redox-driven molecular switches consisting of bis(benzodithiolyl)bithienyl scaffold and mesogenic moieties: synthesis and complexes with liquid crystalline polymer. J. Org. Chem. 79, 6590–6602 (2014).

  197. 197

    Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).

  198. 198

    Kato, T., Hirai, Y., Nakaso, S. & Moriyama, M. Liquid-crystalline physical gels. Chem. Soc. Rev. 36, 1857–1867 (2007).

  199. 199

    Gan, K. P., Yoshio, M. & Kato, T. Columnar liquid-crystalline assemblies of X-shaped pyrene-oligothiophene conjugates: photoconductivities and mechanochromic functions. J. Mater. Chem. C. 4, 5073–5080 (2016).

  200. 200

    Nealon, G. L. et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J.Org. Chem. 8, 349–370 (2012).

  201. 201

    Kumar, S. & Bisoyi, H. K. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew. Chem. Int. Ed. 46, 1501–1503 (2007).

  202. 202

    Scalia, G. & Lagerwall, J. in Handbook of Liquid Crystals Vol. 6 Ch. 4 (eds Goodby, J. et al.) (Wiley, 2014).

  203. 203

    Felder-Flesch, D., Guillon, D. & Donnio, B. in Handbook of Liquid Crystals Vol. 5 Ch. 6 (eds Goodby, J. et al.) (Wiley, 2014).

  204. 204

    Pucci, D. & Donnio, B. in Handbook of Liquid Crystals Vol. 5 Ch. 4 (eds Goodby, J. et al.) (Wiley, 2014).

  205. 205

    McIntosh, T. J. & Simon, S. A. Roles of bilayer material properties in function and distribution of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 177–198 (2006).

  206. 206

    Seki, T., Kawatsuki, N. & Kondo, M. in Handbook of Liquid Crystals Vol. 8 Ch. 18 (eds Goodby, J. et al.) (Wiley, 2014).

  207. 207

    Kim, J.-H., Yoneya, M. & Yokoyama, H. Tristable nematic liquid crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).

  208. 208

    Broughton, B. in Handbook of Liquid Crystals Vol. 2 Ch. 9 (eds Goodby, J. et al.) (Wiley, 2014).

  209. 209

    Bushby, R. J. & Boden, N. in Handbook of Liquid Crystals Vol. 4 Ch. 11 (eds Goodby, J. et al.) (Wiley, 2014).

  210. 210

    Koh, T. M. et al. Photovoltage enhancement from cyanobiphenyl liquid crystals and 4-tert-butylpyridine in Co(II/III) mediated dye-sensitized solar cells. Chem. Commun. 49, 9101–9103 (2013).

  211. 211

    Ahn, S. K. et al. Development of dye-sensitized solar cells composed of liquid crystal embedded, electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers as polymer gel electrolytes. ACS Appl. Mater. Interfaces 4, 2096–2100 (2012).

  212. 212

    Osaka, I., Saito, M., Koganezawa, T. & Takimiya, K. Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on polymer orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014).

  213. 213

    Okamoto, T. et al. V-Shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv. Mater. 25, 6392–6397 (2013).

  214. 214

    Li, J.-F. et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010).

  215. 215

    Seo, J. et al. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch. Sci. Rep. 3, 2452 (2013).

  216. 216

    Gin, D. L. et al. Recent advances in the design of polymerizable lyotropic liquid crystal assemblies for heterogeneous catalysis and selective separations. Adv. Funct. Mater. 16, 865–878 (2006).

  217. 217

    Brake, J. M. et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003).

  218. 218

    Zannoni, C. Molecular design and computer simulations of novel mesophases. J. Mater. Chem. 11, 2637–2646 (2001).

  219. 219

    Yoneya, M. Toward rational design of complex nanostructured liquid crystals. Chem. Rec. 11, 66–76 (2011).

  220. 220

    Goodby, J. W., Mandle, R. J., Davis, E. J., Zhong, T. & Cowling, S. J. What makes a liquid crystal? The effect of free volume on soft matter. Liq. Cryst. 42, 593–622 (2015).

  221. 221

    Ungar, G., Liu, F. & Zeng, X. in Handbook of Liquid Crystals Vol. 5 Ch. 7 (eds Goodby, J. et al.) (Wiley, 2014).

  222. 222

    Kimura, M. et al. Oligothiophene-based liquid crystals exhibiting smectic A phases in wider temperature ranges. Chem. Lett. 35, 1150–1151 (2006).

Download references

Acknowledgements

T.K. appreciates support by Core Research for Evolutional Science and Technology (CREST), Japan Science & Technology Agency (JST), Grant-in-Aid for Scientific Research (KAKENHI) from Ministry of Education, Culture, Sports, (MEXT), and FIRST programme from Cabinet Office, Government of Japan. The authors thank K. Takimiya at RIKEN and T. Okamoto at the University of Tokyo for helpful suggestions.

Author information

Correspondence to Takashi Kato.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Yoshio, M., Ichikawa, T. et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater 2, 17001 (2017). https://doi.org/10.1038/natrevmats.2017.1

Download citation

Further reading