Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Printing, folding and assembly methods for forming 3D mesostructures in advanced materials

A Corrigendum to this article was published on 03 May 2017

Abstract

A rapidly expanding area of research in materials science involves the development of routes to complex 3D structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods for controlling the properties of materials systems and the function of devices constructed with them, not only through chemistry and morphology, but also through 3D architectures. The resulting systems, sometimes referred to as metamaterials, offer engineered behaviours with optical, thermal, acoustic, mechanical and electronic properties that do not occur in the natural world. Impressive advances in 3D printing techniques represent some of the most broadly recognized developments in this field, but recent successes with strategies based on concepts in origami, kirigami and deterministic assembly provide additional, unique options in 3D design and high-performance materials. In this Review, we highlight the latest progress and trends in methods for fabricating 3D mesostructures, beginning with the development of advanced material inks for nozzle-based approaches to 3D printing and new schemes for 3D optical patterning. In subsequent sections, we summarize more recent methods based on folding, rolling and mechanical assembly, including their application with materials such as designer hydrogels, monocrystalline inorganic semiconductors and graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nozzle-based 3D printing technologies and applications in conductive structures.
Figure 2: Applications of nozzle-based 3D printing technologies in 3D bioprinting.
Figure 3: Light-based 3D printing technologies: schemes, structures and properties.
Figure 4: 4D printing schemes and time-evolving structure geometries.
Figure 5: Micro- and nanoscale origami: schemes, structures and device applications.
Figure 6: Graphene origami and kirigami.
Figure 7: Mechanically guided self-assembly: schemes and structures.
Figure 8: Mechanically guided self-assembly: material and size diversity with applications.

References

  1. 1

    Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996).

    CAS  Google Scholar 

  2. 2

    Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

    Google Scholar 

  3. 3

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000).

    CAS  Google Scholar 

  4. 4

    Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    CAS  Google Scholar 

  5. 5

    Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    CAS  Google Scholar 

  6. 6

    Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C. & Schultz, S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78, 489 (2001).

    CAS  Google Scholar 

  7. 7

    Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Google Scholar 

  8. 8

    Parazzoli, C. G., Greegor, R. B., Li, K., Koltenbah, B. E. C. & Tanielian, M. Experimental verification and simulation of negative index of refraction using Snell's law. Phys. Rev. Lett. 90, 107401 (2003).

    CAS  Google Scholar 

  9. 9

    Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    CAS  Google Scholar 

  10. 10

    Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    CAS  Google Scholar 

  11. 11

    Chen, H. T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    CAS  Google Scholar 

  12. 12

    Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    CAS  Google Scholar 

  13. 13

    Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Google Scholar 

  14. 14

    Cai, W. S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nat. Photonics 1, 224–227 (2007).

    CAS  Google Scholar 

  15. 15

    Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2008).

    CAS  Google Scholar 

  16. 16

    Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    CAS  Google Scholar 

  17. 17

    Norris, D. J., Arlinghaus, E. G., Meng, L. L., Heiny, R. & Scriven, L. E. Opaline photonic crystals: how does self-assembly work? Adv. Mater. 16, 1393–1399 (2004).

    CAS  Google Scholar 

  18. 18

    Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    CAS  Google Scholar 

  19. 19

    Jeon, S. et al. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proc. Natl Acad. Sci. USA 101, 12428–12433 (2004).

    CAS  Google Scholar 

  20. 20

    Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    CAS  Google Scholar 

  21. 21

    Jang, J. H. et al. 3D micro- and nanostructures via interference lithography. Adv. Funct. Mater. 17, 3027–3041 (2007).

    CAS  Google Scholar 

  22. 22

    Lin, S. Y. et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998).

    CAS  Google Scholar 

  23. 23

    Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    CAS  Google Scholar 

  24. 24

    Qi, M. H. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    CAS  Google Scholar 

  25. 25

    Shir, D. et al. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Appl. Phys. Lett. 94, 011101 (2009).

    Google Scholar 

  26. 26

    Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999). This paper introduces materials and methods for two-photon lithography techniques.

    CAS  Google Scholar 

  27. 27

    Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices: micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001).

    CAS  Google Scholar 

  28. 28

    Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004).

    CAS  Google Scholar 

  29. 29

    LaFratta, C. N., Fourkas, J. T., Baldacchini, T. & Farrer, R. A. Multiphoton fabrication. Angew. Chem. Int. Ed. 46, 6238–6258 (2007).

    CAS  Google Scholar 

  30. 30

    Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    CAS  Google Scholar 

  31. 31

    Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    CAS  Google Scholar 

  32. 32

    von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).

    CAS  Google Scholar 

  33. 33

    Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012).

    Google Scholar 

  34. 34

    Han, T. C. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).

    Google Scholar 

  35. 35

    Xu, H. Y., Shi, X. H., Gao, F., Sun, H. D. & Zhang, B. L. Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014).

    Google Scholar 

  36. 36

    Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    CAS  Google Scholar 

  37. 37

    Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006).

    CAS  Google Scholar 

  38. 38

    Hussein, M. I., Leamy, M. J. & Ruzzene, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014).

    Google Scholar 

  39. 39

    Cummer, S. A., Christensen, J. & Alu, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Google Scholar 

  40. 40

    Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    CAS  Google Scholar 

  41. 41

    Jang, D. C., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12, 893–898 (2013).

    CAS  Google Scholar 

  42. 42

    Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322 (2014).

    CAS  Google Scholar 

  43. 43

    Zheng, X. Y. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    CAS  Google Scholar 

  44. 44

    Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016). This paper describes improved methods for PμSL formation of metamaterials with hierarchical geometries and diverse feature sizes.

    CAS  Google Scholar 

  45. 45

    Babaee, S. et al. 3D soft metamaterials with negative poisson's ratio. Adv. Mater. 25, 5044–5049 (2013).

    CAS  Google Scholar 

  46. 46

    Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529–532 (2016).

    CAS  Google Scholar 

  47. 47

    Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

    Google Scholar 

  48. 48

    Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    CAS  Google Scholar 

  49. 49

    Wang, Q. et al. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys. Rev. Lett. 117, 175901 (2016).

    Google Scholar 

  50. 50

    Brunet, T. et al. Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14, 384–388 (2015).

    CAS  Google Scholar 

  51. 51

    Brunet, T., Leng, J. & Mondain-Monval, O. Soft acoustic metamaterials. Science 342, 323–324 (2013).

    CAS  Google Scholar 

  52. 52

    Raffy, S., Mascaro, B., Brunet, T., Mondain-Monval, O. & Leng, J. A soft 3D acoustic metafluid with dual-band negative refractive index. Adv. Mater. 28, 1760–1764 (2016).

    CAS  Google Scholar 

  53. 53

    Tian, B. Z. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    CAS  Google Scholar 

  54. 54

    Leong, T. G. et al. Tetherless thermobiochemically actuated microgrippers. Proc. Natl Acad. Sci. USA 106, 703–708 (2009). This paper demonstrates a folding-based method to create 3D microgrippers for biomedical applications.

    CAS  Google Scholar 

  55. 55

    Yu, M. R. et al. Semiconductor nanomembrane tubes: three-dimensional confinement for controlled neurite outgrowth. ACS Nano 5, 2447–2457 (2011).

    CAS  Google Scholar 

  56. 56

    Feiner, R. et al. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 15, 679–685 (2016).

    CAS  Google Scholar 

  57. 57

    Froeter, P. et al. Toward intelligent synthetic neural circuits: directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array. ACS Nano 8, 11108–11117 (2014).

    CAS  Google Scholar 

  58. 58

    Bishop, D., Pardo, F., Bolle, C., Giles, R. & Aksyuk, V. Silicon micro-machines for fun and profit. J. Low Temp. Phys. 169, 386–399 (2012).

    CAS  Google Scholar 

  59. 59

    Wood, R. J. The challenge of manufacturing between macro and micro. Am. Sci. 102, 124–131 (2014).

    Google Scholar 

  60. 60

    Piyawattanametha, W., Patterson, P. R., Hah, D., Toshiyoshi, H. & Wu, M. C. Surface- and bulk-micromachined two-dimensional scanner driven by angular vertical comb actuators. J. Microelectromech. Syst. 14, 1329–1338 (2005).

    Google Scholar 

  61. 61

    Zhang, H. G., Yu, X. D. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277 (2011).

    CAS  Google Scholar 

  62. 62

    Pan, L. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl Acad. Sci. USA 109, 9287–9292 (2012).

    CAS  Google Scholar 

  63. 63

    Deng, J. W. et al. Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew. Chem. Int. Ed. 52, 2326–2330 (2013).

    CAS  Google Scholar 

  64. 64

    Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).

    Google Scholar 

  65. 65

    Pikul, J. H., Zhang, H. G., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    Google Scholar 

  66. 66

    Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).

    CAS  Google Scholar 

  67. 67

    Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009).

    CAS  Google Scholar 

  68. 68

    Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Google Scholar 

  69. 69

    Rogers, J., Huang, Y. G., Schmidt, O. G. & Gracias, D. H. Origami MEMS and NEMS. MRS Bull. 41, 123–129 (2016).

    Google Scholar 

  70. 70

    Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009). This paper introduces a method of nozzle-based 3D printing with conductive inks and presents some examples in free-standing electrical interconnects.

    CAS  Google Scholar 

  71. 71

    Huang, W. et al. On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel design platform for extreme miniaturization. Nano Lett. 12, 6283–6288 (2012).

    CAS  Google Scholar 

  72. 72

    Huang, W., Koric, S., Yu, X., Hsia, K. J. & Li, X. L. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling. Nano Lett. 14, 6293–6297 (2014).

    CAS  Google Scholar 

  73. 73

    Grimm, D. et al. Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. Nano Lett. 13, 213–218 (2013).

    CAS  Google Scholar 

  74. 74

    Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015). This paper introduces a mechanical assembly approach that allows formation of complex 3D mesostructures from 2D precursors by controlled buckling processes.

    CAS  Google Scholar 

  75. 75

    Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016).

    Google Scholar 

  76. 76

    Yu, X. et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci. Rep. 5, 9661 (2015).

    CAS  Google Scholar 

  77. 77

    Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J. & DeSimone, J. M. Layerless fabrication with continuous liquid interface production. Proc. Natl Acad. Sci. USA 113, 11703–11708 (2016).

    CAS  Google Scholar 

  78. 78

    Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015). This paper introduces continuous liquid interface production techniques for high speed, 3D printing of photopolymerizable resins.

    CAS  Google Scholar 

  79. 79

    Adams, J. J. et al. Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater. 23, 1335–1340 (2011).

    CAS  Google Scholar 

  80. 80

    Skylar-Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl Acad. Sci. USA 113, 6137–6142 (2016).

    CAS  Google Scholar 

  81. 81

    Dickey, M. D. et al. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).

    CAS  Google Scholar 

  82. 82

    Ladd, C., So, J. H., Muth, J. & Dickey, M. D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013).

    CAS  Google Scholar 

  83. 83

    Parekh, D. P., Ladd, C., Panich, L., Moussa, K. & Dickey, M. D. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab. Chip 16, 1812–1820 (2016).

    CAS  Google Scholar 

  84. 84

    Kong, Y. L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017–7023 (2014).

    CAS  Google Scholar 

  85. 85

    Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    CAS  Google Scholar 

  86. 86

    Konga, Y. L., Guptab, M. K., Johnsonc, B. N. & McAlpined, M. C. 3D printed bionic nanodevices. Nano Today 11, 330–350 (2016).

    Google Scholar 

  87. 87

    Shenoy, V. B. & Gracias, D. H. Self-folding thin-film materials: from nanopolyhedra to graphene origami. MRS Bull. 37, 847–854 (2012).

    CAS  Google Scholar 

  88. 88

    Leong, T. G., Zarafshar, A. M. & Gracias, D. H. Three-dimensional fabrication at small size scales. Small 6, 792–806 (2010).

    CAS  Google Scholar 

  89. 89

    Py, C. et al. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007).

    Google Scholar 

  90. 90

    Guo, X. Y. et al. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc. Natl Acad. Sci. USA 106, 20149–20154 (2009).

    CAS  Google Scholar 

  91. 91

    Mei, Y. F., Solovev, A. A., Sanchez, S. & Schmidt, O. G. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40, 2109–2119 (2011).

    CAS  Google Scholar 

  92. 92

    Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    CAS  Google Scholar 

  93. 93

    Zhang, Y. H. et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015). This paper describes kirigami-inspired concepts for the mechanically guided assembly of 3D mesostructures from 2D membrane precursors.

    CAS  Google Scholar 

  94. 94

    Liu, Y. et al. Guided formation of 3D helical mesostructures by mechanical buckling: analytical modeling and experimental validation. Adv. Funct. Mater. 26, 2909–2918 (2016).

    CAS  Google Scholar 

  95. 95

    Yan, Z. et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv. Funct. Mater. 26, 2629–2639 (2016).

    CAS  Google Scholar 

  96. 96

    Shi, Y. et al. Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mech. Lett. 11, 105–110 (2017).

    Google Scholar 

  97. 97

    Nan, K. et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv. Funct. Mater. 27, 1604281 (2017).

    Google Scholar 

  98. 98

    Lewis, J. A. & Gratson, G. M. Direct writing in three dimensions. Mater. Today 7, 32–39 (2004).

    CAS  Google Scholar 

  99. 99

    Cesarano, J., Segalman, R. & Calvert, P. Robocasting provides moldless fabrication from slurry deposition. Ceram. Ind. 148, 94–102 (1998).

    Google Scholar 

  100. 100

    Song, J. H., Edirisinghe, M. J. & Evans, J. R. G. Formulation and multilayer jet printing of ceramic inks. J. Am. Ceram. Soc. 82, 3374–3380 (1999).

    CAS  Google Scholar 

  101. 101

    Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    CAS  Google Scholar 

  102. 102

    Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    CAS  Google Scholar 

  103. 103

    Seerden, K. A. M. et al. Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84, 2514–2520 (2001).

    CAS  Google Scholar 

  104. 104

    Wilson, W. C. & Boland, T. Cell and organ printing 1: protein and cell printers. Anat. Rec. Part A 272A, 491–496 (2003).

    Google Scholar 

  105. 105

    Raney, J. R. & Lewis, J. A. Printing mesoscale architectures. MRS Bull. 40, 943–950 (2015).

    Google Scholar 

  106. 106

    Lewis, J. A. Direct-write assembly of ceramics from colloidal inks. Curr. Opin. Solid State Mater. Sci. 6, 245–250 (2002).

    CAS  Google Scholar 

  107. 107

    Smay, J. E., Gratson, G. M., Shepherd, R. F., Cesarano, J. & Lewis, J. A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279–1283 (2002).

    CAS  Google Scholar 

  108. 108

    Li, Q. & Lewis, J. A. Nanoparticle inks for directed assembly of three-dimensional periodic structures. Adv. Mater. 15, 1639–1643 (2003).

    CAS  Google Scholar 

  109. 109

    Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003).

    CAS  Google Scholar 

  110. 110

    Gratson, G. M., Xu, M. J. & Lewis, J. A. Microperiodic structures: direct writing of three-dimensional webs. Nature 428, 386 (2004).

    CAS  Google Scholar 

  111. 111

    Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    CAS  Google Scholar 

  112. 112

    Duan, B., Hockaday, L. A., Kang, K. H. & Butcher, J. T. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101, 1255–1264 (2013).

    Google Scholar 

  113. 113

    Duan, B., Kapetanovic, E., Hockaday, L. A. & Butcher, J. T. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10, 1836–1846 (2014).

    CAS  Google Scholar 

  114. 114

    Hockaday, L. A. et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4, 035005 (2012).

    CAS  Google Scholar 

  115. 115

    Cohen, D. L., Malone, E., Lipson, H. & Bonassar, L. J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 12, 1325–1335 (2006).

    CAS  Google Scholar 

  116. 116

    Cui, X. F., Breitenkamp, K., Finn, M. G., Lotz, M. & D'Lima, D. D. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18, 1304–1312 (2012). This paper presents results on inkjet 3D printing of biological materials for direct human cartilage repair.

    CAS  Google Scholar 

  117. 117

    Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013).

    CAS  Google Scholar 

  118. 118

    De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106 (2007).

    CAS  Google Scholar 

  119. 119

    Jakus, A. E. et al. Hyperelastic “bone”: a highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci. Transl. Med. 8, 358ra127 (2016). This paper describes classes of synthetic osteoregenerative biomaterials for 3D bioprinting of versatile, hyperelastic ‘bone’ constructs.

    Google Scholar 

  120. 120

    Rutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R. & Shah, R. N. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27, 1607–1614 (2015).

    CAS  Google Scholar 

  121. 121

    Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014). This paper demonstrates multimaterial 3D printing of vascularized tissue structures with disparate chemical and mechanical properties.

    CAS  Google Scholar 

  122. 122

    Johnson, B. N. et al. 3D printed nervous system on a chip. Lab. Chip 16, 1393–1400 (2016).

    CAS  Google Scholar 

  123. 123

    Skardal, A. et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1, 792–802 (2012).

    CAS  Google Scholar 

  124. 124

    Johnson, B. N. et al. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205–6217 (2015).

    CAS  Google Scholar 

  125. 125

    Xu, T. et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001 (2013).

    Google Scholar 

  126. 126

    Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    CAS  Google Scholar 

  127. 127

    Maruo, S. & Kawata, S. Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. J. Microelectromech. Syst. 7, 411–415 (1998).

    CAS  Google Scholar 

  128. 128

    Sun, H. B. et al. Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt. Lett. 25, 1110–1112 (2000).

    CAS  Google Scholar 

  129. 129

    Zhang, X., Jiang, X. N. & Sun, C. Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators A 77, 149–156 (1999).

    CAS  Google Scholar 

  130. 130

    Hull, C. et al. Rapid prototyping: current technology and future potential. Rapid Prototyp. J. 1, 11–19 (1995).

    Google Scholar 

  131. 131

    Sun, C., Fang, N., Wu, D. M. & Zhang, X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators A 121, 113–120 (2005). This paper describes methods for PμSL as routes to high-speed printing of complex 3D microstructures.

    CAS  Google Scholar 

  132. 132

    Kumar, S. Selective laser sintering: a qualitative and objective approach. JOM 55, 43–47 (2003).

    CAS  Google Scholar 

  133. 133

    Zheng, X. Y. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).

    Google Scholar 

  134. 134

    Johnson, A. R. et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE 11, e0162518 (2016).

    Google Scholar 

  135. 135

    Maruo, S. & Fourkas, J. T. Recent progress in multiphoton microfabrication. Laser Photonics Rev. 2, 100–111 (2008).

    CAS  Google Scholar 

  136. 136

    Liu, Y. M. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011).

    CAS  Google Scholar 

  137. 137

    Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011).

    CAS  Google Scholar 

  138. 138

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    CAS  Google Scholar 

  139. 139

    Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249–251 (2001).

    CAS  Google Scholar 

  140. 140

    Galajda, P. & Ormos, P. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett. 80, 4653–4655 (2002).

    CAS  Google Scholar 

  141. 141

    Maruo, S., Ikuta, K. & Korogi, H. Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett. 82, 133–135 (2003).

    CAS  Google Scholar 

  142. 142

    Maruo, S. & Inoue, H. Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl. Phys. Lett. 89, 144101 (2006).

    Google Scholar 

  143. 143

    Wu, P. W. et al. Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix. Adv. Mater. 12, 1438–1441 (2000).

    CAS  Google Scholar 

  144. 144

    Stellacci, F. et al. Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater. 14, 194–198 (2002).

    CAS  Google Scholar 

  145. 145

    Baldacchini, T. et al. Multiphoton laser direct writing of two-dimensional silver structures. Opt. Express 13, 1275–1280 (2005).

    CAS  Google Scholar 

  146. 146

    Tanaka, T., Ishikawa, A. & Kawata, S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 88, 081107 (2006).

    Google Scholar 

  147. 147

    Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    CAS  Google Scholar 

  148. 148

    Montemayor, L., Chernow, V. & Greer, J. R. Materials by design: using architecture in material design to reach new property spaces. MRS Bull. 40, 1122–1129 (2015).

    Google Scholar 

  149. 149

    Xu, C., Gallant, B. M., Wunderlich, P. U., Lohmann, T. & Greer, J. R. Three-dimensional Au microlattices as positive electrodes for Li–O2 batteries. ACS Nano 9, 5876–5883 (2015).

    CAS  Google Scholar 

  150. 150

    Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl Acad. Sci. USA 111, 2453–2458 (2014).

    CAS  Google Scholar 

  151. 151

    Meza, L. R. & Greer, J. R. Mechanical characterization of hollow ceramic nanolattices. J. Mater. Sci. 49, 2496–2508 (2014).

    CAS  Google Scholar 

  152. 152

    Montemayor, L. C. & Greer, J. R. Mechanical response of hollow metallic nanolattices: combining structural and material size effects. J. Appl. Mech. 82, 071012 (2015).

    Google Scholar 

  153. 153

    Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016). This paper describes a biomimetic hydrogel composite for programmable 4D printing.

    Google Scholar 

  154. 154

    Tibbits, S. 4D printing: multi-material shape change. Archit. Design 84, 116–121 (2014).

    Google Scholar 

  155. 155

    Raviv, D. et al. Active printed materials for complex self-evolving deformations. Sci. Rep. 4, 7422 (2014).

    CAS  Google Scholar 

  156. 156

    Ge, Q., Qi, H. J. & Dunn, M. L. Active materials by four-dimension printing. Appl. Phys. Lett. 103, 131901 (2013). This paper describes 4D printing by use of SMP materials.

    Google Scholar 

  157. 157

    Ge, Q., Dunn, C. K., Qi, H. J. & Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 23, 094007 (2014).

    Google Scholar 

  158. 158

    Wu, J. T. et al. Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep. 6, 24224 (2016).

    Google Scholar 

  159. 159

    Liu, Y., Genzer, J. & Dickey, M. D. “2D or not 2D”: shape-programming polymer sheets. Prog. Polym. Sci. 52, 79–106 (2016).

    Google Scholar 

  160. 160

    Kang, S. H. & Dickey, M. D. Patterning via self-organization and self-folding: beyond conventional lithography. MRS Bull. 41, 93–96 (2016).

    Google Scholar 

  161. 161

    Huang, G. S. & Mei, Y. F. Thinning and shaping solid films into functional and integrative nanomembranes. Adv. Mater. 24, 2517–2546 (2012).

    CAS  Google Scholar 

  162. 162

    Chen, Z., Huang, G. S., Trase, I., Han, X. M. & Mei, Y. F. Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting. Phys. Rev. Appl. 5, 017001 (2016).

    Google Scholar 

  163. 163

    Syms, R. R. A. & Yeatman, E. M. Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electron. Lett. 29, 662–664 (1993).

    Google Scholar 

  164. 164

    Syms, R. R. A. Equilibrium of hinged and hingeless structures rotated using surface tension forces. J. Microelectromech. Syst. 4, 177–184 (1995).

    Google Scholar 

  165. 165

    Syms, R. R. A., Yeatman, E. M., Bright, V. M. & Whitesides, G. M. Surface tension-powered self-assembly of microstructures — the state-of-the-art. J. Microelectromech. Syst. 12, 387–417 (2003).

    Google Scholar 

  166. 166

    Gracias, D. H., Kavthekar, V., Love, J. C., Paul, K. E. & Whitesides, G. M. Fabrication of micrometer-scale, patterned polyhedra by self-assembly. Adv. Mater. 14, 235–238 (2002).

    CAS  Google Scholar 

  167. 167

    Cho, J.-H. et al. Nanoscale origami for 3D optics. Small 7, 1943–1948 (2011).

    CAS  Google Scholar 

  168. 168

    Pandey, S. et al. Algorithmic design of self-folding polyhedra. Proc. Natl Acad. Sci. USA 108, 19885–19890 (2011).

    CAS  Google Scholar 

  169. 169

    Prinz, V. Y. et al. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys. E 6, 828–831 (2000).

    CAS  Google Scholar 

  170. 170

    Schmidt, O. G. & Eberl, K. Nanotechnology: thin solid films roll up into nanotubes. Nature 410, 168 (2001). This paper describes approaches in stress-controlled rolling to form cylindrical 3D nanostructures.

    CAS  Google Scholar 

  171. 171

    Li, X. Strain induced semiconductor nanotubes: from formation process to device applications. J. Phys. D Appl. Phys. 41, 193001 (2008).

    Google Scholar 

  172. 172

    Li, X. Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties. Adv. Opt. Photonics 3, 366–387 (2011).

    CAS  Google Scholar 

  173. 173

    Prinz, V. Y., Seleznev, V., Samoylov, V. & Gutakovsky, A. Nanoscale engineering using controllable formation of ultra-thin cracks in heterostructures. Microelectron. Eng. 30, 439–442 (1996).

    CAS  Google Scholar 

  174. 174

    Bassik, N., Stern, G. M., Jamal, M. & Gracias, D. H. Patterning thin film mechanical properties to drive assembly of complex 3D structures. Adv. Mater. 20, 4760–4764 (2008).

    CAS  Google Scholar 

  175. 175

    Karnaushenko, D. D., Karnaushenko, D., Makarov, D. & Schmidt, O. G. Compact helical antenna for smart implant applications. NPG Asia Mater. 7, e188 (2015).

    Google Scholar 

  176. 176

    Mei, Y. et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008).

    CAS  Google Scholar 

  177. 177

    Bassik, N., Stern, G. M. & Gracias, D. H. Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 95, 091901 (2009).

    Google Scholar 

  178. 178

    Malachowski, K. et al. Self-folding single cell grippers. Nano Lett. 14, 4164–4170 (2014).

    CAS  Google Scholar 

  179. 179

    Solovev, A. A., Mei, Y., Urena, E. B., Huang, G. & Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009).

    CAS  Google Scholar 

  180. 180

    Wang, H. et al. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors. Sci. Adv. 2, e1600027 (2016).

    Google Scholar 

  181. 181

    Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007).

    CAS  Google Scholar 

  182. 182

    Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D. & Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012). This paper describes a method of halftone gel lithography to create spatially varying 2D patterns of swelling in gel sheets for transformation into desired 3D shapes.

    CAS  Google Scholar 

  183. 183

    Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    CAS  Google Scholar 

  184. 184

    Na, J.-H., Bende, N. P., Bae, J., Santangelo, C. D. & Hayward, R. C. Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates. Soft Matter 12, 4985–4990 (2016).

    CAS  Google Scholar 

  185. 185

    Palleau, E., Morales, D., Dickey, M. D. & Velev, O. D. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat. Commun. 4, 2257 (2013).

    Google Scholar 

  186. 186

    Wu, Z. L. et al. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013).

    Google Scholar 

  187. 187

    Hawkes, E. et al. Programmable matter by folding. Proc. Natl Acad. Sci. USA 107, 12441–12445 (2010).

    CAS  Google Scholar 

  188. 188

    Liu, Y., Boyles, J. K., Genzer, J. & Dickey, M. D. Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012).

    CAS  Google Scholar 

  189. 189

    Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014).

    CAS  Google Scholar 

  190. 190

    Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015).

    CAS  Google Scholar 

  191. 191

    White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    CAS  Google Scholar 

  192. 192

    Jamal, M., Zarafshar, A. M. & Gracias, D. H. Differentially photo-crosslinked polymers enable self-assembling microfluidics. Nat. Commun. 2, 527 (2011).

    Google Scholar 

  193. 193

    Ryu, J. et al. Photo-origami—bending and folding polymers with light. Appl. Phys. Lett. 100, 161908 (2012).

    Google Scholar 

  194. 194

    Yu, X., Arbabi, E., Goddard, L. L., Li, X. & Chen, X. Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration. Appl. Phys. Lett. 107, 031102 (2015).

    Google Scholar 

  195. 195

    Annett, J. & Cross, G. L. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535, 271–275 (2016).

    CAS  Google Scholar 

  196. 196

    Zhu, S. & Li, T. Hydrogenation enabled scrolling of graphene. J. Phys. D Appl. Phys. 46, 075301 (2013).

    Google Scholar 

  197. 197

    Zhu, S. & Li, T. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864–2872 (2014).

    CAS  Google Scholar 

  198. 198

    Qi, Z. N., Campbell, D. K. & Park, H. S. Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B 90, 245437 (2014).

    CAS  Google Scholar 

  199. 199

    Grosso, B. F. & Mele, E. J. Bending rules in graphene kirigami. Phys. Rev. Lett. 115, 195501 (2015).

    Google Scholar 

  200. 200

    Bahamon, D. A., Qi, Z. N., Park, H. S., Pereira, V. M. & Campbell, D. K. Graphene kirigami as a platform for stretchable and tunable quantum dot arrays. Phys. Rev. B 93, 235408 (2016).

    Google Scholar 

  201. 201

    Patra, N., Wang, B. & Král, P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009).

    CAS  Google Scholar 

  202. 202

    Yan, Z. et al. Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: a short review of recent progress. Extreme Mech. Lett. 11, 96–104 (2017).

    Google Scholar 

  203. 203

    Castle, T. et al. Making the cut: lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014).

    Google Scholar 

  204. 204

    Sussman, D. M. et al. Algorithmic lattice kirigami: a route to pluripotent materials. Proc. Natl Acad. Sci. USA 112, 7449–7453 (2015).

    CAS  Google Scholar 

  205. 205

    Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

J.A.R. and X.L. acknowledge support from the US Department of Energy, Office of Science, Basic Energy Sciences (DE FG02 07ER46471). Y.Z. acknowledges support from the National Natural Science Foundation of China (11672152) and Thousand Young Talents Program of China. Y.H. acknowledges support from the National Science Foundation (CMMI1534120 and CMMI1400169) and the National Institutes of Health (R01EB019337).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yihui Zhang or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, F., Yan, Z. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater 2, 17019 (2017). https://doi.org/10.1038/natrevmats.2017.19

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing