Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards clinically translatable in vivo nanodiagnostics

Abstract

Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline of the development of bioimaging modalities and imaging agents towards nanodiagnostics.
Figure 2: Clinically used primary imaging modalities and their corresponding basic physical principles.
Figure 3: Examples of nanoparticles used in preclinical imaging.
Figure 4: In vivo nanoparticle accumulation, clearance and filtration.
Figure 5: Clinical translation of nanomaterial imaging agents.

References

  1. 1

    Cairns, J. The treatment of diseases and the war against cancer. Sci. Am. 253, 51–59 (1985).

    CAS  Article  Google Scholar 

  2. 2

    Nestor, P. J., Scheltens, P. & Hodges, J. R. Advances in the early detection of Alzheimer's disease. Nat. Med. 10 (Suppl.), S34–S41 (2004).

    Article  CAS  Google Scholar 

  3. 3

    Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Lee, D. E. et al. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Jokerst, J. V. & Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Park, S. M., Sabour, A. F., Son, J. H., Lee, S. H. & Lee, L. P. Toward integrated molecular diagnostic system (i MDx): principles and applications. IEEE Trans. Biomed. Eng. 61, 1506–1521 (2014).

    Article  Google Scholar 

  8. 8

    Waldrop, M. M. The chips are down for Moore's law. Nature 530, 144–147 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Jain, K. K. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 53, 2002–2009 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Jain, K. K. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta 358, 37–54 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Picard, J. D. History of mammography. Bull. Acad. Natl Med. 182, 1613–1620 (in French) (1998).

    CAS  Google Scholar 

  12. 12

    Burghardt, A. J., Link, T. M. & Majumdar, S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin. Orthop. Relat. Res. 469, 2179–2193 (2011).

    Article  Google Scholar 

  13. 13

    Wokrina, T. et al. High-resolution murine brain imaging at 15.2 Tesla. Proc. Int. Soc. Magn. Reson. Med. Abstr. 20, 3233 (2012).

    Google Scholar 

  14. 14

    King, J. P. et al. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond. Nat. Commun. 6, 8965 (2015).

    Article  CAS  Google Scholar 

  15. 15

    Hersman, F. W. et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad. Radiol. 15, 683–692 (2008).

    Article  Google Scholar 

  16. 16

    Kirby, M. et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265, 600–610 (2012).

    Article  Google Scholar 

  17. 17

    Nikiel-Osuchowska, A. et al. Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla. Eur. Phys. J. D 67, 1–29 (2013).

    Article  CAS  Google Scholar 

  18. 18

    Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Natterer, J. & Bargon, J. Parahydrogen induced polarization. Prog. Nucl. Magn. Reson. Spectrosc. 31, 293–315 (1997).

    Article  Google Scholar 

  20. 20

    James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897–965 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Sarder, P., Maji, D. & Achilefu, S. Molecular probes for fluorescence lifetime imaging. Bioconjug. Chem. 26, 963–974 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Zavaleta, C. L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 13511–13516 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Zavaleta, C. L. et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl Acad. Sci. USA 110, E2288–2297 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Garai, E. et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE 10, e0123185 (2015).

    Article  CAS  Google Scholar 

  25. 25

    de la Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557–562 (2008).

    CAS  Article  Google Scholar 

  26. 26

    de la Zerda, A. et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 10, 2168–2172 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    CAS  Article  Google Scholar 

  28. 28

    Thakor, A. S. & Gambhir, S. S. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63, 395–418 (2013).

    Article  Google Scholar 

  29. 29

    Zhuang, H. & Codreanu, I. Growing applications of FDG PET-CT imaging in non-oncologic conditions. J. Biomed. Res. 29, 189–202 (2015).

    Google Scholar 

  30. 30

    Gowrishankar, G. et al. Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS ONE 9, e107951 (2014).

    Article  CAS  Google Scholar 

  31. 31

    Molton, J. S., Leek, F. A., Ng, L. H., Totman, J. J. & Paton, N. I. A. Novel approach to CT, MR, and PET examination of patients with infections requiring stringent airborne precautions. Radiology 278, 881–887 (2016).

    Article  Google Scholar 

  32. 32

    Wang, Y. et al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 6, 5880–5888 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Wang, W. et al. Pharmacokinetic analysis of hypoxia 18F-fluoromisonidazole dynamic PET in head and neck cancer. J. Nucl. Med. 51, 37–45 (2010).

    Article  Google Scholar 

  34. 34

    Chaudhry, A. A. et al. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging. World J. Radiol. 8, 268–274 (2016).

    Article  Google Scholar 

  35. 35

    Haywood, T. et al. Carbon-11 radiolabelling of organosulfur compounds: 11C synthesis of the progesterone receptor agonist tanaproget. Chemistry 21, 9034–9038 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Cherry, S. R. & Dahlbom, M. in PET: Physics, Instrumentation, and Scanners (ed. Phelps, M. E. ) 1–117 (Springer, 2006).

    Book  Google Scholar 

  38. 38

    Rahmim, A. & Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008).

    Article  Google Scholar 

  39. 39

    de Swart, J. et al. Utilizing high-energy γ-photons for high-resolution 213Bi SPECT in mice. J. Nucl. Med. 57, 486–492 (2015).

    Article  CAS  Google Scholar 

  40. 40

    Goorden, M. C. et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J. Nucl. Med. 54, 306–312 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Pysz, M. A., Gambhir, S. S. & Willmann, J. K. Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Runge, V. M. et al. The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn. Reson. Imaging 3, 43–55 (1985).

    CAS  Article  Google Scholar 

  43. 43

    Gramiak, R. & Shah, P. M. Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968).

    CAS  Article  Google Scholar 

  44. 44

    Bachawal, S. V. et al. Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model. Cancer Res. 73, 1689–1698 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Deshpande, N., Needles, A. & Willmann, J. K. Molecular ultrasound imaging: current status and future directions. Clin. Radiol. 65, 567–581 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Pysz, M. A. & Willmann, J. K. Targeted contrast-enhanced ultrasound: an emerging technology in abdominal and pelvic imaging. Gastroenterology 140, 785–790 (2011).

    Article  Google Scholar 

  47. 47

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Smith, B. R. & Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 117, 901–986 (2017).

    CAS  Article  Google Scholar 

  49. 49

    Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun. 6, 10059 (2015).

    CAS  Article  Google Scholar 

  50. 50

    Magaye, R., Zhao, J., Bowman, L. & Ding, M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp. Ther. Med. 4, 551–561 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Kim, B. H. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133, 12624–12631 (2011).

    CAS  Article  Google Scholar 

  52. 52

    Ling, D., Lee, N. & Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).

    CAS  Article  Google Scholar 

  54. 54

    Jackson, P. A., Rahman, W. N., Wong, C. J., Ackerly, T. & Geso, M. Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur. J. Radiol. 75, 104–109 (2010).

    Article  Google Scholar 

  55. 55

    Yang, X., Yang, M., Pang, B., Vara, M. & Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015).

    CAS  Article  Google Scholar 

  56. 56

    Ferreira, M. F. et al. Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Dalton Trans. 41, 5472–5475 (2012).

    CAS  Article  Google Scholar 

  57. 57

    Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).

    CAS  Article  Google Scholar 

  58. 58

    Zhao, Y. et al. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed. 53, 156–159 (2014).

    CAS  Article  Google Scholar 

  59. 59

    Zhao, Y., Sultan, D., Detering, L., Luehmann, H. & Liu, Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu–Au alloy nanoclusters. Nanoscale 6, 13501–13509 (2014).

    CAS  Article  Google Scholar 

  60. 60

    Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI–photoacoustic–Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    CAS  Article  Google Scholar 

  61. 61

    Moriggi, L. et al. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. J. Am. Chem. Soc. 131, 10828–10829 (2009).

    CAS  Article  Google Scholar 

  62. 62

    Wang, Y. et al. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 13, 581–585 (2013).

    CAS  Article  Google Scholar 

  63. 63

    Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Lee, K., Cui, Y., Lee, L. P. & Irudayaraj, J. Quantitative imaging of single mRNA splice variants in living cells. Nat. Nanotechnol. 9, 474–480 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Park, S. M., Huh, Y. S., Craighead, H. G. & Erickson, D. A method for nanofluidic device prototyping using elastomeric collapse. Proc. Natl Acad. Sci. USA 106, 15549–15554 (2009).

    CAS  Article  Google Scholar 

  66. 66

    Michalet, X. et al. Quantum dots for live cells. in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Article  Google Scholar 

  67. 67

    Kairdolf, B. A. et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6, 143–162 (2013).

    CAS  Article  Google Scholar 

  68. 68

    Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Stroh, M. et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 11, 678–682 (2005).

    CAS  Article  Google Scholar 

  70. 70

    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    CAS  Article  Google Scholar 

  71. 71

    Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    CAS  Article  Google Scholar 

  72. 72

    Han, H. S. et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl Acad. Sci. USA 112, 1350–1355 (2015).

    CAS  Google Scholar 

  73. 73

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  Article  Google Scholar 

  74. 74

    Lemon, C. M. et al. Micelle-encapsulated quantum dot-porphyrin assemblies as in vivo two-photon oxygen sensors. J. Am. Chem. Soc. 137, 9832–9842 (2015).

    CAS  Article  Google Scholar 

  75. 75

    Pons, T. et al. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4, 2531–2538 (2010).

    CAS  Article  Google Scholar 

  76. 76

    Gu, Y. P., Cui, R., Zhang, Z. L., Xie, Z. X. & Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 134, 79–82 (2012).

    CAS  Article  Google Scholar 

  77. 77

    Yu, J. H. et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 12, 359–366 (2013).

    CAS  Article  Google Scholar 

  78. 78

    Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009).

    CAS  Article  Google Scholar 

  79. 79

    Torchilin, V. P. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev. 54, 235–252 (2002).

    CAS  Article  Google Scholar 

  80. 80

    Petersen, A. L., Hansen, A. E., Gabizon, A. & Andresen, T. L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 64, 1417–1435 (2012).

    CAS  Article  Google Scholar 

  81. 81

    Gong, H., Peng, R. & Liu, Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev. 65, 1951–1963 (2013).

    CAS  Article  Google Scholar 

  82. 82

    Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  83. 83

    Smith, B. R. et al. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 9, 481–487 (2014).

    CAS  Article  Google Scholar 

  84. 84

    Wu, L. et al. A green synthesis of carbon nanoparticle from honey for real-time photoacoustic imaging. Nano Res. 6, 312–325 (2013).

    CAS  Article  Google Scholar 

  85. 85

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Hong, S. et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115 (2007).

    CAS  Article  Google Scholar 

  87. 87

    Sykes, E. A., Chen, J., Zheng, G. & Chan, W. C. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706 (2014).

    CAS  Article  Google Scholar 

  88. 88

    Park, S. M. et al. Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab. Chip 9, 1206–1212 (2009).

    CAS  Article  Google Scholar 

  89. 89

    Bae, Y. H. & Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Controlled Release 153, 198–205 (2011).

    CAS  Article  Google Scholar 

  90. 90

    Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J. & Jallet, P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul. 13, 245–255 (1996).

    CAS  Article  Google Scholar 

  91. 91

    Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    CAS  Article  Google Scholar 

  92. 92

    Venturoli, D. & Rippe, B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol. 288, F605–613 (2005).

    CAS  Article  Google Scholar 

  93. 93

    Vinogradov, S. V., Bronich, T. K. & Kabanov, A. V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54, 135–147 (2002).

    CAS  Article  Google Scholar 

  94. 94

    Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  Google Scholar 

  95. 95

    Chen, L. T. & Weiss, L. The role of the sinus wall in the passage of erythrocytes through the spleen. Blood 41, 529–537 (1973).

    CAS  Google Scholar 

  96. 96

    Moghimi, S. M., Porter, C. J., Muir, I. S., Illum, L. & Davis, S. S. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem. Biophys. Res. Commun. 177, 861–866 (1991).

    CAS  Article  Google Scholar 

  97. 97

    He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).

    CAS  Article  Google Scholar 

  98. 98

    Patel, H. M. & Moghimi, S. M. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system — the concept of tissue specificity. Adv. Drug Deliv. Rev. 32, 45–60 (1998).

    CAS  Article  Google Scholar 

  99. 99

    Moore, A., Weissleder, R. & Bogdanov, A. Jr. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J. Magn. Reson. Imaging 7, 1140–1145 (1997).

    CAS  Article  Google Scholar 

  100. 100

    Bakhtiary, Z. et al. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomedicine 12, 287–307 (2015).

    Article  CAS  Google Scholar 

  101. 101

    Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M. & Kraft, M. L. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016).

    CAS  Article  Google Scholar 

  102. 102

    Mahmoudi, M. et al. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett. 14, 6–12 (2014).

    CAS  Article  Google Scholar 

  103. 103

    Fang, C. et al. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 27, 27–36 (2006).

    CAS  Article  Google Scholar 

  104. 104

    Bergstrom, K. et al. Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection. J. Biomater. Sci. Polym. Ed. 6, 123–132 (1994).

    CAS  Article  Google Scholar 

  105. 105

    Perry, J. L. et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012).

    CAS  Article  Google Scholar 

  106. 106

    Larsen, E. K. et al. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale 4, 2352–2361 (2012).

    CAS  Article  Google Scholar 

  107. 107

    Cole, A. J. et al. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32, 2183–2193 (2011).

    CAS  Article  Google Scholar 

  108. 108

    McDonald, D. M. & Baluk, P. Significance of blood vessel leakiness in cancer. Cancer Res. 62, 5381–5385 (2002).

    CAS  Google Scholar 

  109. 109

    Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995).

    CAS  Google Scholar 

  110. 110

    Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  Article  Google Scholar 

  111. 111

    Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    CAS  Article  Google Scholar 

  112. 112

    Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    CAS  Article  Google Scholar 

  113. 113

    Bartneck, M. et al. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4, 3073–3086 (2010).

    CAS  Article  Google Scholar 

  114. 114

    Arnida, Janát-Amsbury, M. M., Ray, A., Peterson, C. M. & Ghandehari, H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 77, 417–423 (2011).

    Article  CAS  Google Scholar 

  115. 115

    Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    CAS  Article  Google Scholar 

  116. 116

    Cho, E. C. et al. Measuring the optical absorption cross-sections of Au–Ag nanocages and au nanorods by photoacoustic imaging. J. Phys. Chem. C 113, 9023–9028 (2009).

    CAS  Article  Google Scholar 

  117. 117

    Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006).

    CAS  Article  Google Scholar 

  118. 118

    Huang, J., Zhong, X., Wang, L., Yang, L. & Mao, H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2, 86–102 (2012).

    Article  CAS  Google Scholar 

  119. 119

    Ehlerding, E. B., Chen, F. & Cai, W. Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. 3, 1500223 (2016).

    Article  CAS  Google Scholar 

  120. 120

    Thakor, A. S. et al. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci. Transl. Med. 3, 79ra33 (2011).

    Article  CAS  Google Scholar 

  121. 121

    Hauck, T. S., Anderson, R. E., Fischer, H. C., Newbigging, S. & Chan, W. C. In vivo quantum-dot toxicity assessment. Small 6, 138–144 (2010).

    CAS  Article  Google Scholar 

  122. 122

    Sosnovik, D. E., Nahrendorf, M. & Weissleder, R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res. Cardiol. 103, 122–130 (2008).

    CAS  Article  Google Scholar 

  123. 123

    Ballou, B. et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug. Chem. 18, 389–396 (2007).

    CAS  Article  Google Scholar 

  124. 124

    Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 152, 167–173 (1989).

    CAS  Article  Google Scholar 

  125. 125

    Ferrucci, J. & Stark, D. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am. J. Roentgenol. 155, 943–950 (1990).

    CAS  Article  Google Scholar 

  126. 126

    Alkilany, A. M. & Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12, 2313–2333 (2010).

    CAS  Article  Google Scholar 

  127. 127

    Brown, C. L., Whitehouse, M. W., Tiekink, E. R. & Bushell, G. R. Colloidal metallic gold is not bio-inert. Inflammopharmacology 16, 133–137 (2008).

    CAS  Article  Google Scholar 

  128. 128

    Chen, Y. S., Hung, Y. C., Liau, I. & Huang, G. S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4, 858–864 (2009).

    CAS  Article  Google Scholar 

  129. 129

    Alkilany, A. M. et al. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5, 701–708 (2009).

    CAS  Article  Google Scholar 

  130. 130

    Walling, M. A., Novak, J. A. & Shepard, J. R. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 10, 441–491 (2009).

    CAS  Article  Google Scholar 

  131. 131

    Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006).

    Article  Google Scholar 

  132. 132

    Choi, H. S. & Frangioni, J. V. Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol. Imag. 9, 291–310 (2010).

    CAS  Google Scholar 

  133. 133

    Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    CAS  Article  Google Scholar 

  134. 134

    Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.) 6, 715–728 (2011).

    CAS  Article  Google Scholar 

  135. 135

    Pelaz, B. et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9, 6996–7008 (2015).

    CAS  Article  Google Scholar 

  136. 136

    Hamad, I. et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere–serum interface: implications for stealth nanoparticle engineering. ACS Nano 4, 6629–6638 (2010).

    CAS  Article  Google Scholar 

  137. 137

    Moyano, D. F. et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8, 6748–6755 (2014).

    CAS  Article  Google Scholar 

  138. 138

    Safavi-Sohi, R. et al. Bypassing protein corona issue on active targeting: zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl. Mater. Interfaces 8, 22808–22818 (2016).

    CAS  Article  Google Scholar 

  139. 139

    Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Personalized protein coronas: a ‘key’ factor at the nanobiointerface. Biomater. Sci. 2, 1210–1221 (2014).

    CAS  Article  Google Scholar 

  140. 140

    Hajipour, M. J. et al. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 7, 8978–8994 (2015).

    CAS  Article  Google Scholar 

  141. 141

    Ren, H. et al. A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. Angew. Chem. Int. Ed. 48, 9658–9662 (2009).

    CAS  Article  Google Scholar 

  142. 142

    Liang, G., Ren, H. & Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2, 54–60 (2010).

    CAS  Article  Google Scholar 

  143. 143

    Dragulescu-Andrasi, A., Kothapalli, S. R., Tikhomirov, G. A., Rao, J. & Gambhir, S. S. Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J. Am. Chem. Soc. 135, 11015–11022 (2013).

    CAS  Article  Google Scholar 

  144. 144

    Shen, B. et al. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nanoaggregation probe. Angew. Chem. Int. Ed. 52, 10511–10514 (2013).

    CAS  Article  Google Scholar 

  145. 145

    Ye, D. et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 6, 519–526 (2014).

    CAS  Article  Google Scholar 

  146. 146

    Ye, D. et al. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem. Sci. 4, 3845–3852 (2014).

    Article  Google Scholar 

  147. 147

    Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. & Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70, 1–20 (2001).

    CAS  Article  Google Scholar 

  148. 148

    Foroutan, F. et al. Sol–gel synthesis and electrospraying of biodegradable (P2O5)55–(CaO)30–(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging. ACS Nano 9, 1868–1877 (2015).

    CAS  Article  Google Scholar 

  149. 149

    Kempen, P. J. et al. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 5, 631–642 (2015).

    CAS  Article  Google Scholar 

  150. 150

    Nune, S. K. et al. Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 6, 1175–1194 (2009).

    CAS  Article  Google Scholar 

  151. 151

    Bashir, M. R., Bhatti, L., Marin, D. & Nelson, R. C. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging 41, 884–898 (2015).

    Article  Google Scholar 

  152. 152

    Bellin, M. F. et al. Liver metastases: safety and efficacy of detection with superparamagnetic iron oxide in MR imaging. Radiology 193, 657–663 (1994).

    CAS  Article  Google Scholar 

  153. 153

    Denys, A. et al. Hepatic tumors: detection and characterization at 1-T MR imaging enhanced with AMI-25. Radiology 193, 665–669 (1994).

    CAS  Article  Google Scholar 

  154. 154

    Reimer, P. & Tombach, B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur. Radiol. 8, 1198–1204 (1998).

    CAS  Article  Google Scholar 

  155. 155

    Semelka, R. C. & Helmberger, T. K. Contrast agents for MR imaging of the liver. Radiology 218, 27–38 (2001).

    CAS  Article  Google Scholar 

  156. 156

    Ross, R. W. et al. Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy. Clin. Imaging 33, 301–305 (2009).

    Article  Google Scholar 

  157. 157

    Kim, Y. K. et al. Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT. Radiology 238, 531–541 (2006).

    Article  Google Scholar 

  158. 158

    Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  Google Scholar 

  159. 159

    Mack, M. G., Balzer, J. O., Straub, R., Eichler, K. & Vogl, T. J. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222, 239–244 (2002).

    Article  Google Scholar 

  160. 160

    Guimaraes, A. R. et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer. Urology 71, 708–712 (2008).

    Article  Google Scholar 

  161. 161

    Harisinghani, M. G. & Weissleder, R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med. 1, e66 (2004).

    Article  Google Scholar 

  162. 162

    Klerkx, W. M. et al. Detection of lymph node metastases by gadolinium-enhanced magnetic resonance imaging: systematic review and meta-analysis. J. Natl Cancer Inst. 102, 244–253 (2010).

    Article  Google Scholar 

  163. 163

    Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med. 47, 292–297 (2002).

    Article  Google Scholar 

  164. 164

    Mouli, S. K., Zhao, L. C., Omary, R. A. & Thaxton, C. S. Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors. Nat. Rev. Urol. 7, 84–93 (2010).

    Article  Google Scholar 

  165. 165

    Benezra, M. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 121, 2768–2780 (2011).

    CAS  Article  Google Scholar 

  166. 166

    Bradbury, M. S. et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr. Biol. 5, 74–86 (2013).

    CAS  Article  Google Scholar 

  167. 167

    Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014).

    Article  CAS  Google Scholar 

  168. 168

    Schulz, C. & Massberg, S. Atherosclerosis — multiple pathways to lesional macrophages. Sci. Transl. Med. 6, 239ps2 (2014).

    Article  CAS  Google Scholar 

  169. 169

    Mulder, W. J., Jaffer, F. A., Fayad, Z. A. & Nahrendorf, M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 6, 239sr1 (2014).

    Article  CAS  Google Scholar 

  170. 170

    Sanz, J. & Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease. Nature 451, 953–957 (2008).

    CAS  Article  Google Scholar 

  171. 171

    Kratz, J. D., Chaddha, A., Bhattacharjee, S. & Goonewardena, S. N. Atherosclerosis and nanotechnology: diagnostic and therapeutic applications. Cardiovasc. Drugs Ther. 30, 33–39 (2016).

    CAS  Article  Google Scholar 

  172. 172

    Nahrendorf, M. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379–387 (2008).

    CAS  Article  Google Scholar 

  173. 173

    Danad, I., Fayad, Z. A., Willemink, M. J. & Min, J. K. New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. JACC Cardiovasc. Imaging 8, 710–723 (2015).

    Article  Google Scholar 

  174. 174

    Toussaint, J. F., LaMuraglia, G. M., Southern, J. F., Fuster, V. & Kantor, H. L. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94, 932–938 (1996).

    CAS  Article  Google Scholar 

  175. 175

    Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).

    CAS  Article  Google Scholar 

  176. 176

    Tang, T. Y. et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) study: evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J. Am. Coll. Cardiol. 53, 2039–2050 (2009).

    CAS  Article  Google Scholar 

  177. 177

    Weissleder, R., Nahrendorf, M. & Pittet, M. J. Imaging macrophages with nanoparticles. Nat. Mater. 13, 125–138 (2014).

    CAS  Article  Google Scholar 

  178. 178

    Nahrendorf, M., Pittet, M. J. & Swirski, F. K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 2437–2445 (2010).

    Article  Google Scholar 

  179. 179

    Alam, S. R. et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ. Cardiovasc. Imaging 5, 559–565 (2012).

    Article  Google Scholar 

  180. 180

    Naresh, N. K. et al. Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes. Radiology 264, 428–435 (2012).

    Article  Google Scholar 

  181. 181

    Yilmaz, A. et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur. Heart J. 34, 462–475 (2013).

    CAS  Article  Google Scholar 

  182. 182

    Yilmaz, A. et al. Magnetic resonance imaging (MRI) of inflamed myocardium using iron oxide nanoparticles in patients with acute myocardial infarction — preliminary results. Int. J. Cardiol. 163, 175–182 (2013).

    Article  Google Scholar 

  183. 183

    Moon, H. et al. Noninvasive assessment of myocardial inflammation by cardiovascular magnetic resonance in a rat model of experimental autoimmune myocarditis. Circulation 125, 2603–2612 (2012).

    Article  Google Scholar 

  184. 184

    Wu, Y. L. et al. Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovasc. Imaging 2, 731–741 (2009).

    Article  Google Scholar 

  185. 185

    Christen, T. et al. Molecular imaging of innate immune cell function in transplant rejection. Circulation 119, 1925–1932 (2009).

    CAS  Article  Google Scholar 

  186. 186

    Gaglia, J. L. et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J. Clin. Invest. 121, 442–445 (2011).

    CAS  Article  Google Scholar 

  187. 187

    Turvey, S. E. et al. Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J. Clin. Invest. 115, 2454–2461 (2005).

    CAS  Article  Google Scholar 

  188. 188

    Denis, M. C., Mahmood, U., Benoist, C., Mathis, D. & Weissleder, R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Natl Acad. Sci. USA 101, 12634–12639 (2004).

    CAS  Article  Google Scholar 

  189. 189

    Gaglia, J. L. et al. Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc. Natl Acad. Sci. USA 112, 2139–2144 (2015).

    CAS  Article  Google Scholar 

  190. 190

    Johnson, K. A., Fox, N. C., Sperling, R. A. & Klunk, W. E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006213 (2012).

    Article  CAS  Google Scholar 

  191. 191

    Cheng, K. K. et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials 44, 155–172 (2015).

    CAS  Article  Google Scholar 

  192. 192

    Viola, K. L. et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease. Nat. Nanotechnol. 10, 91–98 (2015).

    CAS  Article  Google Scholar 

  193. 193

    Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5, 209ra152 (2013).

    Article  CAS  Google Scholar 

  194. 194

    Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E. & Mirkin, C. A. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129, 15477–15479 (2007).

    CAS  Article  Google Scholar 

  195. 195

    Kwong, G. A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70 (2013).

    CAS  Article  Google Scholar 

  196. 196

    Warren, A. D., Kwong, G. A., Wood, D. K., Lin, K. Y. & Bhatia, S. N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA 111, 3671–3676 (2014).

    CAS  Article  Google Scholar 

  197. 197

    Ronald, J. A. et al. Development and validation of non-integrative, self-limited, and replicating minicircles for safe reporter gene imaging of cell-based therapies. PLoS ONE 8, e73138 (2013).

    CAS  Article  Google Scholar 

  198. 198

    Ronald, J. A., Chuang, H. Y., Dragulescu-Andrasi, A., Hori, S. S. & Gambhir, S. S. Detecting cancers through tumor-activatable minicircles that lead to a detectable blood biomarker. Proc. Natl Acad. Sci. USA 112, 3068–3073 (2015).

    CAS  Article  Google Scholar 

  199. 199

    Lane, L. A., Qian, X., Smith, A. M. & Nie, S. Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo. Annu. Rev. Phys. Chem. 66, 521–547 (2015).

    CAS  Article  Google Scholar 

  200. 200

    Ferguson, R. M., Khandhar, A. P. & Krishnan, K. M. Tracer design for magnetic particle imaging. J. Appl. Phys. 111, 07318B (2012).

    Article  CAS  Google Scholar 

  201. 201

    Huang, J. et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010).

    CAS  Article  Google Scholar 

  202. 202

    Lee, N. et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc. Natl Acad. Sci. USA 108, 2662–2667 (2011).

    CAS  Article  Google Scholar 

  203. 203

    Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M. & Tsuji, T. Microwave-assisted synthesis of metallic nanostructures in solution. Chem. Eur. J. 11, 440–452 (2005).

    CAS  Article  Google Scholar 

  204. 204

    Chen, L. et al. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014).

    CAS  Article  Google Scholar 

  205. 205

    Zheng, Y., Zhong, X., Li, Z. & Xia, Y. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part. Part. Syst. Charact. 31, 266–273 (2014).

    CAS  Article  Google Scholar 

  206. 206

    Ye, X. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6, 2804–2817 (2012).

    CAS  Article  Google Scholar 

  207. 207

    Manohar, N., Reynoso, F. J., Diagaradjane, P., Krishnan, S. & Cho, S. H. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop X-ray fluorescence computed tomography. Sci. Rep. 6, 22079 (2016).

    CAS  Article  Google Scholar 

  208. 208

    Warner, J. H., Young, N. P., Kirkland, A. I. & Briggs, G. A. D. Resolving strain in carbon nanotubes at the atomic level. Nat. Mater. 10, 958–962 (2011).

    CAS  Article  Google Scholar 

  209. 209

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Article  Google Scholar 

  210. 210

    Rice, W. L. et al. High resolution helium ion scanning microscopy of the rat kidney. PLoS ONE 8, e57051 (2013).

    CAS  Article  Google Scholar 

  211. 211

    Young, B., O'Dowd, G. & Woodford, P. Wheater's Functional Histology 6th edn Ch.16 (Churchill Livingstone, 2014).

    Google Scholar 

  212. 212

    Sadauskas, E. et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007).

    Article  CAS  Google Scholar 

  213. 213

    Wisse, E., De Zanger, R. B., Charels, K., Van Der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5, 683–692 (1985).

    CAS  Article  Google Scholar 

  214. 214

    Seki, T., Fang, J. & Maeda, H. in Pharmaceutical Perspectives of Cancer Therapeutics (eds Lu, Y. & Mahato, R. L. ) 98 (Springer, 2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) Award U54CA151459 (Center for Cancer Nanotechnology Excellence and Translation). The authors thank the Ben & Catherine Ivy Foundation, the Canary Foundation and the Sir Peter Michael Foundation for supporting their research. They thank H. Guo, G. Gold, E. Rosenthal, R. Barth, J. Wu, X. Qin, A. Iagaru, D.-h. Ha, J. Jokerst, B. R. Smith, T. Haywood, A. F. Sabour, E. Robinson and J. Schwimmer for their input.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S. Gambhir.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, Sm., Aalipour, A., Vermesh, O. et al. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater 2, 17014 (2017). https://doi.org/10.1038/natrevmats.2017.14

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing