Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear photonic metasurfaces

Abstract

Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the ‘meta-atoms’), enable the manipulation of light–matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic energy diagrams of important nonlinear optical processes.
Figure 2: Nonlinear photonic metasurfaces.
Figure 3: Nonlinear optical circular dichroism.
Figure 4: Nonlinear metasurfaces for phase control.
Figure 5: Nonlinear geometric phase elements.
Figure 6: Nonlinear beam shaping and holography.
Figure 7: Nonlinear metamaterials and metasurfaces for optical switching and modulation.

Similar content being viewed by others

References

  1. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011).

    Article  CAS  Google Scholar 

  2. Hess, O. et al. Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012).

    Article  CAS  Google Scholar 

  3. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  CAS  Google Scholar 

  4. Pendry, J. B., Luo, Y. & Zhao, R. Transforming the optical landscape. Science 348, 521–524 (2015).

    Article  CAS  Google Scholar 

  5. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  Google Scholar 

  6. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  CAS  Google Scholar 

  7. Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014).

    Article  CAS  Google Scholar 

  8. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  9. Ni, X., Emani, N. K., Kildishev, A., Boltasseva, V. A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

    Article  CAS  Google Scholar 

  10. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

    Article  CAS  Google Scholar 

  11. Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012).

    Article  CAS  Google Scholar 

  12. Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization controlled dual images. Nano Lett. 14, 225–230 (2013).

    Article  CAS  Google Scholar 

  13. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Article  CAS  Google Scholar 

  14. Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    Article  CAS  Google Scholar 

  15. Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 13, 4148–4151 (2013).

    Article  CAS  Google Scholar 

  16. Yin, X. B., Ye, Z. L., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  Google Scholar 

  17. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  18. Khorasaninejad, M. & Crozier, K. B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5, 5386 (2014).

    Article  CAS  Google Scholar 

  19. Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

    Article  CAS  Google Scholar 

  20. Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

    Article  CAS  Google Scholar 

  21. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    Article  CAS  Google Scholar 

  22. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  CAS  Google Scholar 

  23. Huang, L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater. 27, 6444–6449 (2015).

    Article  CAS  Google Scholar 

  24. Wen, D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015).

    Article  Google Scholar 

  25. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  CAS  Google Scholar 

  26. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  Google Scholar 

  27. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016).

    Article  CAS  Google Scholar 

  28. Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    Article  CAS  Google Scholar 

  29. Chen, S., Cai, Y., Li, G., Zhang, S. & Cheah, K. W. Geometric metasurface fork gratings for vortex beam generation and manipulation. Laser Photonics Rev. 2, 322–326 (2016).

    Article  CAS  Google Scholar 

  30. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

    Google Scholar 

  31. Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).

    Google Scholar 

  32. Yariv, A. & Pepper, D. M. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Opt. Lett. 1, 16–18 (1977).

    Article  CAS  Google Scholar 

  33. Sefler, G. A. & Kitayama, K. Frequency comb generation by four-wave mixing and the role of fiber dispersion. J. Lightwave Technol. 16, 1596–1605 (1998).

    Article  Google Scholar 

  34. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012).

    Article  CAS  Google Scholar 

  35. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).

    Article  CAS  Google Scholar 

  36. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  CAS  Google Scholar 

  37. Kujala, S., Canfield, B. K., Kauranen, M., Svirko, Y. & Turunen, J. Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett. 98, 167403 (2007).

    Article  CAS  Google Scholar 

  38. Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 11, 5519–5523 (2011).

    Article  CAS  Google Scholar 

  39. Aouani, H. et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett. 12, 4997–5002 (2012).

    Article  CAS  Google Scholar 

  40. Husu, H. et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012).

    Article  CAS  Google Scholar 

  41. Linden, S. et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 015502 (2012).

    Article  CAS  Google Scholar 

  42. Czaplicki, R., Husu, H., Siikanen, R., Makitalo, J. & Kauranen, M. Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys. Rev. Lett. 110, 093902 (2013).

    Article  CAS  Google Scholar 

  43. Konishi, K. et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys. Rev. Lett. 112, 135502 (2014).

    Article  CAS  Google Scholar 

  44. O'Brien, K. et al. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379–383 (2015).

    Article  CAS  Google Scholar 

  45. Segal, N., Keren-Zur, S., Hendler, N. & Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 9, 180–184 (2015).

    Article  CAS  Google Scholar 

  46. Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015).

    Article  CAS  Google Scholar 

  47. Kruk, S. et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. ACS Photonics 2, 1007–1012 (2015).

    Article  CAS  Google Scholar 

  48. Sartorello, G. et al. Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces. ACS Photonics 3, 1517–1522 (2016).

    Article  CAS  Google Scholar 

  49. Camacho-Morales, R. et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett. 16, 7191–7197 (2016).

    Article  CAS  Google Scholar 

  50. Hanke, T. et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009).

    Article  CAS  Google Scholar 

  51. Utikal, T. et al. Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys. Rev. Lett. 106, 133901 (2011).

    Article  CAS  Google Scholar 

  52. Liu, H. et al. Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials. Phys. Rev. B 84, 235437 (2011).

    Article  CAS  Google Scholar 

  53. Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014).

    Article  CAS  Google Scholar 

  54. Metzger, B., Schumacher, T., Hentschel, M., Lippitz, M. & Giessen, H. Third harmonic mechanism in complex plasmonic Fano structures. ACS Photonics 1, 471–476 (2014).

    Article  CAS  Google Scholar 

  55. Chen, S. M. et al. Symmetry selective third harmonic generation from plasmonic metacrystals. Phys. Rev. Lett. 113, 033901 (2014).

    Article  CAS  Google Scholar 

  56. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

    Article  CAS  Google Scholar 

  57. Smirnova, D. A., Khanikaev, A. B., Smirnov, L. A. & Kivshar, Y. S. Multipolar third-harmonic generation driven by optically induced magnetic resonances. ACS Photonics 3, 1468–1476 (2016).

    Article  CAS  Google Scholar 

  58. Renger, J., Quidant, R., Van Hulst, N. & Novotny, L. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).

    Article  CAS  Google Scholar 

  59. Chen, P. Y. & Alù, A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 11, 5514–5518 (2011).

    Article  CAS  Google Scholar 

  60. Palomba, S. et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat. Mater. 11, 34–38 (2012).

    Article  CAS  Google Scholar 

  61. Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    Article  CAS  Google Scholar 

  62. Zhang, Y., Wen, F., Zhen, Y. R., Nordlander, P. & Halas, N. J. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl Acad. Sci. USA 110, 9215–9219 (2013).

    Article  CAS  Google Scholar 

  63. Rose, A., Powell, D. A., Shadrivov, I. V., Smith, D. R. & Kivshar, Y. S. Circular dichroism of four-wave mixing in nonlinear metamaterials. Phys. Rev. B 88, 195148 (2013).

    Article  CAS  Google Scholar 

  64. Simkhovich, B. & Bartal, G. Plasmon-enhanced four-wave mixing for super resolution applications. Phys. Rev. Lett. 112, 056802 (2014).

    Article  CAS  Google Scholar 

  65. Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).

    Article  CAS  Google Scholar 

  66. Nookula, N. et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 3, 283–288 (2016).

    Article  CAS  Google Scholar 

  67. Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    Article  CAS  Google Scholar 

  68. Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    Article  CAS  Google Scholar 

  69. Terhune, R. W., Maker, P. D. & Savage, C. M. Optical harmonic generation in calcite. Phys. Rev. Lett. 8, 404–406 (1962).

    Article  CAS  Google Scholar 

  70. Lee, C., Chang, R. & Bloembergen, N. Nonlinear electroreflectance in silicon and silver. Phys. Rev. Lett. 18, 167–170 (1967).

    Article  CAS  Google Scholar 

  71. Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation flight with plasmonics. Science 333, 1720–1723 (2011).

    Article  CAS  Google Scholar 

  72. Kang, L. et al. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun. 5, 4680 (2014).

    Article  CAS  Google Scholar 

  73. Lan, S. et al. Backward phase-matching for nonlinear optical generation in negative-index materials. Nat. Mater. 14, 807–811 (2015).

    Article  CAS  Google Scholar 

  74. Seyler, K. L. et al. Electrical control of second harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  CAS  Google Scholar 

  75. Cox, J. D. & Garcia de Abajo, F. J. Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat. Commun. 5, 5725 (2014).

    Article  CAS  Google Scholar 

  76. Cox, J. D. & Garcia de Abajo, F. J. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene. ACS Photonics 2, 306–312 (2015).

    Article  CAS  Google Scholar 

  77. Burns, W. K. & Bloembergen, N. Third-harmonic generation in absorbing media of cubic or isotropic symmetry. Phys. Rev. B 4, 3437–3450 (1971).

    Article  Google Scholar 

  78. Bhagavantam, S. & Chandrasekhar, P. Harmonic generation and selection rules in nonlinear optics. Proc. Indian Acad. Sci. A 76, 13–20 (1972).

    Article  CAS  Google Scholar 

  79. Zheludev, N. I. & Emel yanov, V. I. Phase matched second harmonic generation from nanostructured metallic surfaces. J. Opt. A 6, 26–28 (2004).

    Article  CAS  Google Scholar 

  80. Rose, A., Huang, D. & Smith, D. R. Controlling the second harmonic in a phase matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011).

    Article  CAS  Google Scholar 

  81. Rose, A., Huang, D. & Smith, D. Nonlinear interference and unidirectional wave mixing in metamaterials. Phys. Rev. Lett. 110, 063901 (2013).

    Article  CAS  Google Scholar 

  82. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  CAS  Google Scholar 

  83. Patel, C. K. N. & Van Tran, N. Phase matched nonlinear interaction between circularly polarized waves. Appl. Phys. Lett. 15, 189–191 (1969).

    Article  Google Scholar 

  84. Shelton, J. W. & Shen, Y. R. Phase matched third harmonic generation in cholesteric liquid crystals. Phys. Rev. Lett. 25, 23–26 (1970).

    Article  CAS  Google Scholar 

  85. Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992).

    Article  Google Scholar 

  86. Zhu, S. N. et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3 . Phys. Rev. Lett. 78, 2752–2755 (1997).

    Article  CAS  Google Scholar 

  87. Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2, 367–374 (2003).

    Article  CAS  Google Scholar 

  88. Ernst, K. H. Molecular chirality at surfaces. Phys. Status Solidi B 249, 20572088 (2012).

    Article  CAS  Google Scholar 

  89. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  CAS  Google Scholar 

  90. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    Article  CAS  Google Scholar 

  91. Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006).

    Article  CAS  Google Scholar 

  92. Plum, E., Fedotov, V. A. & Zheludev, N. I. Optical activity in extrinsically chiral metamaterial. Appl. Phys. Lett. 93, 191911 (2008).

    Article  CAS  Google Scholar 

  93. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  94. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010).

    Article  CAS  Google Scholar 

  95. Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).

    Article  CAS  Google Scholar 

  96. Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

    Article  CAS  Google Scholar 

  97. Kan, T. et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 6, 8422 (2015).

    Article  CAS  Google Scholar 

  98. Verbiest, T., Kauranen, M. & Persoons, A. Light-polarization-induced optical activity. Phys. Rev. Lett. 82, 3601–3604 (1999).

    Article  CAS  Google Scholar 

  99. Petralli-Mallow, T., Wong, T. M., Byers, J. D., Yee, H. I. & Hicks, J. M. Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study. J. Phys. Chem. 97, 1383–1388 (1993).

    Article  CAS  Google Scholar 

  100. Byers, J. D., Yee, H. I. & Hicks, J. M. A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers. J. Chem. Phys. 101, 6233–6241 (1994).

    Article  CAS  Google Scholar 

  101. Maki, J. J., Kauranen, M. & Persoons, A. Surface second-harmonic generation from chiral materials. Phys. Rev. B 51, 1425–1434 (1995).

    Article  CAS  Google Scholar 

  102. Verbiest, T., Kauranen, M., Rompaey, Y. V. & Persoons, A. Optical activity of anisotropic achiral surfaces. Phys. Rev. Lett. 77, 1456–1459 (1996).

    Article  CAS  Google Scholar 

  103. Valev, V. K. et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 9, 3945–3948 (2009).

    Article  CAS  Google Scholar 

  104. Valev, V. K. et al. Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. Phys. Rev. Lett. 104, 127401 (2010).

    Article  CAS  Google Scholar 

  105. Belardini, A., Larciprete, M. C., Centini, M., Fazio, E. & Sibilia, C. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys. Rev. Lett. 107, 257401 (2011).

    Article  CAS  Google Scholar 

  106. Huttunen, M. J. et al. Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers. Opt. Mater. Express 1, 46–56 (2011).

    Article  CAS  Google Scholar 

  107. Rodrigues, S. P., Lan, S., Kang, L., Cui, Y. & Cai, W. Nonlinear imaging and spectroscopy of chiral metamaterials. Adv. Mater. 26, 6157–6162 (2014).

    Article  CAS  Google Scholar 

  108. Valev, V. K. et al. Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale. Adv. Mater. 26, 4074–4081 (2014).

    Article  CAS  Google Scholar 

  109. Kolkowski, R., Petti, L., Rippa, M., Lafargue, C. & Zyss, J. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale. ACS Photonics 2, 899–906 (2015).

    Article  CAS  Google Scholar 

  110. Chen, S. et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities. Adv. Mater. 28, 2992–2999 (2016).

    Article  CAS  Google Scholar 

  111. Ren, M., Plum, E., Xu, J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 3, 833 (2012).

    Article  CAS  Google Scholar 

  112. Pancharatnam, S. Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    Article  Google Scholar 

  113. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).

    Article  Google Scholar 

  114. Bornzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  Google Scholar 

  115. Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003).

    Article  CAS  Google Scholar 

  116. Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607–612 (2015).

    Article  CAS  Google Scholar 

  117. Tymchenko, M. et al. Gradient nonlinear Pancharatnam–Berry metasurfaces. Phys. Rev. Lett. 115, 207403 (2015).

    Article  CAS  Google Scholar 

  118. Almeida, E., Shalem, G. & Prior, Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun. 7, 10367 (2016).

    Article  CAS  Google Scholar 

  119. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. A 82, 560–567 (1909).

    Article  Google Scholar 

  120. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  Google Scholar 

  121. Allen, P. J. A radiation torque experiment. Am. J. Phys. 34, 1185–1192 (1966).

    Article  Google Scholar 

  122. Garetz, B. A. & Armold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun. 31, 1–3 (1979).

    Article  CAS  Google Scholar 

  123. Garetz, B. A. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1980).

    Article  Google Scholar 

  124. Simon, R., Kimble, H. J. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: an optical experiment. Phys. Rev. Lett. 61, 19–22 (1988).

    Article  CAS  Google Scholar 

  125. Dholakia, K. An experiment to demonstrate the angular Doppler effect on laser light. Am. J. Phys. 66, 1007–1010 (1998).

    Article  CAS  Google Scholar 

  126. Li, G., Zentgraf, T. & Zhang, S. Rotational Doppler effect in nonlinear optics. Nat. Phys. 12, 736–740 (2016).

    Article  CAS  Google Scholar 

  127. Li, L., Li, T., Wang, S. M., Zhang, C. & Zhu, S. N. Plasmonic airy beam generated by in-plane diffraction. Phys. Rev. Lett. 107, 126804 (2011).

    Article  CAS  Google Scholar 

  128. Dolev, I., Epstein, I. & Arie, A. Surface-plasmon holographic beam shaping. Phys. Rev. Lett. 109, 203903 (2012).

    Article  CAS  Google Scholar 

  129. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  CAS  Google Scholar 

  130. Pendry, J. B. Time reversal and negative refraction. Science 332, 71–73 (2008).

    Article  CAS  Google Scholar 

  131. Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    Article  CAS  Google Scholar 

  132. Broderick, N. G. R., Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000).

    Article  CAS  Google Scholar 

  133. Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009).

    Article  CAS  Google Scholar 

  134. Hong, X., Yang, B., Zhang, C., Qin, Y. Q. & Zhu, Y. Y. Nonlinear volume holography for wave-front engineering. Phys. Rev. Lett. 113, 163902 (2014).

    Article  CAS  Google Scholar 

  135. Li, G., Chen, S., Cai, Y., Zhang, S. & Cheah, K. W. Third harmonic generation of optical vortices using holography based gold-fork microstructure. Adv. Opt. Mater. 2, 389–393 (2014).

    Article  CAS  Google Scholar 

  136. Wolf, O. et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat. Commun. 6, 7667 (2015).

    Article  Google Scholar 

  137. Keren-Zur, S., Avayu, O., Michaeli, L. & Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 3, 117–123 (2016).

    Article  CAS  Google Scholar 

  138. Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

    Article  CAS  Google Scholar 

  139. Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).

    Article  CAS  Google Scholar 

  140. Koos, C. et al. All optical high speed signal processing with silicon organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009).

    Article  CAS  Google Scholar 

  141. Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).

    Article  CAS  Google Scholar 

  142. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526 (2010).

    Article  CAS  Google Scholar 

  143. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010).

    Article  CAS  Google Scholar 

  144. Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film. Phys. Rev. Lett. 12, 784–787 (1990).

    Article  Google Scholar 

  145. Fann, W. S., Storz, R., Tom, H. W. K. & Bokor, J. Direct measurement of nonequilibrium electron energy distributions in subpicosecond laser heated gold films. Phys. Rev. Lett. 68, 2834–2837 (1992).

    Article  CAS  Google Scholar 

  146. Fatti, N. D., Bouffanais, R., Vallee, F. & Flytzanis, C. Nonequilibrium electron interactions in metal films. Phys. Rev. Lett. 81, 922–925 (1998).

    Article  Google Scholar 

  147. Lamprecht, B., Krenn, J. R., Leitner, A. & Aussenegg, F. R. Resonant and off-resonant light driven plasmons in metal nanoparticles studied by femtosecond resolution third harmonic generation. Phys. Rev. Lett. 83, 4421–4424 (1999).

    Article  CAS  Google Scholar 

  148. Guo, C. L., Rodriguez, G. & Taylor, A. J. Ultrafast dynamics of electron thermalization in gold. Phys. Rev. Lett. 86, 1638–1641 (2001).

    Article  CAS  Google Scholar 

  149. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009).

    Article  CAS  Google Scholar 

  150. Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett. 105, 017402 (2010).

    Article  CAS  Google Scholar 

  151. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 106–110 (2011).

    Article  CAS  Google Scholar 

  152. Neira, A. D. et al. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015).

    Article  CAS  Google Scholar 

  153. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

    Article  CAS  Google Scholar 

  154. Lu, C. et al. An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light Sci. Appl. 4, e302 (2015).

    Article  CAS  Google Scholar 

  155. Valente, J., Ou, J. Y., Plum, E., Youngs, I. J. & Zheludev, N. I. A magneto-electro-optical effect in a plasmonic nanowire material. Nat. Commun. 6, 7021 (2015).

    Article  CAS  Google Scholar 

  156. Harutyunyan, H. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770–774 (2015).

    Article  CAS  Google Scholar 

  157. Dani, K. M. et al. Sub-picosecond optical switching with a negative index metamaterial. Nano Lett. 9, 3565–3569 (2009).

    Article  CAS  Google Scholar 

  158. Abb, M., Wang, Y., de Groot, C. H. & Muskens, O. L. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun. 5, 4869 (2014).

    Article  CAS  Google Scholar 

  159. Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).

    Article  CAS  Google Scholar 

  160. Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics 7, 128–132 (2013).

    Article  CAS  Google Scholar 

  161. Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

    Article  CAS  Google Scholar 

  162. Guo, P., Schaller, R. D., Ketterson, J. B. & Chang, R. P. H. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics 10, 267–273 (2016).

    Article  CAS  Google Scholar 

  163. Lapine, M. et al. Structural tunability in metamaterials. Appl. Phys. Lett. 95, 084105 (2009).

    Article  CAS  Google Scholar 

  164. Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).

    Article  CAS  Google Scholar 

  165. Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett. 10, 4222–4227 (2010).

    Article  CAS  Google Scholar 

  166. Ou, J. Y., Plum, E., Zhang, J. & Zheludev, N. I. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater. 28, 729–733 (2015).

    Article  CAS  Google Scholar 

  167. Karvounis, A., Ou, J. Y., Wu, W., MacDonald, K. F. & Zheludev, N. I. Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2015).

    Article  CAS  Google Scholar 

  168. Zheludev, N. I. & Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol. 11, 16–22 (2016).

    Article  CAS  Google Scholar 

  169. Zahirul Alam, M., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    Article  CAS  Google Scholar 

  170. Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    Article  CAS  Google Scholar 

  171. Zürch, M., Kern, C., Hansinger, P., Dreischuh, A. & Spielmann, C. H. Strong-field physics with singular light beams. Nat. Phys. 8, 743–746 (2012).

    Article  CAS  Google Scholar 

  172. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics 8, 543–549 (2014).

    Article  CAS  Google Scholar 

  173. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 8, 119–123 (2014).

    Article  CAS  Google Scholar 

  174. Hickstein, D. D. et al. Noncollinear generation of angularly isolated circularly polarized high harmonics. Nat. Photonics 9, 743–750 (2015).

    Article  CAS  Google Scholar 

  175. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  CAS  Google Scholar 

  176. Baykusheva, D., Ahsan, M. S., Lin, N. & Wörner, H. J. Bicircular high-harmonic spectroscopy reveals dynamical symmetries of atoms and molecules. Phys. Rev. Lett. 116, 123001 (2016).

    Article  CAS  Google Scholar 

  177. Walmsley, I. A. Quantum optics: science and technology in a new light. Science 348, 525–530 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (grants DFG TRR142/A05 and ZE953/7-1). G.X. acknowledges support from China's Recruitment Program of Global Experts and Peacock program of Shenzhen. S.Z. acknowledges support from European Research Council consolidator grant (TOPOLOGICAL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guixin Li, Shuang Zhang or Thomas Zentgraf.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat Rev Mater 2, 17010 (2017). https://doi.org/10.1038/natrevmats.2017.10

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing