Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transport of ions and electrons in nanostructured liquid crystals

Abstract

The nanosegregated structures of columnar, smectic and bicontinuous cubic liquid crystals can provide well-organized, nano- and sub-nanosized 1D, 2D and 3D channels capable of ion and electron transport. The molecular shape, intermolecular interactions and nanosegregation of the molecular structures can influence their self-assembly into a range of functional liquid-crystalline nanostructures. The formation of stable and soft liquid-crystalline materials leads to their application as electrolytes for batteries and photovoltaics, semiconductors, electroluminescence and electrochemical devices. In addition, electrochemical devices are obtained by using redox-active liquid crystals. In this Review, we focus on the design of liquid-crystalline phases, the resultant self-assembled structures, the transport mechanisms, and the fabrication, function and future development of devices incorporating nanostructured liquid crystals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A timeline of the molecular design of liquid crystals.
Figure 2: A timeline of the development of liquid crystals for transport.
Figure 3: Dimension control of ion conduction channels.
Figure 4: Orientation control of smectic liquid-crystalline domains.
Figure 5: Orientation control of columnar liquid-crystal domains.
Figure 6: The design of charge-transport (electron or hole) liquid crystals.
Figure 7: The design of charge-transport (electron or hole) smectic and nematic liquid crystals and their chiral derivatives.
Figure 8: Organic electronic devices using charge-transport liquid crystals.
Figure 9: Redox-active liquid-crystalline materials.

Similar content being viewed by others

References

  1. Goodby, J. W. et al. (eds) Handbook of Liquid Crystals 2nd edn (Wiley, 2014).

    Google Scholar 

  2. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn (Oxford Univ. Press, 1993).

    Google Scholar 

  3. Mizoshita, N., Kishimoto, K. & Kato, T. Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006).

    Google Scholar 

  4. Tschierske, C. Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 52, 8828–8878 (2013).

    CAS  Google Scholar 

  5. Sergeyev, S., Pisula, W. & Geerts, Y. H. Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007).

    CAS  Google Scholar 

  6. Rosen, B. M. et al. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009).

    CAS  Google Scholar 

  7. Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

    CAS  Google Scholar 

  8. Sagara, Y. & Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009).

    CAS  Google Scholar 

  9. Armand, M. et al. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    CAS  Google Scholar 

  10. Takimiya, K., Shinamura, S., Osaka, I. & Miyazaki, E. Thienoacene-based organic semiconductors. Adv. Mater. 23, 4347–4370 (2011).

    CAS  Google Scholar 

  11. Lehn, J.-M. Perspectives in chemistry — steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

    CAS  Google Scholar 

  12. Nakanishi, T. (ed.) Supramolecular Soft Matter: Applications in Materials and Organic Electronics (Wiley, 2011).

    Google Scholar 

  13. Bates, F. S. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

    CAS  Google Scholar 

  14. Ikkala, O. & ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

    CAS  Google Scholar 

  15. Yu, Y., Nakano, M. & Ikeda, T. Directed bending of a polymer film by light. Nature 425, 145 (2003).

    CAS  Google Scholar 

  16. Schadt, M. Nematic liquid crystals and twisted-nematic LCDs. Liq. Cryst. 42, 646–652 (2015).

    CAS  Google Scholar 

  17. Gray, G. W. Harrison, K. J. & Nash, J. A. New family of nematic liquid crystals for displays. Electron. Lett. 9, 130–131 (1973).

    CAS  Google Scholar 

  18. Kwolek, S. L. & Morgan, P. W. Process for the production of a highly orientable, crystallizable, filament forming polyamide. US Patent 3287323 (1966).

    Google Scholar 

  19. Reinitzer, F. Beiträge zur kenntniss des cholesterins. Monatsh. Chem. 9, 421–441 (1888).

    Google Scholar 

  20. Vorländer, D. Verhalten der salze organischer säuren beim schmelzen. Ber. Dtsch. Chem. Ges. 43, 3120–3135 (1910).

    Google Scholar 

  21. Binnemans, K. Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005).

    CAS  Google Scholar 

  22. Ober, C. K. Jin, J.-I. & Lenz, R. W. Liquid crystal polymers with flexible spacers in the main chain. Adv. Polym. Sci. 59, 103–146 (1985).

    Google Scholar 

  23. Finkelmann, H., Ringsdorf, H. & Wendorff, J. H. Model considerations and examples of enantiotropic liquid crystalline polymers. Makromol. Chem. 179, 273–276 (1978).

    CAS  Google Scholar 

  24. Bushby, R. J. & Kawata, K. Liquid crystals that affected the world: discotic liquid crystals. Liq. Cryst. 38, 1415–1426 (2011).

    CAS  Google Scholar 

  25. Yoshio, M. & Kato, T. in Handbook of Liquid Crystals Vol. 8 Ch. 23 (eds Goodby, J et al.) (Wiley, 2014).

    Google Scholar 

  26. Sakuda, J. et al. Liquid-crystalline electrolytes for lithium-ion batteries: ordered assemblies of a mesogen-containing carbonate and a lithium salt. Adv. Funct. Mater. 25, 1206–1212 (2015).

    CAS  Google Scholar 

  27. Kerr, R. L. et al. Effect of varying the composition and nanostructure of organic carbonate-containing lyotropic liquid crystal polymer electrolytes on their ionic conductivity. Polym. J. 48, 635–643 (2016).

    CAS  Google Scholar 

  28. Yamanaka, N. et al. Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem. Commun. 740–742 (2005).

    Google Scholar 

  29. Costa, R. D. et al. Beneficial effects of liquid crystalline phases in solid-state dye-sensitized solar cells. Adv. Energy Mater. 3, 657–665 (2013).

    CAS  Google Scholar 

  30. Högberg, D. et al. Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chem. Mater. 26, 6496–6502 (2014).

    Google Scholar 

  31. Högberg, D. et al. Liquid-crystalline dye-sensitized solar cells: design of two-dimensional molecular assemblies for efficient ion transport and thermal stability. Chem. Mater. 28, 6493–6500 (2016).

    Google Scholar 

  32. Beginn, U. et al. Membranes containing oriented supramolecular transport channels. Adv. Mater. 12, 513–516 (2000).

    CAS  Google Scholar 

  33. Henmi, M. et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation. Adv. Mater. 24, 2238–2241 (2012).

    CAS  Google Scholar 

  34. Zhou, M. et al. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J. Am. Chem. Soc. 129, 9574–9575 (2007).

    CAS  Google Scholar 

  35. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 625–657 (2008).

    Google Scholar 

  36. Kalhoff, J. et al. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8, 2154–2175 (2015).

    CAS  Google Scholar 

  37. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    CAS  Google Scholar 

  38. Wright, P. V. Developments in polymer electrolytes for lithium batteries. MRS Bull. 27, 597–602 (2002).

    CAS  Google Scholar 

  39. Piechocki, C., Simon, J., Skoulios, A., Guillon, D. & Weber, P. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J. Am. Chem. Soc. 104, 5245–5247 (1982).

    CAS  Google Scholar 

  40. Kato, T. From nanostructured liquid crystals to polymer-based electrolytes. Angew. Chem. Int. Ed. 49, 7847–7848 (2010).

    CAS  Google Scholar 

  41. Boden, N. et al. One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152, 94–99 (1988).

    CAS  Google Scholar 

  42. Adam, D. et al. Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70, 457–460 (1993).

    CAS  Google Scholar 

  43. Adam, D. et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994).

    CAS  Google Scholar 

  44. Garnier, F. et al. Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 10, 3334–3339 (1998).

    CAS  Google Scholar 

  45. Facchetti, A. et al. Tuning of the semiconducting properties of sexithiophene by α, ω-substitution— α-ω-diperfluorohexylsexithiophene: the first n-type sexithiophene for thin-film transistors. Angew. Chem. Int. Ed. 39, 4547–4551 (2000).

    CAS  Google Scholar 

  46. Pisula, W. & Müllen, K. in Handbook of Liquid Crystals Vol. 8 Ch. 20 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  47. O'Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    CAS  Google Scholar 

  48. Kato, T. & Fréchet, J. M. J. New approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures. J. Am. Chem. Soc. 111, 8533–8534 (1989).

    CAS  Google Scholar 

  49. Kato, T., Mizoshita, N. & Kanie, K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol. Rapid Commun. 22, 797–814 (2001).

    CAS  Google Scholar 

  50. Ungar, G. et al. Structure and conductivity of liquid crystal channel-like ionic complexes of taper-shaped compounds. Adv. Mater. Opt. Electron. 4, 303–313 (1994).

    CAS  Google Scholar 

  51. Percec, V. et al. Molecular recognition directed self -assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-l, 4,7,10,l3-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate. J. Chem. Soc., Perkin Trans. 1 1411–1420 (1993).

    Google Scholar 

  52. Kimura, K., Hirao, M. & Yokoyama, M. Synthesis of a crowned azobenzene liquid crystal and its application to thermoresponsive ion-conducting films. J. Mater. Chem. 1, 293–294 (1991).

    CAS  Google Scholar 

  53. Unwin, N. The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676 (1989).

    CAS  Google Scholar 

  54. Sakai, N. & Matile, S. Synthetic ion channels. Langmuir 29, 9031–9040 (2013).

    CAS  Google Scholar 

  55. Song, J. Y., Wang, Y. Y. & Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183–197 (1999).

    CAS  Google Scholar 

  56. Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

    CAS  Google Scholar 

  57. van Nostrum, C. F. et al. Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines: toward molecular wires and molecular ionoelectronics. J. Am. Chem. Soc. 117, 9957–9965 (1995).

    CAS  Google Scholar 

  58. Percec, V. et al. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J. Chem. Soc., Perkin Trans. 2 31–44 (1994).

  59. Ohtake, T. et al. Liquid-crystalline complexes of a lithium salt with twin oligomers containing oxyethylene spacers. An approach to anisotropic ion conduction. Polym. J. 31, 1155–1158 (1999).

    CAS  Google Scholar 

  60. Ohtake, T. et al. Liquid-crystalline complexes of mesogenic dimers containing oxyethylene moieties with LiCF3SO3: self-organized ion conductive materials. Chem. Mater. 12, 782–789 (2000).

    CAS  Google Scholar 

  61. Yoshio, M. et al. Layered ionic liquids: anisotropic ion conduction in new self-organized liquid-crystalline materials. Adv. Mater. 14, 351–354 (2002).

    CAS  Google Scholar 

  62. Shimura, H. et al. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals. J. Am. Chem. Soc. 130, 1759–1765 (2008).

    CAS  Google Scholar 

  63. Goossens, K., Lava, K., Bielawski, C. W. & Binnemans, K. Ionic liquid crystals: versatile materials. Chem. Rev. 116, 4643–4807 (2016).

    CAS  Google Scholar 

  64. Kato, T. & Yoshio, M. in Electrochemical Aspects of Ionic Liquids 1st edn (ed. Ohno, H. ) 307–320 (Wiley, 2005).

    Google Scholar 

  65. Mansueto, M. & Laschat, S. in Handbook of Liquid Crystals Vol. 6 Ch. 8 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  66. Yoshio, M. et al. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc. 126, 994–995 (2004).

    CAS  Google Scholar 

  67. Yoshio, M. et al. Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivity. Bull. Chem. Soc. Jpn 80, 1836–1841 (2007).

    CAS  Google Scholar 

  68. Yoshio, M. et al. in Ionic Liquids IV: Not Just Solvents Anymore ACS Symp. Ser. Vol. 975 161–171 (American Chemical Society, 2007).

    Google Scholar 

  69. Yoshio, M. et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of liquid crystals. J. Am. Chem. Soc. 128, 5570–5577 (2006).

    CAS  Google Scholar 

  70. Ichikawa, T. et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc. 129, 10662–10663 (2007).

    CAS  Google Scholar 

  71. Frise, A. E. et al. Ion conductive behaviour in a confined nanostructure: NMR observation of self-diffusion in a liquid-crystalline bicontinuous cubic phase. Chem. Commun. 46, 728–730 (2010).

    CAS  Google Scholar 

  72. Ichikawa, T. et al. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J. Am. Chem. Soc. 133, 2163–2169 (2011).

    CAS  Google Scholar 

  73. Ichikawa, T. et al. Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts. J. Am. Chem. Soc. 134, 2634–2643 (2012).

    CAS  Google Scholar 

  74. Soberats, B. et al. Ionic switch induced by a rectangular-hexagonal phase transition in benzenammonium columnar liquid crystals. J. Am. Chem. Soc. 137, 13212–13215 (2015).

    CAS  Google Scholar 

  75. Ueda, S. et al. Anisotropic proton-conductive materials formed by the self-organization of phosphonium-type zwitterions. Adv. Mater. 23, 3071–3074 (2011).

    CAS  Google Scholar 

  76. Soberats, B. et al. 3D anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid. J. Am. Chem. Soc. 135, 15286–15289 (2013).

    CAS  Google Scholar 

  77. Hammond, S. R. et al. Synthesis and lyotropic liquid crystalline behaviour of a taper-shaped phosphonic acid amphiphile. Liq. Cryst. 29, 1151–1159 (2002).

    CAS  Google Scholar 

  78. Chow, C. F. et al. Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid. J. Mater. Chem. 20, 6245–6249 (2010).

    CAS  Google Scholar 

  79. Hubbard, H. V. St. A., Sills, S. A., Davies, G. R., McIntyre, J. E. & Ward, I. M. Anisotropic ionic conduction in a magnetically aligned liquid crystalline polymer electrolyte. Electrochim. Acta 43, 1239–1245 (1998).

    CAS  Google Scholar 

  80. Imrie, C. T., Ingram, M. D. & McHattie, G. S. Ion transport in glassy side-group liquid crystalline polymer electrolytes. Adv. Mater. 11, 832–834 (1999).

    CAS  Google Scholar 

  81. Abate, A. et al. Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications. J. Mater. Chem. A 1, 6572–6578 (2013).

    CAS  Google Scholar 

  82. Yamanaka, N. et al. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J. Phys. Chem. B 111, 4763–4769 (2007).

    CAS  Google Scholar 

  83. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    CAS  Google Scholar 

  84. Hagfeldt, A. et al. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    CAS  Google Scholar 

  85. Ichikawa, T. et al. Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid-crystalline bicontinuous cubic phases. Chem. Sci. 3, 2001–2008 (2012).

    CAS  Google Scholar 

  86. Ichikawa, T. et al. Designer lyotropic liquid-crystalline systems containing amino acid ionic liquids as self-organisation media of amphiphiles. Chem. Commun. 49, 11746–11748 (2013).

    CAS  Google Scholar 

  87. Yamashita, A. et al. Columnar nanostructured polymer films containing ionic liquids in supramolecular one-dimensional nanochannels. J. Polym. Sci. A Polym. Chem. 53, 366–371 (2014).

    Google Scholar 

  88. Sakuda, J. et al. 2D assemblies of ionic liquid crystals based on imidazolium moieties: formation of ion-conductive layers. New J. Chem. 39, 4471–4477 (2015).

    CAS  Google Scholar 

  89. Cho, B.-K. et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

    CAS  Google Scholar 

  90. Cho, B.-K. Spontaneous bulk organization of molecular assemblers based on aliphatic polyether and/or poly(benzyl ether) dendrons. Polym. J. 44, 475–489 (2012).

    CAS  Google Scholar 

  91. Cho, B.-K. Nanostructured organic electrolytes. RSC Adv. 4, 395–405 (2014).

    CAS  Google Scholar 

  92. Kerr, R. L., Miller, S. A., Shoemaker, R. K., Elliot, B. J. & Gin, D. L. New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. J. Am. Chem. Soc. 131, 15972–15973 (2009).

    CAS  Google Scholar 

  93. Iinuma, Y. et al. Uniaxially parallel alignment of a smectic A liquid-crystalline rod–coil molecule and its lithium salt complexes using rubbed polyimides. Macromolecules 40, 4874–4878 (2007).

    CAS  Google Scholar 

  94. Soberats, B. et al. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J. Am. Chem. Soc. 136, 9552–9555 (2014).

    CAS  Google Scholar 

  95. Li, J. et al. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromolecules 40, 8125–8128 (2007).

    CAS  Google Scholar 

  96. Uchida, Y. et al. Ion conductive properties in ionic liquid crystalline phases confined in a porous membrane. J. Mater. Chem. C 3, 6144–6147 (2015).

    CAS  Google Scholar 

  97. Shimura, H. et al. Electric-field-responsive lithium-ion conductors of propylenecarbonate-based columnar liquid crystals. Adv. Mater. 21, 1591–1594 (2009).

    CAS  Google Scholar 

  98. Feng, X. et al. Scalable fabrication of polymer membranes with vertically aligned 1-nm pores by magnetic field directed self-assembly. ACS Nano 8, 11977–11986 (2014).

    CAS  Google Scholar 

  99. Feng, X. et al. Thin polymer films with continuous vertically aligned 1 nm pores fabricated by soft confinement. ACS Nano 10, 150–158 (2016).

    CAS  Google Scholar 

  100. Kishimoto, K. et al. Nanostructured anisotropic ion-conductive films. J. Am. Chem. Soc. 125, 3196–3197 (2003).

    CAS  Google Scholar 

  101. Kishimoto, K. et al. A nano-segregated polymeric film exhibiting high ionic conductivities. J. Am. Chem. Soc. 127, 15618–15623 (2005).

    CAS  Google Scholar 

  102. Hoshino, K. et al. Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J. Polym. Sci. A Polym. Chem. 41, 3486–3492 (2003).

    CAS  Google Scholar 

  103. Zhang, H. et al. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes. Adv. Mater. 25, 3543–3548 (2013).

    CAS  Google Scholar 

  104. Ichikawa, T. Kato, T. & Ohno, H. 3D continuous water nanosheet as a gyroid minimal surface formed by bicontinuous cubic liquid-crystalline zwitterions. J. Am. Chem. Soc. 134, 11354–11357 (2012).

    CAS  Google Scholar 

  105. Mukai, T. et al. Self-assembled N-alkylimidazolium perfluorooctanesulfonates. Chem. Lett. 34, 442–443 (2005).

    CAS  Google Scholar 

  106. Xu, F., Matsumoto, K. & Hagiwara, R. Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals. Chem. Eur. J. 16, 12970–12976 (2010).

    CAS  Google Scholar 

  107. Xu, F., Matsumoto, K. & Hagiwara, R. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)n F, n = 1.0–2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes. J. Phys. Chem. B 116, 10106–10112 (2012).

    CAS  Google Scholar 

  108. Tan, S. et al. Syntheses, characterizations and electrochemical properties of mesomorphic 4-(4′-alkoxy-(1,1′-biphenyl)-4-oxy)butane-1-sulfonic acids. J. Mol. Struct. 1045, 15–19 (2013).

    CAS  Google Scholar 

  109. Basak, D. et al. Proton conduction in discotic mesogens. Chem. Commun. 47, 5566–5568 (2011).

    CAS  Google Scholar 

  110. Tunkara, E. et al. Highly proton conductive phosphoric acid–non ionic surfactant lyotropic liquid crystalline mesophases and applications in graphene optical modulators. ACS Nano 8, 11007–11012 (2014).

    CAS  Google Scholar 

  111. Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science. 332, 674–676 (2011).

    CAS  Google Scholar 

  112. Hatakeyama, E. S. et al. Water filtration performance of a lyotropic liquid crystal polymer membrane with uniform, sub-1-nm pores. J. Membr. Sci. 366, 62–72 (2011).

    CAS  Google Scholar 

  113. Yamamoto, T. et al. Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide). Adv. Funct. Mater. 21, 918–926 (2011).

    CAS  Google Scholar 

  114. Pisula, W. et al. Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons. Chem. Mater. 17, 4296–4303 (2005).

    CAS  Google Scholar 

  115. van de Craats, A. M., Warman, J. M., Müllen, K., Geerts, Y. & Brand, J. D. Rapid charge transport along self-assembling graphitic nanowires. Adv. Mater. 10, 36–38 (1998).

    CAS  Google Scholar 

  116. Park, L. Y., Hamilton, D. G., McGehee, E. A. & McMenimen, K. A. Complementary C3-symmetric donor–acceptor components: cocrystal structure and control of mesophase stability. J. Am. Chem. Soc. 125, 10586–10590 (2003).

    CAS  Google Scholar 

  117. Feng, X. et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater. 8, 421–426 (2009).

    CAS  Google Scholar 

  118. Hirai, Y. et al. Enhanced hole transporting behavior of discotic liquid-crystalline physical gels. Adv. Funct. Mater. 18, 1668–1675 (2008).

    CAS  Google Scholar 

  119. Yasuda, T., Shimizu, T., Liu, F., Ungar, G. & Kato, T. Electro-functional octupolar π -conjugated columnar liquid crystals. J. Am. Chem. Soc. 133, 13437–13444 (2011).

    CAS  Google Scholar 

  120. Kushida, T., Shuto, A., Yoshio, M., Kato, T. & Yamaguchi, S. A planarized triphenylborane mesogen: discotic liquid crystals with ambipolar charge-carrier transport properties. Angew. Chem. Int. Ed. 54, 6922–6925 (2015).

    CAS  Google Scholar 

  121. Schouten, P. G., Warman, J. M., de Haas, M. P., Fox, M. A. & Pan, H.-L. Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353, 736–737 (1991).

    CAS  Google Scholar 

  122. Shimizu, Y. et al. Novel photocurrent rectification behaviour for a photoconductive cell using the mesogenic 5,10,15,20-tetrakis(4-n-pentadecylphenyl)porphyrin. J. Chem. Soc., Chem. Commun. 656–658 (1993).

  123. Tanaka, S. et al. Toward ultralow-bandgap liquid crystalline semiconductors: use of triply fused metalloporphyrin trimer–pentamer as extra-large π-extended mesogenic motifs. Chem. Eur. J. 18, 10554–10561 (2012).

    CAS  Google Scholar 

  124. Sakurai, T. et al. Electron- or hole-transporting nature selected by side-chain-directed π-stacking geometry: liquid crystalline fused metalloporphyrin dimers. J. Am. Chem. Soc. 133, 6537–6540 (2011).

    CAS  Google Scholar 

  125. Yasuda, T. et al. π-Conjugated oligothiophene-based polycatenar liquid crystals: self-organization and photoconductive, luminescent, and redox properties. Adv. Funct. Mater. 19, 411–419 (2009).

    CAS  Google Scholar 

  126. An, Z. et al. High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater. 17, 2580–2583 (2005).

    CAS  Google Scholar 

  127. Funahashi, M., Yamaoka, M., Takenami, K. & Sonoda, A. Liquid-crystalline perylene tetracarboxylic bisimide derivatives bearing cyclotetrasiloxane moieties. J. Mater. Chem. C 1, 7872–7878 (2013).

    CAS  Google Scholar 

  128. Funahashi, M. & Sonoda, A. Electron transport characteristics in nanosegregated columnar phases of perylene tetracarboxylic bisimide derivatives bearing oligosiloxane chains. Phys. Chem. Chem. Phys. 16, 7754–7763 (2014).

    CAS  Google Scholar 

  129. Funahashi, M., Takeuchi, N. & Sonoda, A. A liquid-crystalline perylene tetracarboxylic bisimide derivative bearing trisiloxan-2-yl moieties: influence on mesomorphic property and electron transport. RSC Adv. 6, 18703–18710 (2016).

    CAS  Google Scholar 

  130. Funahashi, M. & Hanna, J. Fast ambipolar carrier transport in smectic phases of phenylnaphthalene liquid crystal. Appl. Phys. Lett. 71, 602–604 (1997).

    CAS  Google Scholar 

  131. Funahashi, M. & Hanna, J. High ambipolar carrier mobility in self-organizing terthiophene derivative. Appl. Phys. Lett. 76, 2574–2576 (2000).

    CAS  Google Scholar 

  132. Funahashi, M. & Hanna, J. High carrier mobility up to 0.1 cm2 V−1 s−1 at ambient temperatures in thiophene-based smectic liquid crystals. Adv. Mater. 17, 594–598 (2005).

    CAS  Google Scholar 

  133. Zhang, F., Funahashi, M. & Tamaoki, N. Flexible field-effect transistors from a liquid crystalline semiconductor by solution processes. Org. Electron. 11, 363–368 (2010).

    CAS  Google Scholar 

  134. Zhang, H. et al. A thiophene liquid crystal as a novel π-conjugated dye for photo-manipulation of molecular alignment. Adv. Mater. 12, 1336–1339 (2000).

    CAS  Google Scholar 

  135. van Breemen, A. J. J. M. et al. Large area liquid crystal monodomain field-effect transistors. J. Am. Chem. Soc. 128, 2336–2345 (2006).

    CAS  Google Scholar 

  136. Oikawa, K. et al. High carrier mobility of organic field-effect transistors with a thiophene–naphthalene mesomorphic semiconductor. Adv. Mater. 19, 1864–1868 (2007).

    CAS  Google Scholar 

  137. Iino, H. & Hanna, J. Availability of liquid crystallinity in solution processing for polycrystalline thin films. Adv. Mater. 23, 1748–1751 (2011).

    CAS  Google Scholar 

  138. Iino, H., Usui, T. & Hanna, J. Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 6828 (2015).

    CAS  Google Scholar 

  139. Aldred, M. P. et al. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).

    CAS  Google Scholar 

  140. Sun, K. et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6, 6013 (2015).

    CAS  Google Scholar 

  141. Woon, K. L. et al. Electronic charge transport in extended nematic liquid crystals. Chem. Mater. 18, 2311–2317 (2006).

    CAS  Google Scholar 

  142. Tokunaga, K., Takayashiki, Y., Iino, H. & Hanna, J. Electronic conduction in nematic phase of small molecules. Phys. Rev. B 79, 033201 (2009).

    Google Scholar 

  143. Nuita, M., Sakuda, J., Hirai, Y., Funahashi, M. & Kato, T. Hole transport of a liquid-crystalline phenylterthiophene derivative exhibiting the nematic phase at ambient temperature. Chem. Lett. 40, 412–413 (2011).

    CAS  Google Scholar 

  144. Funahashi, M. & Tamaoki, N. Effect of pretransitional organization in chiral nematic of oligothiophene derivatives on their carrier transport characteristics. Chem. Mater. 19, 608–617 (2007).

    CAS  Google Scholar 

  145. Funahashi, M. & Tamaoki, N. Electronic conduction in the chiral nematic phase of an oligothiophene derivative. ChemPhysChem 7, 1193–1197 (2006).

    CAS  Google Scholar 

  146. Funahashi, M. & Tamaoki, N. Organic semiconductors with helical structure based on oligothiophene derivatives exhibiting chiral nematic phase. Mol. Cryst. Liq. Cryst. 475, 123–135 (2007).

    CAS  Google Scholar 

  147. Hamamoto, T. & Funahashi, M. Circularly polarized light emission from a chiral nematic phenylterthiophene dimer exhibiting ambipolar carrier transport. J. Mater. Chem. C 3, 6891–6900 (2015).

    CAS  Google Scholar 

  148. Lemieux, R. P. Chirality transfer in ferroelectric liquid crystals. Acc. Chem. Res. 34, 845–853 (2001).

    CAS  Google Scholar 

  149. Funatsu, Y., Sonoda, A. & Funahashi, M. Ferroelectric liquid-crystalline semiconductors based on a phenylterthiophene skeleton: effect of the introduction of oligosiloxane moieties and photovoltaic effect. J. Mater. Chem. C 3, 1982–1993 (2015).

    CAS  Google Scholar 

  150. Anetai, H. et al. Fluorescent ferroelectrics of hydrogen-bonded pyrene derivatives. J. Phys. Chem. Lett. 6, 1813–1818 (2015).

    CAS  Google Scholar 

  151. Köhler, A. & Bässler, H. Electronic Processes in Organic Semiconductors: An Introduction (Wiley, 2015).

    Google Scholar 

  152. Mei, J. et al. Integrated materials design of organic semiconductors for field effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

    CAS  Google Scholar 

  153. Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).

    CAS  Google Scholar 

  154. Roncali, J. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009).

    CAS  Google Scholar 

  155. Funahashi, M., Zhang, F. & Tamaoki, N. High ambipolar mobility in a highly ordered smectic phase of a dialkylphenylterthiophene derivative that can be applied to solution-processed organic field-effect transistors. Adv. Mater. 19, 353–358 (2007).

    CAS  Google Scholar 

  156. Pisula, W. et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv. Mater. 17, 684–689 (2005).

    CAS  Google Scholar 

  157. van de Craats, A. M. et al. Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 15, 495–499 (2003).

    CAS  Google Scholar 

  158. Tracz, A. et al. Uniaxial alignment of the columnar super-structure of a hexa (alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J. Am. Chem. Soc. 125, 1682–1683 (2003).

    CAS  Google Scholar 

  159. Shklyarevskiy, I. O. et al. High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005).

    CAS  Google Scholar 

  160. Iino, H. & Hanna, J. Availability of liquid crystalline molecules for polycrystalline organic semiconductor thin films. Jpn J. Appl. Phys. 45, L867–L870 (2006).

    CAS  Google Scholar 

  161. Izawa, T., Miyazaki, E. & Takimiya, K. Solution-processible organic semiconductors based on selenophene-containing heteroarenes, 2,7-dialkyl[1] benzoselenopheno[3,2-b ][1]benzoselenophenes (Cn-BSBSs): syntheses, properties, molecular arrangements, and field-effect transistor characteristics. Chem. Mater. 21, 903–912 (2009).

    CAS  Google Scholar 

  162. Nakayama, K. et al. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv. Mater. 23, 1626–1629 (2011).

    CAS  Google Scholar 

  163. Mitsui, C. et al. Naphtho[2,1-b:6,5-b′]difuran: a versatile motif available for solution-processed single-crystal organic field-effect transistors with high hole mobility. J. Am. Chem. Soc. 134, 5448–5451 (2012).

    CAS  Google Scholar 

  164. Cristadoro, A., Lieser, G., Räder, H. J. & Müllen, K. Field force alignment of disc-type π systems. ChemPhysChem. 8, 586–591 (2007).

    CAS  Google Scholar 

  165. McCulloch, I. et al. Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. J. Mater. Chem. 13, 2436–2444 (2003).

    CAS  Google Scholar 

  166. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    CAS  Google Scholar 

  167. Palenberg, M. A., Silbey, R. J., Malagoli, M. & Brédas, J.-L. Almost temperature independent charge carrier mobilities in liquid crystals. J. Chem. Phys. 112, 1541–1546 (2000).

    CAS  Google Scholar 

  168. Kreouzis, T. et al. Temperature-independent hole mobility in discotic liquid crystals. J. Chem. Phys. 114, 1797–1802 (2001).

    CAS  Google Scholar 

  169. Bleyl, I., Erdelen, C., Schmidt, H.-W. & Haarer, D. One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Phil. Mag. B 79, 463–475 (1999).

    CAS  Google Scholar 

  170. Funahashi, M., Ishii, T. & Sonoda, A. Temperature-independent hole mobility of a smectic liquid-crystalline semiconductor based on band-like conduction. ChemPhysChem 14, 2750–2758 (2013).

    CAS  Google Scholar 

  171. Lamarra, M., Muccioli, L., Orlandi, S. & Zannoni, C. Temperature dependence of charge mobility in model discotic liquid crystals. Phys. Chem. Chem. Phys. 14, 5368–5375 (2012).

    CAS  Google Scholar 

  172. Idé, J. et al. Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Am. Chem. Soc. 136, 2911–2920 (2014).

    Google Scholar 

  173. Xu, Z. & Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011).

    CAS  Google Scholar 

  174. Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

    Google Scholar 

  175. Lydon, J. in Handbook of Liquid Crystals Vol. 6 Ch. 14 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  176. Guo, F., Mukhopadhyay, A., Sheldon, B. W. & Hurt, R. H. Vertically aligned graphene layer arrays from chromonic liquid crystal precursors. Adv. Mater. 23, 508–513 (2011).

    CAS  Google Scholar 

  177. Goh, M., Matsushita, S. & Akagi, K. From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonisation. Chem. Soc. Rev. 39, 2466–2476 (2010).

    CAS  Google Scholar 

  178. Matushita, S. et al. Helical carbon and graphite films prepared from helical poly(3,4-ethylenedioxythiophene) films synthesized by electrochemical polymerization in chiral nematic liquid crystals. Angew. Chem. Int. Ed. 53, 1659–1663 (2014).

    Google Scholar 

  179. Heuer, H. W., Wehrmann, R. & Kirchmeyer, S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate). Adv. Funct. Mater. 12, 89–94 (2002).

    CAS  Google Scholar 

  180. Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    CAS  Google Scholar 

  181. Isoda, K., Yasuda, T., Funahashi, M. & Kato, T. in Handbook of Liquid Crystals Vol. 8 Ch. 24 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  182. Tabushi, I., Yamamura, K. & Kominami, K. Electric stimulus-response behavior of liquid-crystalline viologen. J. Am. Chem. Soc. 108, 6409–6410 (1986).

    CAS  Google Scholar 

  183. Yamamura, K., Okada, Y., Ono, S., Kominami, K. & Tabushi, I. New liquid crystalline viologens exhibiting electric stimulus-response behavior. Tetrahedron Lett. 28, 6475–6478 (1987).

    CAS  Google Scholar 

  184. Tanabe, K., Yasuda, T., Yoshio, M. & Kato, T. Viologen-based redox-active ionic liquid crystals forming columnar phases. Org. Lett. 9, 4271–4274 (2007).

    CAS  Google Scholar 

  185. Chang, H.-C. et al. A redox-active columnar metallomesogen and its cyclic voltammetric responses. J. Mater. Chem. 17, 4136–4138 (2007).

    CAS  Google Scholar 

  186. Yazaki, S., Funahashi, M. & Kato, T. An electrochromic nanostructured liquid crystal consisting of π -conjugated and ionic moieties. J. Am. Chem. Soc. 130, 13206–13207 (2008).

    CAS  Google Scholar 

  187. Yazaki, S., Funahashi, M., Kagimoto, J., Ohno, H. & Kato, T. Nanostructured liquid crystals combining ionic and electronic functions. J. Am. Chem. Soc. 132, 7702–7708 (2010).

    CAS  Google Scholar 

  188. Beneduci, A., Cospito, S., La Deda, M., Veltri, L. & Chidichimo, G. Electrofluorochromism in π -conjugated ionic liquid crystals. Nat. Commun. 5, 3105 (2014).

    Google Scholar 

  189. Cospito, S., Beneduci, A., Veltri, L., Salamonczyk, M. & Chidichimo, G. Mesomorphism and electrochemistry of thienoviologen liquid crystals. Phys. Chem. Chem. Phys. 17, 17670–17678 (2015).

    CAS  Google Scholar 

  190. Matsushita, S., Jeong, Y. S. & Akagi, K. Electrochromism-driven linearly and circularly polarised dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity. Chem. Commun. 49, 1883–1890 (2013).

    CAS  Google Scholar 

  191. Jeong, Y. S. & Akagi, K. Liquid crystalline PEDOT derivatives exhibiting reversible anisotropic electrochromism and linearly and circularly polarized dichroism. J. Mater. Chem. 21, 10472–10481 (2011).

    CAS  Google Scholar 

  192. Goto, H. An optically active polythiophene exhibiting electrochemically driven light-interference modulation. Adv. Funct. Mater. 19, 1335–1342 (2009).

    CAS  Google Scholar 

  193. Aprahamian, I. et al. A liquid-crystalline bistable [2]rotaxane. Angew. Chem. Int. Ed. 46, 4675–4679 (2007).

    CAS  Google Scholar 

  194. Yasuda, T. et al. A redox-switchable [2]rotaxane in a liquid-crystalline state. Chem. Commun. 46, 1224–1226 (2010).

    CAS  Google Scholar 

  195. Ohtake, T., Tanaka, H., Matsumoto, T., Ohta, A. & Kimura, M. Deformation of redox-active polymer gel based on polysiloxane backbone and bis(benzodithiolyl)bithienyl scaffold. Langmuir 30, 14680–14685 (2014).

    CAS  Google Scholar 

  196. Ohtake, T., Tanaka, H., Matsumoto, T., Kimura, M. & Ohta, A. Redox-driven molecular switches consisting of bis(benzodithiolyl)bithienyl scaffold and mesogenic moieties: synthesis and complexes with liquid crystalline polymer. J. Org. Chem. 79, 6590–6602 (2014).

    CAS  Google Scholar 

  197. Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).

    CAS  Google Scholar 

  198. Kato, T., Hirai, Y., Nakaso, S. & Moriyama, M. Liquid-crystalline physical gels. Chem. Soc. Rev. 36, 1857–1867 (2007).

    CAS  Google Scholar 

  199. Gan, K. P., Yoshio, M. & Kato, T. Columnar liquid-crystalline assemblies of X-shaped pyrene-oligothiophene conjugates: photoconductivities and mechanochromic functions. J. Mater. Chem. C. 4, 5073–5080 (2016).

    CAS  Google Scholar 

  200. Nealon, G. L. et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J.Org. Chem. 8, 349–370 (2012).

    CAS  Google Scholar 

  201. Kumar, S. & Bisoyi, H. K. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew. Chem. Int. Ed. 46, 1501–1503 (2007).

    CAS  Google Scholar 

  202. Scalia, G. & Lagerwall, J. in Handbook of Liquid Crystals Vol. 6 Ch. 4 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  203. Felder-Flesch, D., Guillon, D. & Donnio, B. in Handbook of Liquid Crystals Vol. 5 Ch. 6 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  204. Pucci, D. & Donnio, B. in Handbook of Liquid Crystals Vol. 5 Ch. 4 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  205. McIntosh, T. J. & Simon, S. A. Roles of bilayer material properties in function and distribution of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 177–198 (2006).

    CAS  Google Scholar 

  206. Seki, T., Kawatsuki, N. & Kondo, M. in Handbook of Liquid Crystals Vol. 8 Ch. 18 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  207. Kim, J.-H., Yoneya, M. & Yokoyama, H. Tristable nematic liquid crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).

    CAS  Google Scholar 

  208. Broughton, B. in Handbook of Liquid Crystals Vol. 2 Ch. 9 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  209. Bushby, R. J. & Boden, N. in Handbook of Liquid Crystals Vol. 4 Ch. 11 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  210. Koh, T. M. et al. Photovoltage enhancement from cyanobiphenyl liquid crystals and 4-tert-butylpyridine in Co(II/III) mediated dye-sensitized solar cells. Chem. Commun. 49, 9101–9103 (2013).

    CAS  Google Scholar 

  211. Ahn, S. K. et al. Development of dye-sensitized solar cells composed of liquid crystal embedded, electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers as polymer gel electrolytes. ACS Appl. Mater. Interfaces 4, 2096–2100 (2012).

    CAS  Google Scholar 

  212. Osaka, I., Saito, M., Koganezawa, T. & Takimiya, K. Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on polymer orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014).

    CAS  Google Scholar 

  213. Okamoto, T. et al. V-Shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv. Mater. 25, 6392–6397 (2013).

    CAS  Google Scholar 

  214. Li, J.-F. et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010).

    Google Scholar 

  215. Seo, J. et al. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch. Sci. Rep. 3, 2452 (2013).

    Google Scholar 

  216. Gin, D. L. et al. Recent advances in the design of polymerizable lyotropic liquid crystal assemblies for heterogeneous catalysis and selective separations. Adv. Funct. Mater. 16, 865–878 (2006).

    CAS  Google Scholar 

  217. Brake, J. M. et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003).

    CAS  Google Scholar 

  218. Zannoni, C. Molecular design and computer simulations of novel mesophases. J. Mater. Chem. 11, 2637–2646 (2001).

    CAS  Google Scholar 

  219. Yoneya, M. Toward rational design of complex nanostructured liquid crystals. Chem. Rec. 11, 66–76 (2011).

    CAS  Google Scholar 

  220. Goodby, J. W., Mandle, R. J., Davis, E. J., Zhong, T. & Cowling, S. J. What makes a liquid crystal? The effect of free volume on soft matter. Liq. Cryst. 42, 593–622 (2015).

    CAS  Google Scholar 

  221. Ungar, G., Liu, F. & Zeng, X. in Handbook of Liquid Crystals Vol. 5 Ch. 7 (eds Goodby, J. et al.) (Wiley, 2014).

    Google Scholar 

  222. Kimura, M. et al. Oligothiophene-based liquid crystals exhibiting smectic A phases in wider temperature ranges. Chem. Lett. 35, 1150–1151 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

T.K. appreciates support by Core Research for Evolutional Science and Technology (CREST), Japan Science & Technology Agency (JST), Grant-in-Aid for Scientific Research (KAKENHI) from Ministry of Education, Culture, Sports, (MEXT), and FIRST programme from Cabinet Office, Government of Japan. The authors thank K. Takimiya at RIKEN and T. Okamoto at the University of Tokyo for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kato.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Yoshio, M., Ichikawa, T. et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater 2, 17001 (2017). https://doi.org/10.1038/natrevmats.2017.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing