Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

2D metal carbides and nitrides (MXenes) for energy storage

Abstract

The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: MXenes reported so far.
Figure 2: Synthesis and characterization of MXenes.
Figure 3: Effect of synthesis conditions on MXene.
Figure 4: Mechanical and optical properties of MXenes.
Figure 5: Modification of the electronic properties of MXenes by changing outer M layers.
Figure 6: MXenes as electrodes in different kinds of batteries.
Figure 7: Capacitive performance of MXenes.

References

  1. 1

    Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  CAS  Google Scholar 

  2. 2

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  3. 3

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  4. 4

    Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article  CAS  Google Scholar 

  5. 5

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  6. 6

    Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).

    Article  CAS  Google Scholar 

  7. 7

    Geim, A. & Grigorieva, I. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  8. 8

    Lalmi, B. et al. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010).

    Article  CAS  Google Scholar 

  9. 9

    Cahangirov, S., Topsakal, M., Aktürk, E., S¸ahin, H. & Ciraci, S. Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).

    Article  CAS  Google Scholar 

  10. 10

    Dávila, M., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).

    Article  CAS  Google Scholar 

  11. 11

    Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  12. 12

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  13. 13

    Ataca, C., S¸ ahin, H. & Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012).

    Article  CAS  Google Scholar 

  15. 15

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 . Adv. Mater. 23, 4248–4253 (2011). This article reports the discovery of Ti3C2Tx MXene.

    Article  CAS  Google Scholar 

  16. 16

    Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). This article reports the discovery of different MXenes, creating a family of 2D materials.

    Article  CAS  Google Scholar 

  17. 17

    Naguib, M. et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).

    Article  CAS  Google Scholar 

  18. 18

    Khazaei, M. et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). The first computational study on electronic and magnetic properties of all the M2C MXenes.

    Article  CAS  Google Scholar 

  19. 19

    Ghidiu, M. et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 50, 9517–9520 (2014).

    Article  CAS  Google Scholar 

  20. 20

    Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). This study expanded the family MXenes by introducing ordered double transition metal MXenes.

    Article  CAS  Google Scholar 

  21. 21

    Gogotsi, Y. Chemical vapour deposition: transition metal carbides go 2D. Nat. Mater. 14, 1079–1080 (2015).

    Article  CAS  Google Scholar 

  22. 22

    Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1004 (2014).

    Article  CAS  Google Scholar 

  23. 23

    Kurtoglu, M., Naguib, M., Gogotsi, Y. & Barsoum, M. W. First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133–137 (2012).

    Article  CAS  Google Scholar 

  24. 24

    Khazaei, M., Arai, M., Sasaki, T., Estili, M. & Sakka, Y. Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16, 7841–7849 (2014).

    Article  CAS  Google Scholar 

  25. 25

    Urbankowski, P. et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016). The first experimental report on the synthesis of a nitride MXene by etching in molten salts.

    Article  CAS  Google Scholar 

  26. 26

    Ivanovskii, A. L. & Enyashin, A. N. Graphene-like transition-metal nanocarbides and nanonitrides. Russ. Chem. Rev. 82, 735–746 (2013).

    Article  CAS  Google Scholar 

  27. 27

    Shein, I. R. & Ivanovskii, A. L. Graphene-like titanium carbides and nitrides Tin +1Cn, Tin + 1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 65, 104–114 (2012).

    Article  CAS  Google Scholar 

  28. 28

    Xie, Y. & Kent, P. Hybrid density functional study of structural and electronic properties of functionalized Tin +1Xn (X = C, N) monolayers. Phys. Rev. B 87, 235441 (2013).

    Article  CAS  Google Scholar 

  29. 29

    Gao, G. et al. Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 8, 8986–8994 (2016).

    Article  CAS  Google Scholar 

  30. 30

    Khazaei, M. et al. Nearly free electron states in MXenes. Phys. Rev. B 93, 205125 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Barsoum, M. W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley, 2013).

    Book  Google Scholar 

  32. 32

    Barsoum, M. W. & Radovic, M. Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 41, 195–227 (2011).

    Article  CAS  Google Scholar 

  33. 33

    Eklund, P., Beckers, M., Jansson, U., Högberg, H. & Hultman, L. The Mn +1AXn phases: materials science and thin-film processing. Thin Solid Films 518, 1851–1878 (2010).

    Article  CAS  Google Scholar 

  34. 34

    Anasori, B. et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3 . J. Appl. Phys. 118, 094304 (2015).

    Article  CAS  Google Scholar 

  35. 35

    Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). This study showed a new method for MXene synthesis and demonstrated clay-like behaviour of MXene produced by etching in HCl–LiF and its high volumetric capacitance.

    CAS  Google Scholar 

  36. 36

    Halim, J. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014).

    Article  CAS  Google Scholar 

  37. 37

    Karlsson, L. H., Birch, J., Halim, J., Barsoum, M. W. & Persson, P. O. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 15, 4955–4960 (2015).

    Article  CAS  Google Scholar 

  38. 38

    Wang, L. et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 12, 702–710 (2016).

    Article  CAS  Google Scholar 

  39. 39

    Meshkian, R. et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Mater. 108, 147–150 (2015).

    Article  CAS  Google Scholar 

  40. 40

    Halim, J. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118–3127 (2016).

    Article  CAS  Google Scholar 

  41. 41

    Zhou, J. et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5 . Angew. Chem. Int. Ed. 128, 5092–5097 (2016).

    Article  Google Scholar 

  42. 42

    Lin, Z., He, L., Li, M., Wang, J. & Zhou, Y. Layered stacking characteristics of ternary zirconium aluminum carbides. J. Mater. Res. 22, 3058–3066 (2007).

    Article  CAS  Google Scholar 

  43. 43

    Wang, J., Zhou, Y., Liao, T. & Lin, Z. Trend in crystal structure of layered ternary T-Al-C carbides (T = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, W, and Ta). J. Mater. Res. 22, 2685–2690 (2007).

    Article  CAS  Google Scholar 

  44. 44

    Gesing, T. M. & Jeitschko, W. The crystal structures of Zr3Al3C5, ScAl3C3, and UAl3C3 and their relation to the structures of U2Al3C4 and Al4C3 . J. Solid State Chem. 140, 396–401 (1998).

    Article  CAS  Google Scholar 

  45. 45

    Xie, J. et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 5, 4615–4620 (2014).

    Article  CAS  Google Scholar 

  46. 46

    Hoffman, E. N., Yushin, G., El-Raghy, T., Gogotsi, Y. & Barsoum, M. W. Micro and mesoporosity of carbon derived from ternary and binary metal carbides. Micropor. Mesopor. Mater. 112, 526–532 (2008).

    Article  CAS  Google Scholar 

  47. 47

    Presser, V., Heon, M. & Gogotsi, Y. Carbide-derived carbons–from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011).

    Article  CAS  Google Scholar 

  48. 48

    Barsoum, M. et al. The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti(C0.67Si0.06) phase by the diffusion of Si into molten cryolite. J. Electrochem. Soc. 146, 3919–3923 (1999).

    Article  CAS  Google Scholar 

  49. 49

    El-Raghy, T., Barsoum, M. & Sika, M. Reaction of Al with Ti3SiC2 in the 800–1000ºC temperature range. Mater. Sci. Eng. A 298, 174–178 (2001).

    Article  Google Scholar 

  50. 50

    Barsoum, M., Golczewski, J., Seifert, H. & Aldinger, F. Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC. J. Alloys Compd. 340, 173–179 (2002).

    Article  CAS  Google Scholar 

  51. 51

    Naguib, M. et al. On the topotactic transformation of Ti2AlC into a Ti–C–O–F cubic phase by heating in molten lithium fluoride in air. J. Am. Ceram. Soc. 94, 4556–4561 (2011).

    Article  CAS  Google Scholar 

  52. 52

    Gusev, A. & Rempel, A. in Materials Science of Carbides, Nitrides and Borides (eds Gogotsi, Y. & Andrievski, R. A. ) 47–64 (Springer, 1999).

    Book  Google Scholar 

  53. 53

    Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  CAS  Google Scholar 

  54. 54

    Mashtalir, O., Naguib, M., Dyatkin, B., Gogotsi, Y. & Barsoum, M. W. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147–152 (2013).

    Article  CAS  Google Scholar 

  55. 55

    Cambaz, G. Z., Yushin, G. N., Gogotsi, Y. & Lutsenko, V. G. Anisotropic etching of SiC whiskers. Nano Lett. 6, 548–551 (2006).

    Article  CAS  Google Scholar 

  56. 56

    Anasori, B. et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1, 227–234 (2016).

    Article  CAS  Google Scholar 

  57. 57

    Seh, Z. W. et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016).

    Article  CAS  Google Scholar 

  58. 58

    Ghidiu, M. et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016).

    Article  CAS  Google Scholar 

  59. 59

    Lipatov, A. et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016).

    Article  CAS  Google Scholar 

  60. 60

    Hu, T. et al. Interlayer coupling in two-dimensional titanium carbide MXenes. Phys. Chem. Chem. Phys. 18, 20256–20260 (2016).

    Article  CAS  Google Scholar 

  61. 61

    Xu, J., Shim, J., Park, J.-H. & Lee, S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26, 5328–5334 (2016).

    Article  CAS  Google Scholar 

  62. 62

    Lai, S. et al. Surface group modification and carrier transport property of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7, 19390–19396 (2015).

    Article  CAS  Google Scholar 

  63. 63

    Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). The first report on the intercalation of ions and polar organic molecules between MXene layers and the delamination of MXenes to make stable colloidal solutions.

    Article  CAS  Google Scholar 

  64. 64

    Mashtalir, O., Lukatskaya, M. R., Zhao, M. Q., Barsoum, M. W. & Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015).

    Article  CAS  Google Scholar 

  65. 65

    Naguib, M., Unocic, R. R., Armstrong, B. L. & Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 44, 9353–9358 (2015).

    Article  CAS  Google Scholar 

  66. 66

    Osti, N. C. et al. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 8, 8859–8863 (2016).

    Article  CAS  Google Scholar 

  67. 67

    Sang, X. et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016).

    Article  CAS  Google Scholar 

  68. 68

    Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) Science 353, 1137–1140 (2016).

    Article  CAS  Google Scholar 

  69. 69

    Xie, X. et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016).

    Article  CAS  Google Scholar 

  70. 70

    Shein, I. R. & Ivanovskii, A. L. Planar nano-block structures Tin +1Al0.5Cn and Tin +1Cn (n = 1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations. Superlattices Microstruct. 52, 147–157 (2012).

    Article  CAS  Google Scholar 

  71. 71

    Xie, Y. et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014).

    Article  CAS  Google Scholar 

  72. 72

    Yu, Y.-X. Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 120, 5288–5296 (2016).

    Article  CAS  Google Scholar 

  73. 73

    Ji, X. et al. Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors. Phys. Chem. Chem. Phys. 18, 4460–4467 (2016).

    Article  CAS  Google Scholar 

  74. 74

    Zhang, X., Ma, Z., Zhao, X., Tang, Q. & Zhou, Z. Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. J. Mater. Chem. A 3, 4960–4966 (2015).

    Article  CAS  Google Scholar 

  75. 75

    Wu, F. et al. Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives. Solid State Commun. 222, 9–13 (2015).

    Article  CAS  Google Scholar 

  76. 76

    Tang, Q., Zhou, Z. & Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012).

    Article  CAS  Google Scholar 

  77. 77

    Li, X., Dai, Y., Ma, Y., Liu, Q. & Huang, B. Intriguing electronic properties of two-dimensional MoS2/TM2CO2(TM = Ti, Zr, or Hf) hetero-bilayers: type-II semiconductors with tunable band gaps. Nanotechnology 26, 135703 (2015).

    Article  CAS  Google Scholar 

  78. 78

    Hu, J., Xu, B., Ouyang, C. Y., Zhang, Y. & Yang, S. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Adv. 6, 27467–27474 (2016).

    Article  CAS  Google Scholar 

  79. 79

    Gandi, A. N., Alshareef, H. N. & Schwingenschlö gl, U. Thermoelectric performance of the MXenes M2CO2(M = Ti, Zr, or Hf). Chem. Mater. 28, 1647–1652 (2016).

    Article  CAS  Google Scholar 

  80. 80

    Gan, L.-Y., Zhao, Y.-J., Huang, D. & Schwingenschlögl, U. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) all-2D semiconductor/metal contacts. Phys. Rev. B 87, 245307 (2013).

    Article  CAS  Google Scholar 

  81. 81

    Eames, C. & Islam, M. S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136, 16270–16276 (2014). A comprehensive computational study of MXenes for different cation battery applications.

    Article  CAS  Google Scholar 

  82. 82

    Berdiyorov, G. R., Madjet, M. E. & Mahmoud, K. A. Ionic sieving through Ti3C2(OH)2 MXene: first-principles calculations. Appl. Phys. Lett. 108, 113110 (2016).

    Article  CAS  Google Scholar 

  83. 83

    Ashton, M., Hennig, R. G. & Sinnott, S. B. Computational characterization of lightweight multilayer MXene Li-ion battery anodes. Appl. Phys. Lett. 108, 023901 (2016).

    Article  CAS  Google Scholar 

  84. 84

    Ashton, M., Mathew, K., Hennig, R. G. & Sinnott, S. B. Predicted surface composition and thermodynamic stability of MXenes in solution. J. Phys. Chem. C 120, 3550–3556 (2016).

    Article  CAS  Google Scholar 

  85. 85

    Yu, X.-f. et al. Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7, 13707–13713 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Wang, X. et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015).

    Article  CAS  Google Scholar 

  87. 87

    Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J. & Gogotsi, Y. Resolving the structure of Ti3C2Tx MXenes through multi-level structural modeling of the atomic pair distribution function. Chem. Mater. 28, 349–359 (2015).

    Article  CAS  Google Scholar 

  88. 88

    Halim, J. et al. X-Ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016).

    Article  CAS  Google Scholar 

  89. 89

    Enyashin, A. & Ivanovskii, A. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comp. Theor. Chem. 989, 27–32 (2012).

    Article  CAS  Google Scholar 

  90. 90

    Magne, D., Mauchamp, V., Célérier, S., Chartier, P. & Cabioc'h, T. Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayerTi3C2 MXene. Phys. Rev. B 91, 201409 (2015).

    Article  CAS  Google Scholar 

  91. 91

    Li, L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): the effect of Mo substitution. Comput. Mater. Sci. 124, 8–14 (2016).

    Article  CAS  Google Scholar 

  92. 92

    Khazaei, M., Ranjbar, A., Arai, M. & Yunoki, S. Topological insulators in ordered double transition metals M′2M′′C2 (M′ = Mo, W; M′′ = Ti, Zr, Hf) MXenes. Phys. Rev. B 94, 125152 (2016).

    Article  Google Scholar 

  93. 93

    Harris, K. J., Bugnet, M., Naguib, M., Barsoum, M. W. & Goward, G. R. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. J. Phys. Chem. C 119, 13713–13720 (2015).

    Article  CAS  Google Scholar 

  94. 94

    Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).

    Article  CAS  Google Scholar 

  95. 95

    Mashtalir, O. et al. The effect of hydrazine intercalation on structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016).

    Article  CAS  Google Scholar 

  96. 96

    Ying, Y. et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (vi) from water. ACS Appl. Mater. Interfaces 7, 1795–1803 (2015).

    Article  CAS  Google Scholar 

  97. 97

    Peng, Y.-Y. et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016).

    Article  CAS  Google Scholar 

  98. 98

    Mashtalir, O. et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2, 14334–14338 (2014).

    Article  CAS  Google Scholar 

  99. 99

    Wang, K. et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42, 8419–8424 (2016).

    Article  CAS  Google Scholar 

  100. 100

    Naguib, M. et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 50, 7420–7423 (2014).

    Article  CAS  Google Scholar 

  101. 101

    Rakhi, R., Ahmed, B., Hedhili, M., Anjum, D. H. & Alshareef, H. Effect of post-etch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27, 5314–5323 (2015).

    Article  CAS  Google Scholar 

  102. 102

    Wang, H. et al. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 160, 537–540 (2015).

    Article  CAS  Google Scholar 

  103. 103

    Ghassemi, H. et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2 . J. Mater. Chem. A 2, 14339 (2014).

    Article  CAS  Google Scholar 

  104. 104

    Naguib, M. MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries. Thesis, Drexel University (2014).

    Google Scholar 

  105. 105

    Lee, Y., Cho, S. B. & Chung, Y. C. Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect. ACS Appl. Mater. Interfaces 6, 14724–14728 (2014).

    Article  CAS  Google Scholar 

  106. 106

    Ma, Z. et al. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 118, 5593–5599 (2014).

    Article  CAS  Google Scholar 

  107. 107

    Zhao, S., Kang, W. & Xue, J. Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett. 104, 133106 (2014).

    Article  CAS  Google Scholar 

  108. 108

    Si, C., Zhou, J. & Sun, Z. Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7, 17510–17515 (2015).

    Article  CAS  Google Scholar 

  109. 109

    Weng, H. et al. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B 92, 075436 (2015).

    Article  CAS  Google Scholar 

  110. 110

    Zhao, S., Kang, W. & Xue, J. MXene nanoribbons. J. Mater. Chem. C 3, 879–888 (2015).

    Article  CAS  Google Scholar 

  111. 111

    Yang, J., Luo, X., Zhang, S. & Chen, L. Investigation of magnetic and electronic properties of transition metal doped Sc2CT2 (T = O, OH or F) using a first principles study. Phys. Chem. Chem. Phys. 18, 12914–12919 (2016).

    Article  CAS  Google Scholar 

  112. 112

    Mauchamp, V. et al. Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. B 89, 235428 (2014).

    Article  CAS  Google Scholar 

  113. 113

    Borysiuk, V. N., Mochalin, V. N. & Gogotsi, Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin +1Cn (MXenes). Nanotechnology 26, 265705 (2015).

    Article  CAS  Google Scholar 

  114. 114

    Fu, Z. et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B 94, 104103 (2016).

    Article  CAS  Google Scholar 

  115. 115

    Yorulmaz, U., Özden, A., Perkgöz, N. K., Ay, F. & Sevik, C. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 27, 335702 (2016).

    Article  CAS  Google Scholar 

  116. 116

    Zhang, H. et al. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 4, 12913–12920 (2016).

    Article  CAS  Google Scholar 

  117. 117

    Ling, Z. et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl Acad. Sci. USA 111, 16676–16681 (2014).

    Article  CAS  Google Scholar 

  118. 118

    Boota, M. et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016).

    Article  CAS  Google Scholar 

  119. 119

    Zhang, H. et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 92, 682–689 (2016).

    Article  CAS  Google Scholar 

  120. 120

    Wu, X. et al. Polymer–Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J. Membr. Sci. 515, 175–188 (2016).

    Article  CAS  Google Scholar 

  121. 121

    Zhao, M.-Q. et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Liu, Y., Wang, W., Ying, Y., Wang, Y. & Peng, X. Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Trans. 44, 7123–7126 (2015).

    Article  CAS  Google Scholar 

  123. 123

    Dall'Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y. & Simon, P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016).

    Article  CAS  Google Scholar 

  124. 124

    Dillon, A. D. et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016).

    Article  CAS  Google Scholar 

  125. 125

    Hantanasirisakul, K. et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016).

    Article  CAS  Google Scholar 

  126. 126

    Zha, X.-H. et al. Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. Europhys. Lett. 111, 26007 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Fashandi, H. et al. Dirac points with giant spin–orbit splitting in the electronic structure of two-dimensional transition-metal carbides. Phys. Rev. B 92, 155142 (2015).

    Article  CAS  Google Scholar 

  128. 128

    Miranda, A., Halim, J., Barsoum, M. & Lorke, A. Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl. Phys. Lett. 108, 033102 (2016).

    Article  CAS  Google Scholar 

  129. 129

    Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    Article  CAS  Google Scholar 

  130. 130

    Parvez, K. et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013).

    Article  CAS  Google Scholar 

  131. 131

    Lane, N. J., Barsoum, M. W. & Rondinelli, J. M. Correlation effects and spin–orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan +1Cn (n = 1,2,3). Europhys. Lett. 101, 57004 (2013).

    Article  CAS  Google Scholar 

  132. 132

    Wang, G. A. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J. Phys. Chem. C 120, 18850–18857 (2016).

    Article  CAS  Google Scholar 

  133. 133

    Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  CAS  Google Scholar 

  134. 134

    Feng, F., Wu, J., Wu, C. & Xie, Y. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. Small 11, 654–666 (2015).

    Article  CAS  Google Scholar 

  135. 135

    Naguib, M. et al. MXene: a promising transision metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61–64 (2012).

    Article  CAS  Google Scholar 

  136. 136

    Xie, Y. et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8, 9606–9615 (2014).

    Article  CAS  Google Scholar 

  137. 137

    Sun, D. et al. Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: a first-principles investigation. ACS Appl. Mater. Interfaces 8, 74–81 (2015).

    Article  CAS  Google Scholar 

  138. 138

    Ren, C. E. et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3, 689–693 (2016).

    Article  CAS  Google Scholar 

  139. 139

    Wang, X. et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). The first report on MXene application in Na-ion hybrid capacitors.

    Article  CAS  Google Scholar 

  140. 140

    Dall'Agnese, Y., Taberna, P. L., Gogotsi, Y. & Simon, P. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6, 2305–2309 (2015).

    Article  CAS  Google Scholar 

  141. 141

    Yu, X.-f. et al. Mg intercalation into Ti2C building block. Chem. Phys. Lett. 629, 36–39 (2015).

    Article  CAS  Google Scholar 

  142. 142

    Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). The first report on the use of MXenes in Li–S batteries.

  143. 143

    Zhao, X. et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. J. Mater. Chem. A 3, 7870–7876 (2015).

    Article  CAS  Google Scholar 

  144. 144

    Luo, J. et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016).

    Article  CAS  Google Scholar 

  145. 145

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). This is the first demonstration of MXenes being able to host a range of cations, such as Na+, K+, NH4+, Mg2+ and Al3+, enabling their use in supercapacitors.

    Article  CAS  Google Scholar 

  146. 146

    Come, J. et al. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17, 27–35 (2015).

    Article  CAS  Google Scholar 

  147. 147

    Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).

    Article  CAS  Google Scholar 

  148. 148

    Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013).

    Article  Google Scholar 

  149. 149

    Shen, B.-S. et al. All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide. Chin. Chem. Lett. 27, 1586–1591 (2016).

    Article  CAS  Google Scholar 

  150. 150

    Lukatskaya, M. R. et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015).

    Article  CAS  Google Scholar 

  151. 151

    Dall'Agnese, Y. et al. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014).

    Article  CAS  Google Scholar 

  152. 152

    Lin, Z. et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016).

    Article  CAS  Google Scholar 

  153. 153

    Peng, Q. et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014).

    Article  CAS  Google Scholar 

  154. 154

    Xie, X. et al. Surface Al leached Ti3AlC2 substituting carbon for catalyst support served in a harsh corrosive electrochemical system. Nanoscale 6, 11035–11040 (2014).

    Article  CAS  Google Scholar 

  155. 155

    Liu, H. et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 . Sens. Actuators B 218, 60–66 (2015).

    Article  CAS  Google Scholar 

  156. 156

    Zhang, X. et al. Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil. RSC Adv. 5, 2762–2767 (2015).

    Article  CAS  Google Scholar 

  157. 157

    Xuan, J. et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016).

    Article  CAS  Google Scholar 

  158. 158

    Qing, Y., Zhou, W., Luo, F. & Zhu, D. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42, 16412–16416 (2016).

    Article  CAS  Google Scholar 

  159. 159

    Han, M. et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016).

    Article  CAS  Google Scholar 

  160. 160

    Zou, G. et al. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4, 489–499 (2016).

    Article  CAS  Google Scholar 

  161. 161

    Guo, J., Peng, Q., Fu, H., Zou, G. & Zhang, Q. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119, 20923–20930 (2015).

    Article  CAS  Google Scholar 

  162. 162

    Zhang, Q. et al. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/Magnetic iron oxide nanocomposites. Nanoscale 8, 7085–7093 (2016).

    Article  CAS  Google Scholar 

  163. 163

    Ren, C. E. et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015).

    Article  CAS  Google Scholar 

  164. 164

    Zhang, Y.-J. et al. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J. Hazard. Mater. 308, 402–410 (2016).

    Article  CAS  Google Scholar 

  165. 165

    Wang, L. et al. Loading actinides in multi-layered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl. Mater. Interfaces 8, 16396–16403 (2016).

    Article  CAS  Google Scholar 

  166. 166

    Chen, J. et al. CO2 and temperature dual responsive “Smart” MXene phases. Chem. Commun. 51, 314–317 (2015).

    Article  Google Scholar 

  167. 167

    Xiao, B., Li, Y.-c., Yu, X.-f. & Cheng, J.-b. MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuators B 235, 103–109 (2016).

    Article  CAS  Google Scholar 

  168. 168

    Zhang, X. et al. Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J. Mater. Chem. A 4, 4871–4876 (2016).

    Article  CAS  Google Scholar 

  169. 169

    Ma, T. Y., Cao, J. L., Jaroniec, M. & Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2015).

    Article  CAS  Google Scholar 

  170. 170

    Li, X., Zeng, C. & Fan, G. Ultrafast hydrogen generation from the hydrolysis of ammonia borane catalyzed by highly efficient bimetallic RuNi nanoparticles stabilized on Ti3C2X2 (X = OH and/or F). Int. J. Hydrogen Energy 40, 3883–3891 (2015).

    Article  CAS  Google Scholar 

  171. 171

    Gao, Y. et al. Preparation of MXene–Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci. 35, 62–65 (2014).

    Article  CAS  Google Scholar 

  172. 172

    Peng, C. et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016).

    Article  CAS  Google Scholar 

  173. 173

    Azofra, L. M., Li, N., MacFarlane, D. R. & Sun, C. Promising prospects for 2D d2d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 9, 2545–2549 (2016).

    Article  CAS  Google Scholar 

  174. 174

    Xu, B. et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28, 3333–3339 (2016).

    Article  CAS  Google Scholar 

  175. 175

    Rasool, K. et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016).

    Article  CAS  Google Scholar 

  176. 176

    Yin, H. et al. Effect of MXene (nano-Ti3C2) on early-age hydration of cement paste. J. Nanomater. 16, 147 (2015).

    Google Scholar 

  177. 177

    Yang, J., Chen, B., Song, H., Tang, H. & Li, C. Synthesis, characterization, and tribological properties of two-dimensional Ti3C2 . Cryst. Res. Technol. 49, 926–932 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors worked with M. W. Barsoum (Drexel University) and P. Simon (Paul Sabatier University) on MXene synthesis and energy storage, respectively. Y.G. thanks numerous graduate students and post-docs, as well as collaborators at Drexel and elsewhere, who helped in the exploration of MXenes. Research on MXenes was supported by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences. B.A. was supported by King Abdullah University of Science and Technology under the KAUST-Drexel University Competitive Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yury Gogotsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (figure)

Schematics of M2AX, M3AX2, M4AX3 crystal structures. (PDF 404 kb)

Supplementary information S2 (table)

Known M2AX, M3AX2, M4AX3 MAX phases to date1,2. (PDF 71 kb)

Supplementary information S3 (table)

MXene synthesis conditions (PDF 71 kb)

Supplementary information S4 (Box)

Delamination via intercalation (PDF 151 kb)

Supplementary information S5 (figure)

MXene crystal structures showing atomic ordering of M, X and T elements. (PDF 151 kb)

Supplementary information S6 (figure)

Effect of etching conditions on MXenes. (PDF 111 kb)

Supplementary information S7 (Box)

XRD patterns during MXene synthesis (PDF 129 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anasori, B., Lukatskaya, M. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing